
PHYSICAL REVIEW D VOLUME 36, NUMBER 12 15 DECEMBER 1987
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We present a numerical study of the gravitational collapse of a massless scalar field. We calcu-
late the future evolution of new initial data, suggested by Christodoulou, and we show that in spite
of the original expectations these data lead only to singularities engulfed by an event horizon.

I. INTRODUCTION

Christodoulou' has recently shown that for a
sufficiently weak, initial spherical massless scalar field
there exists a regular solution for an arbitrary long time
for the coupled general-relativistic and scalar field equa-
tions. This result is the first proof of existence of long-
time solutions to Einstein equations. He has shown that
the scalar field converges toward the origin, bounces,
and disperses to infinity. One expects a gravitational
collapse to a black hole when the initial field is stronger.
However, it has not been shown, yet, that a black hole
rather than a naked singularity forms. The conjecture
that a black hole forms is a special case of the cosmic
censorship hypothesis. We have studied, numerically,
the collapse of a massless scalar field using a characteris-
tic method. We find that while weak fields bounce and
disperse to infinity, strong initial fields collapse into a
black hole. A similar behavior was observed by Chop-
tuik who solved, independently, the same problem using
the 3 + 1 formalism and finite-differencing numerical
techniques. Our discussion is focused on the evolution
of special initial data which were suggested by Christo-
doulou as possibly leading to a naked singularity. We
show that it is unlikely that these initial data will pro-
duce a naked singularity. Recently, Christodoulou has
observed' that this initial data represent a generic ap-
proach towards a singularity of a collapsing massless
scalar field. This observation combined with our results
is a step toward the proof of cosmic censorship.

II. THE EVOLUTION EQUATIONS

The nonvanishing components of the energy-momentum
tensor of the massless scalar field are T„„=h „and
T„„=T„„=—,'gh „,and the nontrivial Einstein equations
are

2 g, r
G „=— ' =8~hrr, r (2.3)

and

2 g g, rG„„= g —+
r g

g, r —1 =Sm.gh „ (2.4)

r(h —h)
g =exp 4n dr

0 r
(2.5)

and

1g= — gdr .
r 0

(2.6)

The incoming light geodesics, satisfying the ordinary
differential equation dr/du = ——,'g(u, r) are the charac-
teristics of the problem. Using the characteristic
method we convert the scalar field evolution equation

Regularity at the origin requires g(u, O)=g(u, O). The
boundary condition h(u, O)=h(u, O) forces us to in-
tegrate the equations outward and to impose the normal-
ization g(u, O)=g(u, O)=1 (which corresponds to select-
ing the time coordinates as the proper time of an ob-
server at the origin), rather than the common
g(u, ao )=g(u, co )=1. With these conditions the solu-
tion at r depends only on the solution at r' & r and we
can integrate Eqs. (2.3) and (2.4):

We express the metric of a spherically symmetric
spacetime in the form

h „——,'gh „=—,'(g —g)(h —h )

into a pair of coupled differential equations

(2.7)

ds = —gg du —2 —du dr+r de

We define, following Christodoulou, '

P=h= —f hdr .
r 0

(2.1)

(2.2)

and

dh

dQ

dr
dQ

1
(g —g )(h —h )

2r
(2.8a)

(2.8b)
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TABLE I. Formation of a black hole with Gaussian initial
clata. (3.3a)

1.874 5

1.89
2.05
2.3
2.5

max(2M /r )

0.98
0.986
0.992
0.992
0.992

0.633 6
0.576
0.482 4
0.396
0.345 6

rbjl

0.008 99
0.030 26
0.065 3

0.098 8

0.121 6

g„=exp 4n g co,

1
gn= X ~i% ~

i =1

(h, —h;)
(3.3b)

(3.3c)

which we solve together with the integral equations (2.5)
and (2.6).

The mass contained within the sphere of radius r (at a
retarded time u), M(u, r), equals

f(r)=a„r +b„r+c„ (3.4a)

where the coefficients co; are determined by a three-point
Simpson method for unequally spaced abscissas. (Even
if the grid is evenly spaced initially, it will not remain so
during the evolution, see Fig. 1.) The integration is
based on overlapping parabolas. We solve the equation

M(u, r)=—— 1 ——g
2 g

Using

(2.9)

for r„2, r„,, and r„ to obtain a„, b„, and c„and then
we evaluate the integral I, at r„as

I„=I„2+f f(r)dr
"n —2

=2~—(h —h )
Br g

a„2+a„
n —2+

2

rn —rn —2
3 3

we express M as

M=2m f —(h —h ) dr .
0 g

(2.10)

2M /r provides a measure on the strength of the gravita-
tional field. A black hole forms when 2M /rz ——1.
2M/rI, ——1 requires that g/g=0. With the normaliza-
tion g( oo )=1, g and g are finite everywhere. The hor-
izon cannot be crossed, but g and g approach zero as the
interior approaches a black hole. " With the normaliza-
tion g(u, O)=g(u, O) =1, g diverges on rh and g diverges
as we approach the same outgoing null geodesic. The
divergence of the metric function forces us to stop the
evolution before the horizon forms. However, we can
infer on black-hole formation from the divergence of the
metric functions and from the fact that 2M/r~l. In
fact, we can reach 2M/r values as high as 0.99 (see
Table I).

b„2+b„r„—r„
2 2

Cn 2+C„+ (r„—r„2) .

Specifically,

1
h

r„

n

h„2 „2+ g coh;
l =n —2

(h, —h, )2

1
gn=

n
gn —2 n —2+ g ~igi

l =n —2

g„=exp lng„2+ 4~ g io;
l =ll —2

(3.4b)

(3.5a)

(3.5b)

(3.5c)

III. THE NUMERICAL SOLUTION

To solve numerically Eqs. (2.8a) and (2.8b) we define a
radial grid r„, where n =1, . . . , N. Each grid point
represents a radial null geodesic. Equations (2.8a) and
(2.8b) become a set of 2N coupled diff'erential equations 0.8

dh,
dQ

1
(g„ —g„ )(h„ —h„ ),

rn
(3.1a)

(3.1b)
0.4

where h and g satisfy the boundary conditions

(3.2) 00
00 0.4

Equations (3.1a) and (3.1b) include implicitly integration
along r, for a fixed u, to obtain h, g, and g. We write
these integrals as

FIG. 1. Null geodesics (for 3= 1.8) in the r and

y =r+ &2 u plane. Note the convergence along the evolution.
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Going Null Geodesic

itial Conditions

ng Null Geodesic

f max

FIG. 2. Null trajectory in the r and y =r+&2u plane. The
scalar field bounces from the origin and disperses "instantane-
ously" to infinity, along the outgoing null geodesic u =const.

For n =2 we use the trapezium rule

I2 ———,'[f(r& )+ f(rz)](r2 —rf ) . (3.6)

0.5

Q 4

We solve the 21' ordinary differential equations using
three different standard methods: the sixth-order
Runge-Kutta, twelfth-order implicit Adams, and fifth-
order Gear's methods. '

The time step du is determined so that in each step
the change in the null trajectory r„ is less half the dis-
tance between it and the null trajectory r„,: i.e.,

FIG. 4. h in the Newtonian case is constant along the null
geodesics (vertical scale of 0—0.0012).

rn rn -i
n

(3.7)

Once a null trajectory arrives at the origin r =0, it
bounces and disperses "instantaneously" along the out-
going null geodesic u=const to infinity (see Fig. 2). At
this stage we exclude this grid point from the solution.
The calculation comes to its end when all the matter ar-
rives at the origin and disperses to infinity, i.e., when
r~ =0. When the initial field is weak, g„=1 and the cal-
culation ends at the retarded time uf,„,& —2r&. uf;„„de-
creases when the initial field increases.

As we approach the stage when a black hole forms
g„~oo, condition (3.7) yields du ~0 and stops the cal-
culation before the horizon appears. r~ =0 is not
reached. We identify the horizon's location from the
maximal value of 2Mlr Atypical . value is 0.99 (see
Table I).

When we ignore the gravitational field (g =g = 1), the
solution is trivial:

CC~ 0.3—
X~ 0.2—

h(u, r„(u))=h(0, r„),
r„(u ) =r„(0)——,

' u .

(3.8a)

(3.8b)

0.0
0.0

0.5—

~ 0.3—
CU

X

Runge-Kutta
Predictor-Corrector
Stfff Methods of Gear

l

0.2
l

Q, 4
U

0.6

(b)

0.8

%'e use this solution to check the computer code. Al-
though it is a weak check since the differential equations
are trivial in this case, it still provides a basic check on
the logic of the code. Moreover, a solution of the rela-
tivistic equations (3.1a) and (3.1b) satisfies approximately
Eqs. (3.8a) and (3.8b) when the gravitational effects are
negligible.

We use the errors in m xa(2 Mlr) as a measure for the
combined accumulated numerical errors. Using A = 1.8

0.1

SOO-points-—
400-points

0.0
0.0 0.2 0.4

U

0.6 0.8

FIG. 3. max(2M/r), using 3=1.8, vs u: (a) Comparison
between three different numerical methods for solving ordinary
differential equations; (b) comparison between two different
grid sizes along r. The numerical errors are so small that the
different lines in (a) and (b) overlap.

FIG. 5. h for a very weak gravitational field 2=0.01. The
solution is similar to the Newtonian case.
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TABLE II. The range of the maximal values of various functions, comparison between the
Newtonian case and the weak-gravitational-field case.

Functions Newtonian case A =0.01

h

h

2M /r

0. 121 221 6&(10
(0.490 8 —1.212 216) )& 10

1

1

(0.053—0.087) X 10

(0.121 221 6—0.121 221 7) K 10
(0.490 8 —1.212 216) K 10

1.000 010—1.000 017
1.000 005 —1.000 012
(0.67—1.094) X 10

(see next section), for which the gravitation field is al-
ready quite strong, we have checked the integration
along r by comparing calculations with two grids with
400 and 800 points. The largest absolute error (which
appeared toward the end of the calculation), was less
than 10 [Fig. 3(a)]. The largest relative error was 3%.
We have checked the integration along u by comparing
three different integration methods. Comparison of the
solutions revealed differences of about 10 [Fig. 3(b)].

(b)

IV. NUMERICAL RESULTS

We have chosen an initial Gaussian P:

P(u =O, r)=h(u =O, r)

=dr exp (4.1)

with a=0.1, xo=0.2, and rz ——0.54 on a grid of 400
points in the radial direction. The Newtonian solution is
shown in Fig. 4. It can be seen (Table II) that the nu-
merical results agree with the analytic solution (3.8a)
and (3.8b).

We have performed a series of relativistic calculations
for different values of A. For a small amplitude, e.g. ,
3=0.01, the gravitational effects are negligible and the
results are similar to the Newtonian ones (see Table II
and Fig. 5). Comparison of 2M/r for 3 =0.01 with the
Newtonian results, shows that it is slightly larger, which
is not surprising since g and g are not exactly 1.

The change of the maximum value of 2M/r achieved
along the evolution, as a function of A, is shown in
Table III. For 3 ~0. 1 the gravitation field is very weak
and the scalar field simply bounces and disperses to
infinity. An increase of the strength of the initial field
leads to an increase in 2M/r and causes the null geo-
desics to converge. A second peak appears in 2M/r
when the amplitude of 3 increases (see Fig. 6). A black
hole appears when A ) 1.8745 (see Fig. 7). In fact, our
calculation stops, due to the divergence of the metric

E

FIG. 6. 2M/r for various initial conditions. (a) A=0.01, a
very weak gravitational field (vertical scale of 0—1.094&(10 ').
(b) A =1.5, the gravitation field is of moderate strength (verti-
cal scale of 0—0.25). (c) A =1.8, strong gravitation field (verti-
cal scale of 0—0.37).

FIG. 7. 2M/r for A=1.8745 (vertical scale of 0—1). The
formation of a black hole can be seen when 2M/r approaches
unity.
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TABLE III. The range of max(2M/r) for various initial sca-
lar fields.

max(2M /r)

and

g(u, r)= —J g( —l, r/l u
I

) Iu I
d(r/I u

I
)

r Q

0.01
0.1

1.1
1.5
1.8
1.85

(0.67—1.094) ~ 10-'
(0.67—1.093)K 10

0.077 42-0.109 3
0.138-0.249 6

0.191 5 —0.372 8
0.200 83-0.399 7

1.08
1.08
1.036 8
0.943 2
0.799 2
0.741 6

=g( —l, r/I u
I

) . (5.3c)

The requirement that P satisfies the evolution equation
(2.7) yields an ordinary differential equation for 8:

x ( —,'g —x ) =a —8(x )[—,
' (g +g ) —2x ] . (5.4)

U. CHRISTODOULOU'S SPECIAL SOLUTION

We address now the question of whether or not it is
possible to choose initial data which will evolve into a
naked singularity. In an unpublished work, Christo-
doulou has suggested that one consider, as initial data
at u = —1, a scalar field whose future evolution satisfies

P( ur):—h(u, r)=h( —l, rI
I

u
I

) —a ln(
I

u
I

) . (5.1)

We define

h ( —l,x ) = —J 8(x )dx,
X

where x =r /u leads to

(5.2)

h(u, r)=h( —l, r/
I

u
I

) —~in(
I

u
I

) —x8(x) (5.3a)

g(u, r)=exp 4m J I

u Ix8'(x)dx
0

=g( —l, rl
I

u
I ), (5.3b)

r i v

(
r v & &

I
& i t I

I

0.6—

04—

0 i & & i I i I I I I I I » I I I I I I I I I I I I 1 I I

1.5 2 2.5 3 3.5 4 4.5
A

I i i i i I

5 5.5 6

FIG. 8. M&/M, . vs A for A ) 1.8745.

functions, just before the apparent horizon forms (see
Table I). As A increases, a black hole forms earlier and
with a larger final mass M/. The graph of M//M; (M;
being the initial mass) as function of A, displays a jump
at A =1.8745: below that value M&

——0, above it M& has
a finite value (see Fig. 8).

Equation (5.4) together with Eqs. (5.3b) and (5.3c), speci-
fy the initial data for 0&r &x&. The left-hand side of
Eq. (5.4) vanishes at x„where x, = —,'g and a solution
satisfying Eq. (5.1) does not exist for r &x, . With the
initial data for i)) given at u = —1, P becomes singular at
r =0, u=0 and is regular elsewhere for —1 & u &0.
Therefore, it is a potential counterexample to cosmic
censorship.

We have solved Eq. (5.4) numerically using standard
methods of integration for ordinary differential equa-
tions. We easily achieve high accuracy in spite of the
fact that there is a regular singular point at x&, where
—,'g(x, )=x, . By gradually reducing the integration step
we approach x, and obtain an accurate estimate for
8(xi) and x, . We evaluate a., using Eq. (5.4), from the
calculated values of x, and 8(x, ) and compare it with
the original ~ to obtain an estimate of the numerical ac-
curacy. For small ii values (x &0.4/v'4m. ) the difference
between the two is less than 10 and it is less than 10
for the larger values (x & 0.4/v'4m. ).

Differential values of ~ yield different initial conditions
on [O,x, ], where x, =x, (a). 8(x, ) decreases with K,
while 2MIr

I
„and x, increase with a.. The larger

1

2M/r
I „,the more likely it is to form a black hole. On

I

the other hand, as a increases, 8(x) becomes less steep
and the numerical errors decrease (see Fig. 9).

The solution of Eq. (5.4), which we call the interior
solution, determines the spacetime only in the domain of
dependence of the initial region I u = —1,0 & r & x i I. To
obtain a global solution one has to specify initial data,
8(x), on r & x, and check whether a black hole forms be-
fore u =0 in the exterior region. With Christodoulou s
construction it is impossible to specify vacuum as exteri-
or initial data. Equations (5.4) and (5.3a) yield h(x i )&0,
and the choice h =0 for r &x, yields discontinuous ini-
tial data. One must supplement the solution of Eqs.
(5.1), (5.3a), (5.3c) and (5.4) with nonvanishing causal ex-
terior initial data at r & x&, whose evolution might not be
trivial. The global structure of the solution depends on
the region exterior to the null geodesic, r i ( u ), that
passes through (u = —l, x, ). In particular, if a black
hole forms at the exterior before u =0, the singularity at
(r =0, u =0) is not naked.

The inner solution provides inner boundary conditions
for the exterior solution on r i (u ). Using r i „——x i and
the initial condition r, (u = —1)=x „we obtain
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FICx. 9. Initial data at u = —1 and 0 & r (x, . With
K=0.24/&4~, K=O.S/&4~, and K=0.7/&4~, (a) 0 vs r and (b)
2M/r vs r.

FIG. 10. 2M /r in the exterior region for (a)
K =0.24&4m 0(x & x l ) =0(x i )2 '/(1+ x /x l ) ', (b) K =0.5/&4~
and 0(x & x, ) =0(x, )2 '/(1+x /x 1 ), (c) K=0.7/&47' and
0(x & x l ) =0(x, )2 '/(1+x /x 1 ), (d) K=O. 5/&4a and
0(x & x l ) =0(x 1 )( 1 —x ) /( 1 —x 1 )

h ( u, r, ) = h ( —1,x, ) —l~ ln( u
~
),

h ( u, r, ) = h ( —1,x
&

) —i~ ln(
~

u
~
),

g(u, r, ) =g( —l, x, ),
g(u, r, ) =2x, ,

2M(u, r, ) 2M( —l, x, )

(5.5a)

(5.5b)

(5 5c) A black hole forms when

(5.5d) 2[M( —l, r„)—(1+u )M( —l, x
& )] =1 .

(5.5e)
Therefore, a black hole forms before

Using Eq. (3.lb) and g„(u) &g„(—1), we obtain

r„(u) & r„(—1)——,'g„( —1)(1+u ) . (5.9)

(5.10)

We choose external initial data and we calculate the
exterior solution using the inner boundary conditions
given by Eqs. (5.5a) —(5.5e). Figure 10 describes the evo-
lution of 2M/r for difterent ~ values and for two kinds
of external continuation functions. We describe only the
exterior region, i.e., the domain of dependence of the re-
gion [u = —1, x& &r &r,„I. We have found that (see
also Fig. 11) a black hole always forms before u =0.

We now estimate from the initial data an upper limit,
up for ub&, at which a black hole forms. The amount of
mass between any two shells remains constant as long as
the shells have not arrived at the origin. In particular,
the mass between r„and x, remains constant until u =0:

M( —l, r„(—1))—M( —l,x, )=M(u, r„(u))

Qp =

0.8

0.6

D2

0.4—

0.2

—,'r„( —1)—M( —l, r„(—1))

—,'g„( —1)+M( —l, x, )

(5.1 1)

—M(u, r, (u)) . (5.6)
—0.8 —0.6 —0.4 —0.2

I I i I I I I I I I I I i ]

Using the fact that 2M/r is constant along the null geo-
desic r, and that on r, , g =2x, , we obtain

and

M(u, x, ) = —uM( —l, x, ) (5.7)

M(u, r„(u ))=M( —l, r„, ( —1))—(1+u )M( —l,x, ) .

(5.8)

FIG. 11. max(2M /r ) vs u for K =0.24/&4~ and
0(x & x l ) = 0(x, )2 s(1+x /x, )

' (short-dashed line); K=O. 5/
&4~ and 0(x &x, )=0(x, )2"/(1+ x/x, )-" (long-dashed line);
K =0.7/v'4w and 0(x & x, ) =0(x, )22s/( 1 +x / x

1

)zs (solid line)
and K=0.5/&477 and 0(x & x, ) =0(x, )(1—x ) /(1 —x l

)s

(dashed-dotted line). A black hole always forms before u =0.
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TABLE IV. Formation of a black hole in the exterior re-
gion of Christodoulou's initial data with the continuation func-
tions g(x ~ x, ) =g(x I )2 '/(1+x /x, )' (first three lines) and
t9(x & x l ) =0(x I ) ( 1 —x )

' /(1 —x I
)' (last line).

0.24/&4m.
0.5/~4~
0.7/&4m.
0.5/&4~

Qp

—0.441 9
—0.071 9
—0.023 2
—0.015

ubh

—0.470 24
—0.074
—0.083 9
—0.054

2M /r

0.999
0.997
0.999
0.997 6

0.267 6
0.086 4
0.103 8
0.054

and

8(x, ) [1+exp[(x, —xo)/a ] j9(x)= 1+exp[(x —xo)/a ]
2"8(x, )

8(x)=
(1+x /x, )"

(5.12a)

(5.12b)

8(x) =0(x, )
(1 —x )"

(5.12c)
(1—x, )"

where a and xo or n are free parameters. For each func-
tion we have looked for the maximal uo for several
different choices of ~. The maximal uo was always ob-
tained when the function decreased rapidly from 0(x& )

to zero. In other words, we have found that uo~0 for
xo ~x

~
and a ~0 or for n ~ ao . In none of the cases

was uo) 0. It seems that the discontinuous vacuum ex-
terior is the only possible data that develops a naked
singularity.

i.e., ub], (uo.
For given initial data we calculate uo(r„). If

uo(r„) &0 for some r„, then this initial data will evolve
into black hole. Comparison of ubI, calculated from the
complete evolution will uo calculated using Eq. (5.11)
(see Table IV) demonstrates, as expected, that uo & ub(, is
always satisfied. The difference is large when the gravi-
tational field is strong, e.g., for ted=0. 7/&4', since then
g increase rapidly with u.

In a search for a naked singularity we have used Eq.
(5.11) to estimate whether or not a black hole forms.
We have chosen the following trial functions for the ex-
terior initial data:

VI. CONCLUSIONS

We have studied the numerically spherical collapse of
a massless scalar field. For a weak field, 2M/r is much
smaller than unity and the scalar field converges inward,
bounces, and disperses to infinity. When the initial field
is stronger, 2M/r approaches unity and a black hole
forms. In our coordinate system, g and g diverge and we
cannot follow a black-hole appearance in this calcula-
tion. We can, still, estimate where and when a black-
hole horizon appears from graphs of 2M/r or g. A
black-hole appearance is also marked clearly on the tra-
jectories of null geodesics, which converge inward in the
(r, t) plane (see Fig. 1).

After testing the code and studying the evolution of
Gaussian initial data we have considered the question of
whether or not it is possible to obtain a naked singulari-
ty as a result of gravitational collapse of a massless sca-
lar field. Christodoulou has suggested that special initial
conditions at u = —1 exist which lead to a singularity at
u =0, r =0. He was able to define uniquely the initial
data only for 0&r &x, , for which he could solve the
evolution equation analytically and show that a black
hole does not form in the domain of dependence of
I
—1,0&r &x& j. We have tried various extensions of

the initial conditions that cover the region x& &r & op.
In all cases, a black hole formed before u =0. We be-
lieve that it is unlikely that one can construct a coun-
terexample to cosmic censorship in this manner.

Recent results of Christodoulou' indicate that if a
massless spherical scalar field forms a naked singularity,
the scalar field must approach the form given by Eq.
(5.1). Our results show, however, that such a singularity
is most likely hidden inside a black hole. We conclude,
therefore, that the spherical gravitational collapse of a
massless scalar field cannot lead to a naked singularity.
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