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A new generation of resonant-mass gravitational wave antennas, to be operated at ultralow tern-

peratures, is under development by several research groups. This paper presents a theory for the
optimal design of the new antennas. First, a general sensitivity limit is derived, which may be ap-
plied to any linear instrument for which the design figure of merit is the signal-to-noise ratio
(SNR). By replacing the amplifier by its noise resistance and considering the energy dissipated in

the noise resistance when a signal is applied, it is possible to show that the optimally filtered SNR
is less than or equal to E, /(kT„), the energy dissipated in the noise resistance divided by
Boltzmann's constant times the amplifier noise temperature. This sensitivity limit will be achieved
if the instrument is lossless, in which case the energy dissipated in the noise resistance is equal to
the energy deposited in the system by the signal. For resonant-mass gravitational wave antennas,
if the amplifier is identified as the mechanical amplifier (transducer and electronic amplifier togeth-
er), then the lossless limit is accessible in practice. A useful point of view is that optimal antenna
designs are those that are most loss tolerant —those that achieve the limiting SNR with the lowest
possible mechanical Q values. The techniques of network synthesis may be used to design
mechanical networks for matching the main antenna mass to the mechanical amplifier that are op-
timal in this sense. A class of loss-tolerant networks has been synthesized; their properties are
summarized in a set of design charts that give the Q requirements and bandwidth as a function of
the number of modes, the temperature, and the amplifier noise resistance and noise temperature.

I. INTRODUCTION

The development of resonant-mass gravitational wave
antennas has now progressed to the point where the
strongest predicted events' are detectable. A supernova
core collapse 10 kpc away (the distance to the center of
the Milky ~ay), which converts one percent of a solar
mass into radiation, wi11 produce a pulse lasting about
one millisecond with a dimensionless amplitude of
h = 10 ' at the Earth. This pulse gives approximately a
signal-to-noise ratio (SNR) of unity for the present gen-
eration of cryogenic antennas, which are about 100 times
more sensitive to gravitational wave amplitude than
were the pioneering antennas constructed by Weber in
the 1960s. Events strong enough to detect at the present
sensitivity are expected to be rare. A long-term effort,
now underway, to detect multiple coincidences between
widely spaced antennas offers hope for the first unambi-
guous detection of gravitational radiation.

Several groups are laying plans for a third generation
of more sensitive resonant-mass antennas, and the de-
velopment of long-baseline laser interferometers as gravi-
tational wave antennas is also being pursued. For

resonant-mass antennas, it is hoped that extensions of
existing technology will permit pulse sensitivities of
h =10 ' —10 in the next generation. Similar sensi-
tivities may be achieved when the first generation of
large (several kilometers) laser interferometers are built.
Major features of the plans for resonant-mass antennas
include the use of ultralow temperatures (10—50 mK),
improved transducers and electronic amplifiers, im-
proved vibration isolation, and the use of multimode
mechanical impedance-matching networks.

This paper discusses the theory needed to design fu-
ture generations of resonant-mass antennas. In Sec. II a
sensitivity limit is derived, which extends the earlier re-
sult of Giffard concerning a one-mode antenna subject
to a white force signal, to the case of an arbitrary linear
antenna subject to an arbitrary signal spectrum. The
new result is derived by replacing the amplifier by its
noise resistance, a quantity defined in terms of the
amplifier noise spectral densities, and computing the en-
ergy dissipated in the noise resistance when a signal is
applied. It is found that the optimally filtered SNR is
less than or equal to E„/(kT„), the energy dissipated in
the noise resistance divided by Boltzmann's constant
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times the amplifier noise temperature. The equality
holds for a lossless system, for which all of the energy
deposited in the antenna by the signal is eventually dissi-
pated in the noise resistance. This result can be applied
not only to gravitational wave antennas, but also to any
linear instrument for which the SNR is the main figure
of merit.

In practice, the sensitivity limit set by the electronic-
amplifier noise temperature cannot be approached in
resonant-mass antennas because of electrical losses in the
electromechanical transducer. However, one may alter-
nately view the antenna as a mechanical network, con-
sisting of the main massive resonator (usually an alumi-
num cylinder) and one or more smaller impedance-
matching resonators, followed by a mechanical amplifier,
which includes the electromechanical transducer and the
electronic amplifier. The losses in the mechanical net-
work can be made small enough so that the sensitivity
limit set by the mechanical-amplifier noise temperature
(which is larger than the electronic-amplifier noise tem-
perature) can be reached, at least for the case of a broad-
band signal and providing that a broadband impedance
match is achieved between the main antenna mass and
the mechanical amplifier. The case of a broadband sig-
nal is the case of most interest —almost all research
groups developing resonant-mass detectors optimize
their instruments for detecting = 1-msec broadband
pulses, as would be produced by the gravitational col-
lapse of solar-mass-sized objects. These signals are ex-
pected to be stronger than continuous sources, even al-
lowing for the possibility of long averaging times with
continuous signals.

A broadband impedance match must be achieved be-
tween the main resonator and the mechanical-amplifier
noise resistance if the lossless sensitivity limit is to be
reached. This is usually done by placing one or more
additional resonators between the main resonator and
the mechanical amplifier. The antenna will then have
several normal modes. In Sec. III the impedance-
matching problem is introduced by considering the limi-
tations of a one-mode antenna, and then a lumped-
element multimode antenna model is described. In Sec.
IV the need for broadband impedance matching is ex-
plained in more detail in terms of the transfer function
YT(co), which relates the signal at the amplifier noise
resistance to the applied gravity-wave force. It is found
that for the system to be most tolerant to mechanical
losses, the multimode matching network should be
designed so that the transfer function YT(co) is a broad-
band and flat function of frequency.

The techniques of network synthesis are applied in
Sec. V to find a set of multimode matching networks
that have a broadband and flat YT(co). The realizability
conditions on YT(co) are stated, a family of maximally
flat rational functions satisfying the realizability condi-
tions is found, and network elements that realize the
maximally flat YT(co ) are computed. The network-
element values when expressed in dimensionless form de-
pend on the number of modes and the value of the di-
mensionless noise resistance R„, which is defined as the
noise resistance divided by the impedance of the main

mass at the center frequency. Plots of the resonator
masses, resonant frequencies, and the bandwidth are
given for one to eight modes and for R„=10 —10
It is found that the bandwidth increases if either the
number of modes or R„ increases. The tolerance of the
maximally flat networks to mechanical losses is mea-
sured by computing the values of the resonator quality
factors (Q's) that degrade the SNR by a factor of 2 from
the lossless limit. Plots are given of the minimum toler-
able Q's for the case where one of the resonator Q's is
much lower than the others and for the case where all of
the Q's are equal. The plots in Sec. V can be used as
design charts. If the mechanical amplifier is given and
one has some information about the mechanical Q's that
can be achieved, then the plots can be used to find the
number of modes that must be used to achieve a
sufficiently broadband match so that the lossless limit is
reached, and to find values for the resonator masses and
spring constants.

The results are summarized in Sec. VI and their utility
is illustrated by considering the future possibilities of the
program at Stanford.

II. PROPERTIES OF THE SIGNAL-TO-NOISE
RATIO

The sensitivity of resonant-mass antennas is limited by
the noise temperature of the amplifier used to detect
motions of the antenna. Giffard considered an antenna
with one resonant mechanical normal mode, a passive
linear electromechanical transducer, and a noisy linear
electronic amplifier. He showed that when the signal is
a 5-function force, the SNR is always less than or equal
to the energy deposited in the antenna by the signal with
the antenna initially at rest, divided by Boltzmann's con-
stant times the amplifier noise temperature. (Giffard
went on to show that, because the noise temperature of a
linear amplifier is required by quantum mechanics to be
greater than Ace, there is a fundamental limit set on the
sensitivity of linear resonant-mass antennas. ) For
reasons that are considered in detail below, it is desirable
to construct antennas with several normal modes, and
thus extensions of Giffard's results must be considered.

In this section it is shown that Giffard's sensitivity
limit applies to an arbitrary linear antenna subject to a
5-function force signal, and that Gijfard's limit is
achieved by any lossless antenna. The result is demon-
strated as a specialization of a new theorem. The
theorem provides a sensitivity limit for a generic instru-
ment, consisting of a passive two-port network followed
by a linear amplifier and subject to a signal with an arbi-
trary spectrum. 'For a signal that is not a 6 function, a
limit similar to Giffard s still holds, but the energy de-
posited must be calculated with the amplifier replaced by
its noise resistance. In this case, also, the limit is
achieved when the system is lossless.

A previous result generalizing Giffard's limit was
found by Michelson and Taber, who considered power
matching between the dissipation of the first mass and
the noise resistance, and were able to show that the sen-
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u&(cu)= f&(ru)y»(ru)+ f&(ru)y»(cu),

u2(co) =f, (cu)y2t (cu)+f, (ru)y2, (ru) .
(2)

The two-port is followed by a general noisy linear
amplifier, which contains force and velocity noise gen-
erators with stationary stochastic waveforms f (t) and
u (t), and an ideal noiseless amplifier. The force noise
generator is characterized by its spectral density

Sf(co)—:f e ' '(f(t)f(t r))dr, — (3)

and S„(co) is defined similarly. In general, the genera-
tors may be correlated, in which case the cross spectral
density

Sf„(ru)= f e '"'(f (t)u (t —r))dr (4)

will be nonzero. It is simplest to imagine that the ideal
amplifier has a zero input impedance, but this is not re-
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sitivity limit applies to any antenna consisting of a (pos-
sibly lossy) resonant mass followed by a lossless passive
two-port and subject to a 6-function force signal. Addi-
tional results are obtained here by focusing on the
transfer function Yr(co), which relates the signal at the
amplifier noise resistance to the force applied to the an-
tenna. Further consideration of this quantity leads to
the synthesis theory given in Sec. V.

The systems of interest are of the form shown in Fig.
1. The diagram could represent essentially any instru-
ment for which the design figure of merit is the SNR.
The dynamic variables indicated in the figure are force
and velocity, but the discussion is, of course, unchanged
if the system is electrical, electromechanical, or any oth-
er sort of linear system. In the Fourier-transform con-
vention used here the force signal spectrum is

F(ru): f e —"J'F(t)dt .

The signal is applied to a passive linear two-port in
thermodynamical equilibrium at a temperature T. It is
convenient to describe the two-port by its short-circuit
admittance matrix y,"(co), which relates the port forces
f, (cu) and f2(ru) to the port velocities u &(cu) and u2(cu):

quired since any (noiseless) impedance may be placed
after the noise generators without affecting the SNR, or
the SNR per unit bandwidth (defined below).

The signal and noise output by the amplifier are pro-
cessed by a filter than optimizes the SNR (Ref. 9). The
filter's transfer function is

—J toto
e u (ru)

S„(ru )

where u (cu) is the velocity signal at the ideal amplifier
input, S„(n) is the total velocity noise spectral density at
the ideal amplifier input, and to is the time at which the
SNR will be optimized by the filter. Because of the so-
phistication of modern digital filtering methods, it is safe
to assume that a good approximation to the optimal
filter can be implemented —this is certainly true for au-
dio frequencies and below. The SNR, which is defined
as the signal amplitude squared divided by the mean
squared noise, is given at the output of the optimal filter
and at time to by

I + iu(cu)i dc'2' — S„(cu )

The integrand of this expression is the SNR per unit
bandwidth o (cu).

Using Eq. (2), the integrand may be computed. With
Sf„(co) set to zero for the moment, the result is

I Fyzt I

'
o. (ru) =

S +Sf
~ y22 ~

+2kT Re(yzz )

There are three noise terms in the denominator: the ad-
ditive velocity noise, the force noise that drives the two-
port output admittance y22, and the thermal (Johnson-
Nyquist) noise' due to losses in the two-port, which is
given by twice Boltzmann's constant times the tempera-
ture times the real part of the output admittance.

It is fruitful to consider the circuit of Fig. 2, in which
the amplifier has been replaced by its noise resistance

r„=(Sf!S„)'

This circuit may be thought of as an energy analog for
the noisy circuit of Fig. 1, because, as will be shown
next, when a given signal is applied to the analog, the
energy dissipated in r„ is closely related to the SNR for
the circuit of Fig. 1 when it is subject to an identical sig-
nal.

The velocity u„(co) at the noise resistance is related to

signal
source

passive two-port
at temperature T

noisy linear
amplifier optimal filter

FICr. 1. A generic instrument. The variables f and u can
represent force and velocity, voltage and current, or other dy-
namic variables. F(~) is the Fourier transform of the signal,
which is applied to a passive linear two-port at temperature T.
The two-port is characterized by its short-circuit admittance
matrix elements y; (cu). The noisy amplifier contains a force
noise generator with spectral density Sf, a velocity noise gen-
erator with spectral density S„, and a noiseless amplifier. The
filter transfer function K (co) is chosen to optimize the SNR.

F(o))

FICr. 2. A generic instrument with the noise amplifier re-
placed by r„, the amplifier noise resistance. The relative veloc-
ity between the terminals of the noise resistance is denoted
u„(co).
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the applied signal force by the transadmittance Yr(co):

IFyzl I'
I 1+r.yzz I' "

F»~z I

'
1+r„ I y 22 I

+2r„Re(y zz )
(10)

Yz (co) =u, (co)/F(co) = y2&

1+Pn

The energy per unit bandwidth e„(co) dissipated in the
noise resistance is given by

e„(co)=
~

F(co)Yr(co)
~

r„

Sf
fl

Im(Sf„) Im(Sf„)
S +J

which involves the imaginary part of the cross spectral
density. The noise temperature becomes

energy must eventually be dissipated" in r„, so then the
SNR is equal to the total energy deposited in the system,
divided by Boltzmann's constant times the noise temper-
ature. The energy deposited must be computed with the
amplifier replaced by its noise resistance.

Similar results may be obtained if Sf„(co) is not zero.
Then there is an extra noise term 2 Re(yzzSf, ) in Eq. (7),
and the amplifier must be replaced by its complex noise
impedance

an expression remarkably similar to cr(co), Eq. (7). It is
now helpful to define the amplifier noise temperature T„:

kT„=(SfS„)'

kT„—= [SfS„—[Im(Sf„)] I
'

One can then show that

(16)

S/N &E„/(kT„) if T & T„and Re(yzz)&0,

SIN =E„/(kT„) if T =T„or Re(yzz)=0,

S/N & E„/(kT„) if T & T„and Re(yzz )&0 .

(14)

In other words, the signal-to-noise ratio is less than or
equal to the total energy dissipated in the noise resistance,
divided by Boltzmann's constant times the noise tempera-
ture, so long as T is greater than T„; and the limit is
achieoed if the network is lossless. Note that the energy
dissipated in r„ is itself always less than or equal to the
total energy deposited in the system by the signal, so the
SNR is also less than or equal to the total energy depos-
ited in the system, divided by Boltzmann's constant
times the noise temperature, so long as T is greater than
T„. If the network is lossless, then all of the deposited

The basic sensitivity limit follows from writing the en-

ergy dissipated in r„per unit bandwidth, divided by
Boltzmann's constant times the noise temperature:

e„(co)/(kT„)= IFyzi i'
(12)

S.+Sf I yzz l
+2kT„Re(yzz)

This is identical to the expression for o(co), the SNR per
unit bandwidth, in Eq. (7), except that T is replaced by
T„. Therefore, it follows that

o (co) &e„(~)/(kT„) if T & T„and Re(yzz )&0,
o(co) =e, (co)/(kT„) if T = T„or Re(yzz) =0,
o (co) & e„(co)/(kT„) if T & T„and Re(yzz)&0 .

[Note that Re(yzz) &0 because the two-port is passive. ]
In all practical cases, the physical temperature T is
greater than the noise temperature T„, so o (co) is always
less than the energy dissipated in r„per unit bandwidth
divided by k T„, unless the two-port is lossless
[Re(yzz)=0], in which case they are equal. The above
relations can be integrated and, in most cases of interest,
T„ is approximately constant over the range of frequen-
cies where appreciable power is dissipated in r„; so it
may be brought outside the integral to yield

o.(co) & e, (co) l(kT„)

if T & T„—Re(Sf„)/k and Re(yzz)&0,

cr(co) =e, (co)/(kT„)

if T = T„—Re(Sf„)/k or Re(y zz ) =0, (17)

o.(co) & e, (co) l(kT„)

if T & T„—Re(Sf„)lk and Re(y zz )&0,
where e, (~) is the energy per unit bandwidth dissipated
in z„. Analogous expressions relate the integrated quan-
tities.

The above results apply also to the case of an n-port,
where the amplifier is connected to one port and the sig-
nal consists of several components with different
waveforms which are applied to the other ports. The
distributed interaction of a signal with a distributed net-
work may be approximated as closely as one likes in this
way. Thus, the SNR of a continuum elastic solid anten-
na interacting with a gravitational wave may be bounded
by computing the total energy dissipated in the noise
resistance by the signal, and it may be computed exactly
in this way if the antenna is lossless.

If, as supposed by Giffard, the force signal is a 6 func-
tion in time, then the energy deposited in each element
depends only on its mass and its position, and so the to-
tal energy deposited in the antenna is the same whether
or not the amplifier is replaced by its noise resistance.
In this case, as was shown by Giffard for a one-mode an-
tenna, the SNR is less than or equal to the energy depos-
ited in the antenna divided by kT„, even without replac-
ing the amplifier by its noise resistance. If the antenna is
lossless, the SNR is equal to the energy deposited in the
antenna divided by kT„; so Giffard s limit is achieved by
any lossless antenna.

In practice, a lumped two-port gives a sufficiently ac-
curate model of a resonant-mass antenna. One way to
model an antenna is to include in the two-port the main
antenna mass, any intermediate resonators intended to
improve the matching, and the passive electromechani-
cal transducer. In this case the two-port output vari-
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ables are voltage and current, and the noisy amplifier is
an electronic device (a dc SQUID, in most cases). For
existing antennas the sensitivity limit set by the electron-
ic amplifier noise temperature is not approached, mainly
because the thermal noise of electrical losses in the
transducer contributes substantially to the total noise.
Alternatively, one may view the transducer and electron-
ic amplifier together as a noisy linear mechanical
amplifier and include only mechanical elements in the
two-port. In this case, some existing detectors are in the
lossless limit. For example, the Stanford 4 K, 4800 kg
cryogenic antenna has a mechanical amplifier noise tem-
perature of about 10 mK, and this is also the energy
deposition required for a SNR of unity.

F(M)
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III. MUI.TIMDDE RESONANT-MASS
ANTENNAS

Given a mechanical amplifier with a certain noise tem-
perature, the best antenna designs are those that will
achieve the lossless sensitivity limit. Since realistic com-
ponents are never perfectly lossless, a crucial question
arises: How lossless is lossless enough? The answer to
this question depends upon the design of the antenna.
In particular, if the main antenna mass is impedance
matched over a wide range of frequencies to the
amplifier noise resistance, then the antenna can reach
the lossless sensitivity limit even with relatively low Q
values. In this section, the limitations of a one-mode an-
tenna, which does not have broadband matching, are
discussed, and multimode networks for broadband
matching are introduced.

To understand the need for broadband matching, con-
sider first the Q requirement of a one-mode antenna (Fig.
3). The mass m &, spring constant k&, and dissipation
(force per unit velocity) d, are lumped elements chosen
to model a mode of an elastic solid, which couples to
gravitational radiation. Usually, the mass is a right cy-
lindrical bar and we are interested in the lowest longitu-
dinal mode. In this case, if the degree of freedom
represented in the diagram is taken to be the distance
from the center of mass to one end of the bar, then m

&
is

given by the half the bar's mass and the signal is given
by

FIG. 3. Lumped-element model of a resonant-mass antenna
with one normal mode. F(co) is the Fourier transform of the
applied force signal and k, , m, , and d& are the model's spring
constant, mass, and dissipation (force per unit velocity). The
thermal noise force spectral density is S,h. The motion of the
mass is monitored by a noisy mechanical amplifier, which con-
sists of a force noise generator with spectral density Sf, a ve-

locity noise generator with spectral density S„, and a noiseless
mechanical amplifier.

T ~&m&
Q)»2

Tn "n
(20)

if the lossless limit is to be achieved. The temperature
ratio is about 400 for present cryogenic detectors (4
K/10 mK), and the ratio of impedances (co, m

&
)!r„ is in

the range 10 —10 for present systems. Thus, for a one-
mode antenna to be in the lossless limit, very high
mechanical quality factors are required —at least 10 for
present parameters. Since cr(co) for a lossless system is
proportional to the energy per unit frequency dissipated
in the noise resistance, the fractional bandwidth Af If of
a lossless one-mode system is given by Q

' with the
amplifier replaced by r„:

F (co ) = m, L co h (co ), ~fIf =
63)m )

(21)

where L is the length of the bar and h (co) is the Fourier
transform of the metric perturbation of a favorably
directed and polarized wave. The spring constant k& is
fixed so that (k& Im

&

)'~ =co& is the bar's resonant fre-
quency, and the dissipation d, is chosen so that
Q, =(co,m, )ld, is equal to the bar's quality factor. The
thermal noise force spectral density is given by

Sth =2kTd

Since the thermal noise force generator appears in
parallel with the amplifier force noise generator, it is
clear that the sensitivity must become degraded whenev-
er S,h is comparable to Sf. This implies that the quality
factor must satisfy

This is equal to 10 —10 for present systems. As will
be explained in more detail in the next section, systems
with small bandwidths in the lossless limit will always
require high mechanical quality factors. The connection
between bandwidth and Q requirements has been em-
phasized by Michelson and Taber.

The small bandwidth of a one-mode system stems
from an impedance mismatch. The noise resistance of
practical mechanical amplifiers is much smaller than the
impedance of the antenna mass. The first cryogenic an-
tenna built in Stanford' introduced broadband mechani-
cal resonant matching. A second resonator, much
lighter than the main antenna mass, was attached to the
face of the bar, and the mechanical amplifier measured
the distance between the face of the bar and the addi-
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tional resonator. This two-mode arrangement can pro-
vide a much larger bandwidth than a one-mode design.
Richard' has discussed systems with more than two
modes, and has shown that even more bandwidth can be
obtained. The network synthesis results, presented in
Sec. V, detail the Q requirements of a class of optimal
multimode systems; they are much less severe than for
one-mode designs. Other methods for achieving a
broadband impedance match have been suggested, in-
cluding a lever' and tapered transmission lines. '

The general m-mode lumped element model, as given
by Richard, is shown in Fig. 4. There are now m
masses, m springs, m dissipative elements (with m asso-
ciated thermal noise sources), and m resonant frequen-
cies co, and quality factors Q, :

(22)

kl
AA k2

d2

k3
HY5

~ ~ ~

m2 d3 m3

km-I
rm

li
LI

m m-1

km

dm mm

F(co)

c—Q—ts )S~ sfu

FICs. 4. LUmped element model of an antenna with m nor-
mal modes. There are m masses, m springs, and m dissipative
elements. The motion of the last mass relative to the next to
the last mass is monitored by a noisy mechanical amplifier.

As for a one-mode system, if the first resonator takes the
form of a cylindrical bar, then m, is equal to half the
bar's mass, and the force signal is given by Eq. (18). The
higher normal modes of the bar and its zero frequency
mode, and any other parasitic modes that may be
present in the system, are not included in the model.
This is an acceptable approximation if the neglected
modes are far enough away from the passband of the
detector. Also, the coupling of the gravitational wave to
the secondary masses, which are much smaller than m, ,
is neglected.

To make a full analysis of a particular multimode sys-
tem, it is necessary to compute the admittance matrix
elements yz2(co) and yz, (co), substitute them into the in-
tegrand of Eq. (7) to find o(co), and integrate to find
S /N. [In general, the correlation noise term
2Re(y22Sf„) must be included. ] In principle, this is a
straightforward network analysis problem. Numerical
results have been given by several authors, ' sometimes
showing the effect of variations of a particular parame-
ter. The design problem, in contrast with the analysis
problem, requires the study of the whole class of mul-
timode systems to find those that are optimal according
to a certain criterion. This might be addressed by nu-
merical optimization, but it becomes difficult to fully ex-
plore the possibilities when the number of parameters is
large. An alternative, considered in Sec. V, is to use the

methods of network synthesis, which, in some cir-
cumstances, allow one to compute the network com-
ponent values that will produce some desired behavior.
It is still important to have a numerical model at hand
to study those questions which cannot be addressed by
synthesis. A compact numerical algorithm for analyzing
the general multimode system of Fig. 4 is presented in
Appendix A.

For the sake of the discussion to follow, it is useful to
place some restrictions on the noisy amplifier model,
which has so far been general. A number of authors
have discussed the noise models of mechanical
amplifiers. ' For superconducting variable-inductance
transducers coupled to SQUID amplifiers, ' the force
noise is thermal noise from electrical losses and the ve-
locity noise is the SQUID fiux noise referred to the
transducer input. The force and velocity noise spectral
densities are both slowly varying functions of frequency
near 1 kHz, and they are uncorrelated because they orig-
inate in separate mechanisms. The noise model for these
devices must include an input impedance consisting of
the reactance of the magnetic spring and the reactance
of the mass of the superconducting diaphragm. These
components must be placed before the noise sources. It
is possible to use a noise model in which the input com-
ponents are omitted, but then the noise generators would
become correlated. In this paper it will be assumed that
the mechanical amplifier noise generators are uncorrelat-
ed, and it will be assumed that if any input components
must be placed before the noise generators, then they
can be absorbed in the last mass and spring, m and k
of the matching network. It will also be assumed that
the noise temperature T„and noise resistance r„are
constant functions of frequency, to a good approxima-
tion within the frequency range where cr(co) is not negli-
gible.

IV. OPTIMAL DESIGN FOR PULSE DETECTION

In this section it is argued that the best multimode
designs for pulse detection are those for which the
transfer function Yz. (co) is a broadband and fiat function
of frequency. A network will be judged best if it is most
tolerant to losses, in the sense that the lossless sensitivity
limit can be reached with the lowest possible resonator
Q values. Of course, it is also required that the lossless
SNR be as large as possible. The lossless SNR of a
given network will depend on the signal spectrum, so it
is necessary to assume a definite spectrum to proceed.

A simplification results if, following Giffard, one ideal-
izes the broadband pulse as a white force spectrum, cor-
responding to a strain spectrum h (co) that varies as co

This idealization need only apply approximately, and
only over the frequency range where o.(co) is appreciable,
since a given design will be insensitive to F(cu) outside
this range. If the interaction of the gravitational wave
with the small matching resonators is neglected, that the
energy E deposited in the multimode model by the force
impulse is given by
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l
F(co, )

2m i
(23)

l
F(err, )

l r„S/N=
2~ kT„

where co, is the center frequency about which o(co) is
appreciable. Thus, for a white force spectrum, the SNR
in the lossless limit depends only on the properties of the
main resonator. Only loss tolerance need be considered
when designing the matching resonators.

According to Eq. (18), the deposited energy is propor-
tional to m, L, so, to increase the lossless SNR, the bar
(or other object which serves as the main resonator)
should be as long and massive as possible. Unfortunate-
ly, once the center frequency and material are chosen,
the length of the bar is fixed, since the resonant frequen-
cy co& is given by the longitudinal speed of sound divided
by twice the length, and the center frequency co, will al-
ways turn out to be close to the resonant frequency.

The function of the matching resonators is to improve
the performance of the system when the quality factors
Q; take finite values. A useful viewpoint is that an op-
timal design is one which achieves the lossless limit with
the lowest possible values of the resonator Q's. A tract-
able problem is to set all of the resonator Q's equal to
infinity except Q], and to find those networks which
achieve the lossless limit with the lowest possible value
of Q]. A satisfactory solution to the problem of finding
multimode networks that are tolerant to losses in any
resonator seems to result because it is found that net-
works designed to be tolerant to losses in the first reso-
nator are still more sensitive to losses in the first resona-
tor than to losses in the other resonators. Thus, if high
Q values are equally difficult to achieve in each of the
resonators, one should choose the design that allows the
lowest possible Q for the first resonator. In Sec. V the
minimum tolerable Q's for maximally fiat networks will
be given; in every case it is Q, that must be highest.

Usually the simplest way to include the effects of the
thermal noise of losses is to compute the real part of the
output admittance y22, as indicated in Eq. (7). An alter-
native method is to explicitly include in the model the
thermal noise sources associated with each d, (the dissi-
pative element that gives rise to Q; ), and to compute the
transfer functions needed to find the noise at the
amplifier input due to each thermal noise source. When
the computations for multimode networks are done in
this way, one finds that, to an excellent approximation,
the d; themselves may be neglected, so long as their as-
sociated noise generators are retained. Thermal noise in
the networks synthesized in Sec. V may be accurately
treated within this approximation.

With all of the d, equal to zero, but with the thermal
noise of d, included, the SNR is given by

1 + F ~3'2)
-" S'. +SI 1yzz I'+2kTd] ly2] I'

(24)

Noting that the admittance matrix elements describe a
lossless network, this can be rewritten as

x f
1+2 r„d]

l
Yr(~)

lT. "

(25)

where Yr is the transadmittance defined by Eq. (9), and
F(ro) is equal to F(cu, ) where the integrand is apprecia-
ble. If the dissipation is small, then the fraction in the
integrand may be expanded to yield

S/N =
2~ kT„

x f+ IYrl 2 & di IYrl + '''
00 T. "

(26)

The integral of the first term must give the lossless
SNR, so

l
Yr

l

is proportional to the lossless ]T(co), and
comparison with Eq. (23) implies

f+"
l
Y, l'd~=

m &r„
(27)

T 1

T. ~f/f (28)

This is consistent with Eq. (20) for the one-mode case.
The essential advantage of multimode systems is that the
fractional bandwidth can be large.

The requirements that the integral of
l

Yr
l

be mini-
mized while the integral of

l
Yr

l

is kept constant are
not, however, the only conditions that

l Yr
l

must
satisfy. Because

l
Yr

l

is the magnitude of a transfer
function of a two-part network, it must also satisfy cer-
tain realizability conditions, to be discussed in the next
section. It is not clear how to solve exactly the problem
of minimizing the integral of

l
Yr

l
while also satisfy-

ing the other conditions, but the problem can be solved

The integral of
l

Yr
l

is a constant independent of the
masses and frequencies of the matching resonators, while
the integral of

l
Yr

l

determines how large d, (or how
small Q]) can be before the SNR is degraded. Thus, a
multimode system will be most tolerant to dissipation in
the main resonator if the matching resonators are
designed to minimize the integral of

l
Yr

l

. Since the
integral of

l Yr
l

is fixed, this can only be done by mak-
ing

l
Yr

l
broadband and smooth; any peaks in

l
Yr

l

will contribute unnecessarily to the integral of
l Yr l

When
l

Yr
l

is broadband there is a broadband im-
pedance match between the first resonator mass and the
noise resistance.

If
l Yr

l

is a square bandpass function with fraction-
al bandwidth b,f /f then Eqs. (25) and (27) together im-

ply that the dissipation in the main resonator will be
negligible if



3562 JOHN C. PRICE 36

V. NETWORK SYNTHESIS

The multimode design problem has now been reduced
to a specification on a transfer function of a lossless
two-port terminated at one end by a resistor. A well-
developed synthesis theory exists for this circumstance,
that often permits one to compute component values
that generate a specified behavior. For the present prob-
lem, the method of Cauer and Guillemin' can be ap-
plied to find multimode networks with flat Yr(co).

To make contact with the existing theory, it is help-
ful to go over to an electrical analog circuit, shown in
Fig. 5(a). The classical analog is used in which voltage is
analogous to force, current to velocity, inductance to
mass, and capacitance to inverse spring constant. In
Fig. 5(b) the amplifier has been replaced by its noise
resistance and the output components have been rear-
ranged. The network is now recognizable as a lossless
ladder, a network with alternating series and shunt
branches that are lossless.

Network synthesis proceeds in three stages. First,
realizability conditions on the desired network functions
are found; these conditions specify the class of rational
functions that may be used for a particular network
function. If it is required that the network be imple-
mented in a particular topology (a ladder, for example)
or with particular components (no transformers, induc-
tors and resistors only, etc. ), then there will be additional
realizability conditions. Next, it is necessary to find a
rational function that satisfies the realizability conditions
and also satisfies whatever performance requirements are
at hand; this is called the approximation problem. Fi-
nally, there is the synthesis problem itself, in which a
circuit is found and component values are calculated

F(

mi

1

kl

m2 m3 m

'MA -: 5YA ~~AY'

1 --1 ~ ~ ~

k~ k3
1

kml

m

T 5YA

L—
km

(a)

F(

ITl I

1

kl

ITl 2

A 5Y'

1

k2

m3
:: QAY'—

~ ~ ~

k3

FIG. 5. (a) Electrical-analog circuit for a multimode anten-
na with m normal modes. The masses m, correspond to induc-
tances, and the spring constants k; correspond to inverse ca-
pacitances. (b) The electrical analog with the amplifier re-
placed by its noise resistance and with the last mass and spring
rearranged. The circuit is in the form of a lossless ladder.

approximately by choosing
~

Yz- from a family of
maximally flat bandpass functions that satisfy the real-
izability conditions.

that realize the chosen rational function.
If the elements y, in Fig. 2 represent any linear

lumped passive two-port, and r„ is a specified resistance,
then for the transadmittance Yr(s) to be realizable it
must be in the form

Yr(s) = P (s)
Q(s)

(29)

where P and Q are polynomials with real coefficients,
and all of the zeros of Q(s) are in the left half-plane,
with none on the jco axis (s is the complex frequency
variable, s —=p+ jco) (Ref. 21). If the two-port is a
ladder, then the zeros of P(s) (which are known as the
zeros of transmission) can only occur at zeros of the
series branch admittances or poles of the shunt branch
admittances. For a lossless ladder, these are on the jr'
axis, so the zeros of P(s) are restricted to the jco axis.
The particular lossless ladder of Fig. 5(b) has just three
finite zeros of transmission, all at s=O, due to k&, m
and k . (For the case of one mode, there is one zero of
transmission at s=O. ) Thus, for the present example,
realizable rational functions Yr(s) must have poles only
in the left half plane and must have just three finite
zeros, all at the origin. Note that since the polynomial
coefficients are real, the s-plane poles must have
reflection symmetry about the real axis. The magnitude
function

~

Yr(co)
~

must have a sixfold zero at the ori-
gin, and, since its analytic continuation in the s plane is
given by Yr(s) Yr( —s), its poles in the s plane must have
reflection symmetry about both the real and the imagi-
nary axes.

These realizability conditions are necessary. General-
ly, in network synthesis the sufficiency of realizability
conditions is demonstrated by the synthesis procedure it-
self. For this case, the synthesis procedure will show
that for a particular value of r„, any Yz- with the analyt-
ic structure given above can be synthesized up to a con-
stant factor in the form of Fig. 5(b). Thus, the condi-
tions given above are sufficient for realization up to a
constant factor. Once the poles and r„are specified, the
synthesis procedure results in a unique value for all of
the masses and springs. However, what one wishes to
do here is to solve the synthesis problem with both r„
and m, , the main resonator mass, specified. Stating
sufFicient realizability conditions for such a constrained
synthesis problem is difficult. One might think that the
normalization requirement (27) is the additional condi-
tion required, but this is not the case —Eq. (27) is only a
necessary condition for the constrained problem. The
constrained problem can be avoided by carrying out the
synthesis up to a constant for a one-parameter family of
Yz- that satisfy the known necessary conditions. If for
some value of the parameter one finds that m, takes the
desired value, then Yz- with this value of the parameter
is a solution to the constrained problem. Once the value
of the parameter is known, the constant factor can be
found from Eq. (27), if it is needed.

It is simplest to solve the approximation problem in
terms of the magnitude function

~

Yr(co) . Because
the critical frequencies have quadrantal symmetry, the
magnitude function is a function of m, and it has the
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form

i =0

6

(30)

iY, (n)i'

6 modes

5 =.3

where the a; are real constants. The synthesis will show
that the order of the denominator of YT is equal to the
number of reactive elements in the network. Since this
is equal to twice the number of modes m, the order of
the denominator of the magnitude function should be
4m.

To make the multimode system tolerant to losses, the
magnitude function

~

Yr(ru)
~

should be broadband and
smooth. This requirement can be satisfied in a qualita-
tive way by setting as many derivatives with respect to co

as possible equal to zero at the center frequency cu, . Ap-
proximations of this kind are called maximally flat and
are widely used, in part because they usually lead to
polynomials that are easy to factor. In Appendix B a
maximally flat approximation of the form of Eq. (30) is
derived. The result, which has all derivatives up to and
including order 2m —1 equal to zero at +co„ is

0.0

S-plane:

1.0

(a)

~ ~~ ~

0 ~~ ~

(b)

1.0

6-fold zero

-1.0

~
YT(Q)~ = ', m=1,H (5 1)Q

(1—0 ) +05

~
YT(fl) ~—: ', m =2, 3, . . . ,

H (5 m)Q
(1 —0')' +0'5'

(31)

y2i
YT(co) = 1+r yz2

P (s)/Q, „,„(s)
1+Q,dd(s) /Q, „,„(s)

(32)

The ratio of the odd to the even part of a polynomial
with all its zeros in the left half-plane is always a realiz-

where Q is the dim ensionless frequency variable
Q—=m/co„and the solutions depend on a dimensionless
parameter 6, which characterizes the fractional band-
width. The parameter 5 will be used to satisfy the con-
straint mentioned above. For one mode,

~

YT(L2)
~

takes the form of a resonance curve with 5= Q
When 5 is much less than unity, the poles in the S plane
(the dimensionless s plane, S —=s/co, ) are located on two
circles of diameter 5, one centered on S =j and one cen-
tered on S = —j. The undetermined overall constant H
will depend on the number of modes m and the value of
5. Figure 6 shows an example of a maximally flat mag-
nitude function together with the pole positions. When
m is large the maximally flat functions have nearly ideal
bandpass characteristics.

The synthesis proceeds from YT(s), which may be de-
rived uniquely from

~

Yr(cu)
~

by making the replace-
ment s =co/j and assigning three of the zeros and all of
the left half-plane poles to Yr(s). Then the numerator
polynomial P (s) and the denominator polynomial
Q,„,„(s)+Q dd(s) are divided by the even part of the
denominator:

FIG. 6. The maximally flat magnitude function for six
modes and a bandwidth parameter 6=0.3 (a) plotted as a func-
tion of the dirnensionless frequency Q; (b) the poles and zeros
in the dimensionless complex frequency plane.

~
Yr(Q)

~

' is
proportional to the signal-to-noise ratio per unit bandwidth
when the applied force spectrum is white. For 6 modes there
are 24 poles situated in two nearly circular patterns. For any
number of modes greater than one there is a sixfold zero at the
origin.

able lossless driving point function. Therefore, the
identification

Q.dd(s)

r„Q„,„(s)
(33)

can be made, and the canonical ladder realizations of
lossless driving point functions due to Cauer will al-
ways permit yz2 to be realized in the form shown in Fig.
5(b). When y22 is realized in this form, yz, will automat-
ically have the correct zeros (the same zeros as YT) and
the correct poles (the poles of y2z). Thus, realization of
y22 in the form shown in Fig. 5(b) realizes Yr as well, up
to a constant factor.

The Cauer synthesis of lossless driving point functions
is based on a continued-fraction expansion. The recipro-
cal of the admittance y22 in Fig. 5(b) can be expressed,
starting from the right, as the impedance of the first
series branch plus the parallel sum of the impedance of
the first shunt branch and the remaining impedance to
the left, which itself is given by the impedance of the
second series branch plus the parallel sum of the im-
pedance of the second shunt branch and the then
remaining impedance. Expanding y22 in this way leads
to a continued fraction
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FIG. 8. The dimensionless masses M; and dimensionless resonator frequencies 0; for maximally Aat networks, for from one to
eight modes, and for R„=10,10 ', 10, and 10 '. The 0; curves have been staggered for clarity. The m=2 curve is offset by
0.1, the m =3 curve is offset by 0.2, and so forth.

creases because the fractional bandwidth does not in-
crease beyond unity, but each additional resonator intro-
duces more thermal noise.

Note that the numerical model of Appendix A does
not use the approximation that the d, are set to zero.
According to this approximation, the results in Figs. 9
and 10 should not depend on T/T„ if its value is large
enough. It is found that the results do not vary by more
than 10%%uo as long as T/T„& 10; so it may be concluded
that neglecting the d; is a good approximation for com-
puting the loss tolerance of these networks if T/T„& 10.

This condition is satisfied in practice.
Figures 7—10 may be used as a set of design charts for

multimode antennas. First, the antenna mass and center
frequency are chosen, and R„and T„are computed for
the available mechanical amplifier. Next, the Q values
that can be achieved are estimated, and Fig. 9 or 10 is
used to find the number of modes that must be used to
make the losses negligible. Figure 9 is used if it is ex-
pected that one of the resonators will have a much lower
Q than the others, and Fig. 10 is used if all of the Q
values are expected to be equal. Once the number of
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tolerant to the losses actually present by using additional
components to provide a broadband match between the
main resonator and the amplifier noise resistance. In
practice, the lossless limit imposed by the electronic-
amplifier noise temperature cannot be approached with
present technology because of electrical losses. Howev-
er, if the electronic amplifier and electromechanical
transducer are modeled together as a mechanical
amplifier, then the lossless limit imposed by the
mechanical-amplifier noise temperature is accessible.

If the acoustic network used to match the main reso-
nator to the mechanical amplifier noise resistance has
the simple mass-spring-mass-spring configuration, then
the multimode lumped-element model of Fig. 4 results.
For a given mechanical amplifier and a given main reso-
nator, the design problem amounts to finding values of
the masses and springs of the matching resonators that
allow the system to most closely approach the lossless
sensitivity limit when the mechanical quality factors take
on realistic values. It was argued in Sec. IV that for
maximum loss tolerance the transfer function YT(ni ),
which relates the velocity at the noise resistance to the
applied force signal, should be a broadband and flat
function of frequency.

With the desired behavior of the network function
YT(co) specified, the techniques of network synthesis can
be used to find corresponding values for the masses and
springs. The synthesis consists of three steps: first, real-
izability conditions are found; then a rational function
with the specified behavior and satisfying the realizabili-
ty conditions is found; finally, the component values,
which realize the network function, are computed. A
rational function of the maximally flat type satisfying the
realizability conditions was used in Sec. V to synthesize
a family of loss-tolerant multimode networks.

The most important properties of these networks are
summarized in Table I, where the one-mode and many-
rnode behaviors are compared. The fractional band-
width of a one-mode system is given by the dimension-
less noise impedance R„, which is always much less than
1, while for a many-mode system the fractional band-
width approaches unity (see Fig. 7 for details). As a
consequence, the minimum Q that can be tolerated
without degrading the SNR from the lossless value is
smaller by a factor of R„ for a many-mode system than
for a one-mode system (Figs. 9 and 10). The final mass
of a many-mode system is also a factor of R„smaller

Fractional bandwidth

Minimum tolerable Q

Final mass

R„
T
T.

m)R„

TABLE I. Summary of the properties of the maximally Hat

multimode networks, for one mode and for many modes. The
entry for the minimum tolerable Q in the many mode case is
approximate —there is a numerical factor of 1 —8 for the case
where one Q is much less than the others, and a factor of
20—30 for the case where all the Q values are equal.

One mode Many mode

than the main mass (Fig. 8). Most of the improvement
to be gained in going from one mode to many modes is
realized with a small number of modes; in most cases
one would not have reason to use more than about three
modes.

The future development of the program at Stanford
can be used to illustrate the utility of the results of this
paper. In the next generation, it may be possible to
build a mechanical amplifier with a noise temperature
T„=10 pK, and a dimensionless noise impedance R„of
about 10 (for an antenna mass m& of 2000 kg and a
center frequency of 1 kHz). Even at low dilution refri-
gerator temperatures (T=10 mK, T/T„=10 ) a one-
mode system would require an impossibly high Q of
about 10 (Fig. 10). For a two-mode system, assuming
that the Q values of the main and secondary resonators
are equal, Fig. 10 implies that Q's of only 3X10 are
needed at 10 mK. Typically, mechanical Q's of at least
several million are achieved, so such an antenna could be
operated at higher dilution refrigerator temperatures
( = 100 mK). Even with many modes, it would be
difficult to operate at 4 K (T/T„=4X10'), since, ac-
cording to Fig. 10, Q's of about 10 would be required.
Thus, in the next generation, limitations due to mechani-
cal losses are not very severe if the temperature is well
below 4 K. A 2000-kg antenna operating at the mechan-
ical amplifier sensitivity limit with T„=10 pK can
detect a 1-msec pulse of dimensionless amplitude
3&(10 with an SNR of unity.

For a future quantum limited antenna (T„=40 nK at
1 kHz), the Q requirements are more difficult to satisfy.
For R„=10 and T=10 mK (T/T„=2. 5X10 ), Fig.
10 implies that a two-mode antenna must have Q's of
8 X 10, a three-mode antenna must have Q's of 2X 10,
and a six-mode antenna requires Q's of 8 X 10 . The
large aluminum antenna (m, =1100 kg) constructed by
the Rome group has a Q of 7 X 106 at 4 K, so
sufficiently high Q values can probably be achieved in
large aluminum antennas if a multimode matching net-
work is used. A quantum limited antenna with
m, =2000 kg could detect a 1-msec pulse with
h =2&10 ' at a SNR of unity, and with six modes it
would have a bandwidth of 300 Hz.

There is one important limitation to the analysis
presented in this paper. It has been supposed that the
mechanical-amplifier noise parameters are fixed, and
then optimal values of the matching masses and springs
have been computed. This program can run into
difficulty if the design of the mechanical amplifier im-
poses constraints on the values of the last mass and
spring that are in conflict with the optimal values. For
superconducting variable inductance transducers, the
most important constraint is that the last spring cannot
be less than the magnetic spring that results from the
stored supercurrent. For designs that are presently con-
templated, it turns out that the magnetic spring is less
than the last spring required by the maximally flat net-
works, so no difficulty arises. However, for mechanical
amplifiers with very small values of R„, the transducer
design constraints may not allow the use of maximally
flat networks. In particular, the last mass required by a
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maximally flat design may become too small ~ This is the
case for the very sensitive mechanical amplifier used by
the Rome group, which uses an electrostatic transducer.
Such mechanical amplifiers will require higher mechani-
cal Q values than amplifiers that can use the maximally
flat networks, but this may not be a prohibitive disad-
vantage, at least in the next generation. The optimal
design problem for transducers with small R„values is
doubly constrained. One must find, for a given value of
R„, networks that are as broadband and flat as possible
with both m& and the last mass specified. This is an
open problem.

Vlr,
l

a3

V2

a 4

a5

V3 Vm

2m-2 2m

a 2m-1 w
~ ~ ~ C

Sf

FICx. 11. Electrical analog circuit for a multimode antenna
with m normal modes. The a; with i even are series branch
impedances, and the a; with i odd are shunt branch admit-
tances. The V, represent node voltages.
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APPENDIX A: EVALUATION
OF THE SIGNAL-TO-NOISE RATIO

OF MULTIMODE ANTENNAS

minant and cofactors of a ladder network may be writ-
ten very compactly. The even Q, are the impedances
of the masses:

Q2
—=Sm ], Q4 =—Sm 2, . . . , Q2

——Sm (Al)

where s is the complex frequency variable, s =—p+ jr'.
The odd Q; are the admittances of the springs and the
dissipative elements in the series

To evaluate the SNR of the multimode lumped ele-
ment model (Fig. 4) it is necessary to compute the
transfer admittance y2, and the output admittance y22
that appear in Eq. (7). An electrical analog for the mul-
timode model is given in Fig. 11 ~ As in Fig. 5, the clas-
sical analog is used, in which voltage is analogous to
force, current to velocity, inductance to mass, and ca-
pacitance to inverse spring constant. The Q, with i even
represent series branch impedances, and the a, with i
odd represent shunt branch admittances. Kuh and
Pederson have shown how in this notation the deter-

Q&
——

k,
di+

culm|(cut+s /Q& )

Q2 = s

cg2m 2(M~+s /Qp )
(A2)

s

co,„m (co +s /Q )

With respect to the node voltages V, indicated in Fig.
11 the determinant of the node equations may be written
as

1
Q)+

Q2

Q2

Q2

1 1+a3+
Q2 Q4

0

Q4

0
Q4

(A3)

2m —2

2m —2
+Q2m —i+

Q2m 2 Q2m

Kuh and Pederson show that this tridiagonal and sym-
metric determinant can be written in terms of the simple
continuant K, which is defined by

Their expression for the determinant is

K2

a2Q4 . . -
Q2

I,'A5)

Kp: 1 K]:Q,, K2 ——Q2K, +Kp

K3 ——Q3K2+K&, , . . . , K~ =Q~K~ &+K& 2 .
(A4) The driving-point impedance Z, at the last node is

given by
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~mm K 2m —2
Zmm =

~ =~2m
K2

(A6)
xF(x) ~

a, x'
(B1)

a 2m

K2

Z and Z, may be related toy22 andy2,

y2~ =a2, (1—Z a2, )

(A7)

where 5 is the cofactor, and the open-circuit transfer
impedance Z 1 from the first node to the last is given by

i=0

with as many derivatives as possible equal to zero at
x=1. Writing F =N/D and setting the derivative at
x= 1 to zero, one finds that ND'"=N"'D at x= l. (A
superscript in parentheses indicates the number of
derivatives taken. ) Using this equation and setting the
second derivative of F at x=1 to zero, one finds that
ND' '=N' 'D at x=1. Continuing in this way, it can be
shown that the relations

=a2m—
K2

2m 2m —1

2m

(A8a) ND' '=N' 'D,

ND' '=N' 'D
(B2)

y21 ——a1a 2 1Z
a1a2~ 1a2

K2
(A8b)

APPENDIX B: MAXIMALLY FLAT
APPROXIMATION

By writing out the derivatives it can be shown that a
function F(Q ) will have all derivatives up to and in-
cluding the kth equal to zero at 0=+1 if and only if the
function F(x) has all derivatives with respect to x up to
and including the kth equal to zero at x = 1. To find the
maximally flat magnitude function it is thus sufficient to
find a function of the form

These expressions, together with the definitions (Al),
(A2), and (A4) and the SNR integral Eq. (7) (to which
the correlation noise term may be added), provide a basis
for a numerical solution to the SNR analysis problem for
multimode antennas. A simple way to proceed is to fix

the frequency, evaluate the complex numbers a, , evalu-
ate K2~ 2 and K2~, evaluate y22 and y2„evaluate the
integrand of Eq. (7), and then to repeat this process at
many frequencies to find the integrand o(co), and finally
to integrate numerically to find the SNR.

D = g b;(x —1)',
i=O

and if N =x, then Eqs. (B2) become

61 = 3&o 2b2 = 66O 663 = 6&o

b4 ——0, . . . , bk ——0 .

Substituting these relations back into Eq. (B3) gives

2m

D = g b (x —1)'+box
i =k+1

(B3)

(B4)

(B5)

The largest value that k can take is k =2m —1 because
otherwise F reduces to a constant. Thus, the maximally
flat function with all derivatives up to and including the
(2m —1)th equal to zero at x = 1 is

xF(x) ~
b2 (1 —x) +box

(B6)

Substituting x =0 now gives Eq. (31) for m =2, 3, . . . ,
and a similar argument can be made for the m = 1 case.

hold at x=1 if all of the derivatives of F up to and in-
cluding the kth are zero at x= l.

If D is expressed as a power series about x = 1,
2m
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