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The conventional methods used so far with QCD sum rules stem from the observation that
s, —s (s, being the position of the first resonance) can be written as the limit of the ratio of the
nth- and (n + 1)th-order moments, or are based on similar techniques such as those of Borel
operators. Unfortunately, apart from the fact that practical instabilities appear because one uses
high derivatives of very smooth functions, these methods do not have internal controls which
would enable them to adapt to the varying precision of the theoretical information for dift'erent

values of the energy in the spacelike region, to finite resonance widths, threshold behaviors, etc.
There are alternative procedures, however, based on extremal problems and leading to simple
(Fredholm) integral equations, which are flexible enough to accommodate these various practical
requirements. Computer tests have been carried out, using these procedures, on a number of com-
pletely soluble quantum-mechanical examples, and the comparison with the conventional moments
techniques is described.

I. CONVENTIONAL QCD SUM RULES

1 d" 'A (s)
(n —1)! S= —Q

(2)

This result has been examined in a recent paper by
Bowcock, Ciulli, and Geniet. There it is shown that
whereas Eq. (1) is valid when there is no right-hand cut,
that is, when A (s) has no imaginary part on the real
axis and the "resonance" poles are located on the real
axis, the situation changes when a cut is introduced. In
that case, the limit in Eq. (1) does not yield s

&
but so, the

lowest branch point. As shown in Ref. 2 this comment

The interest in sum rules and related techniques of an-
alytic extrapolation in QCD is due to the fact that in
practice it is not possible to calculate directly the quanti-
ties of interest, such as amplitudes or form factors, for
physical (titnelike) energy values. It may however be
possible to perform perturbative, or some specific non-
perturbative calculations at spacelike points, and one is
then tempted to turn to some method of analytic con-
tinuation to obtain physical information, such as the
values of resonance parameters.

Typical of the methods so used is that based on rno-
ments. This was illustrated, in the context of a simple
model, by Bell and Bertlmann. ' The central idea is that
the ratio r„(Q )

—=M„(Q )/M„+, (Q ) gives, in the
large-n limit,

lim [r (Q ) —Q ]=s, ,
n ~ cc

where s, is the position of the first resonance. The nota-
tion here is that Q = —s is positive, and the "moment"
M„(Q ) is defined as

concerns not only the Bell and Bertlmann method, but
also the so-called "Borel operator" one. This is easy to
understand since, as shown for instance by Reinders,
Rubinstein, and Yazaki, the Borel method can be de-
duced from the Bell and Bertlmann one. So we shall
focus our attention on the behavior of the moments.

To illustrate this it is helpful to look at a simple solu-
ble quantum-mechanical example. Consider the Green's
function for the one-dimensional potential V(x )

=vo[5(x —I/2m)+5(x + I/2m)]. The parameters
have been chosen so that the first two resonances of the
Green's function will have their corresponding second-
sheet poles at suitable values of E. (In particular, when
vp = 10 E

&
=4. 1+0.1i, E2 ——37.8+2.3i, . . . , and when

vp=3, E, =2.9+0.5i, E2=32.2+7.8i, . . . , all in units
of m; for this nonrelativistic example we have used the
energy variable E instead of s.) The results from apply-
ing the moments method to this example, for vp:10 and
3, are shown in Fig. 1. In each case the integral over the
branch cut, say from Ep to ReE, , is small compared
with the contribution from the resonance poles at
E =E, , E*, . In Fig. 1 (see the discussion in Ref. 2), the
graph of r„—Q against n, for vo ——10, shows a brief
infiection at r„—Q =ReE& for values of n in the range
3 —10. For larger values of n it moves towards the
asymptotic value which is Ep. In a case such as this, the
moments method can be used to give an approximate
value of E ] by identifying the inflection mentioned
above. Such an inflection will, however, only appear
when the integral over the branch cut is very small com-
pared with the contribution from the resonance. In the
graph corresponding to v p

——3 it is much less pro-
nounced, although the cut contribution is again small.

In Fig. 2 one treats the form-factor case' where the in-
tegral over the cut is more nearly comparable to the res-
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FIG. 1. Plots of r„—Q against n for the one-dimensional
quantum-mechanical Green's function for (a) vo= 10 and (P)
v0=3. The dashed line in each case is r„—Q =ReE, . The
common large-n asymptote for both graphs for r„—Q is equal
to the threshold value of the energy which is 0.

onance contribution; in this case there is no perceptible
inAection. In any event, an inAection will only be ob-
served if the precision of the input data, used to evaluate
M„, is very high. The alternative method, which will be
described in the next section, can readily distinguish be-
tween the effect of a cut with slowly changing discon-
tinuity, and an effect with a rapidly changing imaginary
part such as that associated with a narrow resonance.

0.8

O. E —g

II. ALTERNATIVE METHOD USING STABILIZED
ANALYTIC CONTINUATION

The main practical problem one has with analytic con-
tinuation is that even if one starts with two almost iden-
tical functions in the data region, one may end up with
results differing arbitrarily much in other points of in-
terest (e.g., in the resonance region on the cuts). To
cope with this situation one has to stabilize the analytic
continuation by means of conditions which should filter
out the spurious results. These conditions will be ex-
pressed in terms of norms. As the basic principles un-
derlying this approach have already been described in
some detail we shall just summarize the results here.
The s plane is first mapped onto the unit disk. The map
of the data region s & 0 (Q—:—s & 0) is on the real axis

~

z & I, and we restrict this to some range y. The
right-hand cut in the s plane, commencing at s =sp,
maps onto the circle z =e'~, with s =so~P=O. The
second-sheet poles s =s, +iK, , s2+iK2, . . . , map to
conjugate pairs of points which lie outside the circle at,
say, z, , z', , and z2, z2, . . . . The problem to be solved
is to use approximate data on y to obtain information
about the positions and residues of these poles. The ap-
proach to this problem which we wish to describe is
based on the definition of a suitable norm on the space
of functions X(z) which are holomorphic in

~

z
~

& l.
This norm is defined in terms of the boundary values on
the circle z =e'~.

There are two key aspects to defining this norm: (i) the
need to be sensitive to a rapidly changing imaginary part
such as that associated with a narrow resonance and (ii)
the use of a real positive weight function which permits
a diff'erent weighting on diff'erent parts of the circle (i.e.,
of the cut so &s & oo ), and which also allows one to im-
pose particular forms of threshold behavior (at s =so, or
asymptotic behavior at s —ao). The use of cr(P) to im-
pose threshold behavior is discussed in Sec. III.

A particularly useful form of the norm is (the Neu-
mann norm, see Ref. 6)

f, fx, (0)3'~(4»)dW (3)

where

B ReX(re'~)x„)=
Br

8 ItnX (e '~
)

ay
(4)
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This norm has been chosen to be particularly sensitive to
a rapidly changing imaginary part, such as that associat-
ed with a narrow resonance. Note that ~~X(j does not
define a norm on the whole space of functions, but only
on a subspace for which the value of X(z) at some point,
say zo, is fixed. If we put X(zo)=do, then the function
X (z) is given in terms of

r) ImX (e '~
)

2C) rC) EO 800 1 C)C)
n

FICs. 2. Plot of r„—Q against n for the form factor II(s).
The solid line corresponds to the Heyn and Lang function, the
dashed line to the same function without corrective terms. The
thin dashed lines are r„—Q =s, and r„—Q =so, the reso-
nance and threshold positions, respectively.

by
ip

X(z)=do+ —f ln . x„(P)dP .
p e'& —z

The reader will observe that, in contradistinction to oth-
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er methods using analytical weights, the weight o does
not here enter the relation between the boundary func-
tion x, (P) and X(z) inside the analytic domain [in the
"dispersion relation" (5)]. (Analytic weights may, for in-
stance, blow up in other parts of the holomorphy
domain. ) In the present method o enters only the norm
(3) defined on the cuts and, of course, may be nonanalyt-
ic. Incidentally, all results obtained in this paper could
be found almost identically using a constant function
o(P), apart from the threshold behavior discussed in
Sec. III.

Suppose now that we are interested in an amplitude
A (z), for which we are given data a(zz) on the set y,
say for —a &z &0.. We wish to ask if the data provide
evidence for a pair of conjugate second-sheet poles corre-
sponding to a resonance. What we do is to construct a
function TI, (z) which corresponds precisely to such a
pair of poles with parameter values indicated by k
(k =—Iki, kz, . . . I ). We then construct the so-called
discrepancy function Dk(z):

d&(z) —
= a (z) —Tl,. (z), dk(z) =a(z) —Tk(z) .

If the amplitude A (z) has a resonance, and if the param-
eter values k are correctly chosen, then Dk(z) will have a
smaller norm than A (z), or than it would have had if
the parameters had been chosen incorrectly. This will
be particularly the case if one uses a suitably chosen
"window" inside which cr(P) is large. So the idea is to
evaluate ~~D„~~ for diff'erent values of the parameter set k
and to look for a minimum, which should then corre-
spond to the values of the resonance parameters.

Initially neither A (z) nor Dk(z) is known outside y.
To make the continuation from the data dk(zz ) on y, to
Di, (z) in ~z

~
&1, some stabilizing procedure is needed;

this is provided by requiring that ~~Dk ~~
should have a

minimum value, subject to an adequate 6t to the data
dk(zz) as specified by an appropriate value of X, say
7 =1. The problem is now expressed in terms of two
functionals:

Fi[x,]=6[DI, ]=—
2 f [x„(p)]o(p)dp,

2

F2[x„]=X[Dk] —1= f dz n(z) dj, (z) —do — f N(zo;z, e'~)x„(P)dP —1,
r 27T 0

where n (z)—=[e(z)], e(z) being the error associated
with the data dk(z) on y; do= Dk(zo); x—„(P)—:( 8/BP )ImDk (e '~ ); and the Neumann kernel
N(zo;z, e'~) is

N(zo', z, e'~) —=21n
~

(e'~ —zo)/(e'~ —z)
~

(9)

F& [x„] is to be minimized subject to the condition that
Fz[x„]=0. In terms of a Lagrange multiplier A, , this re-
quires that 5F[x„]=0,where F =F&+A.F2. The minimi-
zation is with respect to both do and the function x„(P):
this yields an optimized function x„(P) as the solution to
a Fredholm integral equation which has the form

Gl, (P):—f dz n(z)N(zo;z, e'~)
r

X dk(z) — f dz'n (z')dq(z')
nr

~(p, p') = f dz n (z)N(zo', z, e'~)
n r

xo(P)o(P)=A G(P) A+. f dP'&(P, P')x„'(P'), (10)
27T 0

where

ip
Dk(z) =do+ —f ln

0 e'& —z
x„(P)dP, (13)

where

do —— f dz n (z)dk(z)
1

nr r

1 2~
dz n z d N z0', z;e'~ x„n 2' 0

This is repeated for different sets of k values; in each
case the norm 5o = ~~Dk(z)~~ is evaluated, and the values
of the parameter set k for which 60 has a minimum
value are determined.

III. THE INCORPORATION OF THRESHOLD
BEHAVIOR AND SUBTRACTION CONSTANT

and

n~ =—f n (z)dz .
r

The solution for do is given in terms of x„o(p), g is
chosen to satisfy the condition that Fz [x„]=0 (i.e.,
X = 1 ), and finally we obtain the optimized function
D„(z) as

X f dz'n(z')N(zo', z', e'~ )
r

dz n z N z0', z, e'~ N z0, z, e'~
r

(12)

In applying the method described in Sec. II it is im-
portant to be able to incorporate such special features as
a subtraction condition or a threshold behavior in an
amplitude or form factor. To illustrate how to do this
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we consider, as a particular example which is of interest,
the pion form factor II(s). In this case, we must impose
two conditions on the functions X(z) as follows:

and

(i) X(zo)=d(

r) IrrrX(e'~)
(ri) x„(P)—:

a
for small P's .

(14)

Here the point zo is the interior point of the circle,
~
zo

~
& 1 which corresponds to s =0. Since

X(s)=II(s)—Tk(s), by choosing the test function Tk(s)
to be zero at s =0, we get d&

——II(s =0)=1. The condi-
tion on x„(P) applies at z = 1, corresponding to the
threshold s =so, and comes from the condition that
ImX(r) —(1 —z) near z =1.

A. Fixed subtraction equation

The first point to note is that the point zo in (14) may
be identified with the subtraction point zo in Sec. II
which sets the constant do =d ]. This simplifies the
problem considerably in that do is now fixed in Eq. (8)
and the minimization F [x„]=0 is now with respect to x„
alone. The form of the integral equation (10) is exactly
as before:

x„(P)cr(P)=AG~(P)+Af dP'K(P, P')x„(P'), (10)
27T 0

but Gk(P) and K (P,P') are now given by

Gk (P ) = f [dk (z) —d
~ ]n (z)N(zo, z, e '~)dz,

r
K(P, P') = —f n (z)N(zo, z, e'~)N(zo, z, e'~ )dz,

r
which are rather simpler expressions than those of Eqs.
(11) and (12) for the case when do is also varied.

(16)

B. o. weight and threshold behavior

At this stage the condition X(zo)=0 has been im-
posed, but not x„(P)-P . To introduce the latter condi-
tion one must, in effect, reduce the space of functions x„,
to those with behavior -P . In order to confine the ex-
tremum problem to this restricted space, it is necessary
to use an appropriately defined norm ~~X~~ using the flexi-
bility provided by the weight function o(P). From the
norm definition (3) one might suppose that c7(P) should
be given the form P, to ensure a rt behavior for x„(P).
In fact this would be too strong a constraint. Although
the minimization would take place within the space of
functions x, -P, the result of that process would have
the behavior x„-P . This is evident from the integral
equation (10), with Gk(P) and K(P, P') given by Eqs. (15)
and (16). One sees at once that to make rr (P ) —P is a
sufficient condition to ensure that the solution x, (P) to
the minimization problem is -P .

It is clear that the reasoning used above is applicable
to a variety of different threshold or asymptotic condi-
tions. For example, one might wish to treat an elastic
p-wave scattering amplitude for which X (z = 1 ) —k
—(1 —z), with the stronger condition on the imaginary

part that ImX(z =1)—(1—z) giving x„(P)-P . In this
case the point z =zo for which X(z)=0 becomes z =1
while the vanishing of X'(z =1) is resolved by means of
an additional Lagrange multiplier; these question will be
discussed in more detail elsewhere. Replacing zo by 1

introduces logarithmic factors in N(1;z, e'~) which must
be compensated for in cr(P) to give the required behavior
to x„(P). It is easily verfied that o -P in/ gives the
desired result.

There is one point about the effect of incorporating a
zero, whether at the threshold z =1 or at an interior
point zo with

~
zo

~
& 1, which is of practical importance

and so merits mention. When one carries out the
minimization described in Sec. II, the variation with
respect to do alone can achieve a substantial reduction in

or 60 without minimizing over x„. This reduces the
predictive power of the minimization process with
respect to x„(rt ). On the contrary when the amplitude
has an exactly known value at one point which can be
used to replace do in the way described above, the
minimization is focused on x„(P) alone. As will be seen
from the numerical example discussed in the next section
(Fig. 6), the corresponding curve has a sharper
minimum.

IV. COMPARISON OF THE TWO METHODS:
NUMERICAL RESULTS

To compare the effectiveness of the two methods, the
one based on moments, the other using stabilized analyt-
ic continuation as described in Sec. II, we show the re-
sults of applying each method to two simple models.
The first of these is the one-dimensional quantum-
mechanical model described in Sec. I, looking at the
Green's function for the potential

V(x)=vo 5 x— 1
(17)

2m

1+6 x+
2m

The first resonance, which we wish to locate, corre-
sponds to second-sheet poles at E, =4. 1+0.1i when

vo ——10, and at E, =2.9+0.5i when vo ——3, all in units of
m. The Green's function has in each case a cut extend-
ing from the threshold, EO=O, to + oo. The results of
the moments calculation are shown in Fig. 1. As was
pointed out in Sec. I for vo= 10 there is a perceptible
inflection at E=E& for values of n in an approximate
range 3 —10, and this does allow the possibility of es-
timating the value of E

&
however for v p

= 3 the
inflection is much less pronounced. In these calculations
the moments were evaluated at E = —10. Figures 3(a)
and 3(b) show the result obtained using the method of
stabilized analytic continuation. In this case the data in-

put is taken over the range —1 to —50 for E. The two
curves shown in each of Figs. 3(a) and 3(b) correspond to
different error assignments for the data a(z). 5o is plot-
ted against the real part of the pole position in the trial
function, and in each case there is a clear minimum
yielding a reasonable value for ReE, , the real part of the
pole position. In this particular calculation the other
parameters (the imaginary part of the pole position and
the residue) have been held fixed at reasonable values,
but a more careful calculation in which these are varied
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simultaneously yields essentially similar results. As the
errors assigned to the data are increased, so the pre-
cision of the resonance determination is reduced; this
must be the case. The threshold, as expected, does not
manifest itself.

It is informative to combine the results of the two
methods in one diagram. This has been done in Figs.
4(a) and 4(b) for the Green's-function example. These
diagrams are simply the superposition of graphs taken
from Fig. 3 and from Fig. 1 (with the x and y axes inter-
changed for the Fig. 1 graphs, and taking the pz graph

from Fig. 3).
The second model is related to the pion form factor

II(s) and is based on the parametrization of Heyn and

Lang which is known to be in good agreement with the

recent experimental data. ' We have used the solution

A of Ref. 9 which seems to be in better agreement with

the far spacelike data predicted by @CD. We would not

like to argue here about the best choice between the

different solutions of Heyn and Lang, but we have used

here their spacelike data only as a test for the predictive

power of our integral equations in the timelike region.

2
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FIG. 3. 50 plotted against the real part of the pole position
for the Green's function for the quantum-mechanical example,
with (a) vo ——10 and (b) vo=3. The two curves, in each case,
correspond to different errors assigned to the data: these are 1

part in 5X 10 (p, ) and 1 part in 10 (p2).

FIG. 4. These show, for the two cases (a) vo ——10 and (b)

vo=3 the effect of superimposing the graphs from Figs. 1 and

3. The n axis has been chosen to be vertical to facilitate the

comparison. E, is the resonance pole position (ReE, =4.09
and 2.9, respectively). 6o is shown in terms of units based on

its minimum value.
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The moments M„were evaluated at s —= —Q = —22=
GeV . In order to compute exactly the high derivatives
entering the moments M„we have used a dispersion re-
lation over the imaginary part of the Heyn and Lang
solution. The same procedure has been used also to
check the Borel method. The result of the moment cal-
culation is shown in Fig. 2. There is no inflection
around the value s1, but interesting enough, the curve
grows for the first three moments up to a maximum,
which happens to lie at the position of the resonance, be-
fore tending as it should to the threshold value. We
were surprised to see this maximum but, since it did not
appear in any previous computations, we suspected that
it was related to an instability rather than to the reso-
nance itself. (One should, of course, bear in mind that
the theorems concerning moments apply to the high-n
limit and not to small values of n )If th. at were the case
then the maximum should be sensitive to small varia-
tions in the input function. To check this, we repeated
the computation using the Heyn and Lang function
without their small corrective parameters. Although the
resonance in the timelike region was almost unaffected
by this change, the maximum from the moments curve
disappeared completely (see the dashed curve in Fig. 2).
This shows that this effect has been just a fluctuation be-
cause of the lack of stability of the procedure for small-n
values. This occurrence demonstrates the importance of
having stable procedures.

Figures 5 and 6 show the results obtained using the
methods of Secs. II and III, respectively. In these calcu-
lations the data obtained by evaluating Eqs. (18) and (19)
were taken in the range —0.5 to —50 for s.

The two curves in Fig. 5 correspond to two different
error assignments and each shows 5p plotted against the2

real part of the position s1 in the trial function. In this
case, no particular threshold behavior at s =sp was im-

posed on II(s), nor the constant at s =0. Despite the
rather crude nature of the calculation, the result is quite
good and yields a reasonable value for Res, . Here
again, the minimization of 5p with respect to the pole
parameters was limited to Res1,' the residue and Ims1
were held fixed at reasonable values.

A more sophisticated, and more reliable, analytic con-
tinuation would use the results of Sec. III taking account
of the constraint at s =0 and the threshold behavior at
s =sp. The results of such a calculation are shown in
Fig. 6. The solid line shows the plot of 6p against the2

real part of the pole position in the trial function for the
form factor. Following the procedure described in Sec.
III, II(s) was, in this case, constrained to have the value
1 at s =0, and to have the threshold behavior
Imll(s) —(s —sII )

~ . The weight function cr(p) was
given the form cr-P at /=0 in order to impose this
threshold behavior to the derivative of the imaginary

11part. The trial functions Tk were constructed so as to
satisfy the same constraints as were imposed on H.

For comparison we have plotted here (Fig. 6) also (a)
the results of Fig. 5 where no subtraction nor threshold
condition were imposed at all (the dashed line), as well
as (b) the curve obtained when the threshold behavior

—2has been imposed using the above o(p)-(tI form, but

p

P
1

T 1 I T [ T 1 I [ T T T 1'I [ 1 T T T 7 T T r~
C3. e

s (GeV)

FIG. 5. 50 plotted against the real part of the pole position
for the form factor [Eqs. (18) and (19)]. The two curves corre-
spond to the assignation of different errors: p& is 1 part in

1)& 10, p2 is 1 part in 5&& 10 .
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FIG. 6. Step by step improvement of the analytic continua-
tion process in the form-factor case. The dashed line
represents 50 vs the real part of the pole position when no
specific information has been added. [The integral equations
(11) and (12) have been used with o =1.] The dashed-dotted
line: same equations (11) and (12) but with a cr weight con-
straining the solution to have a correct threshold behavior
ImII(s) —(s —so)' . Solid line: the integral equations (15) and
(16) have been used, when the threshold and the subtraction
constant II(s =0)=1 has been specified.
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where II(s =0) has not yet been constrained to have the
value 1 (the dashed-dotted line). One may hence see
directly the improvement obtained by adding supplemen-
tary information and changing correspondingly the in-
tegral equation. One may notice that the minimum is
much sharper with the solution of the Eqs. (15)—(16) us-
ing the constraint H=1 at s =0, the reason being that
the minimization with respect to do is no longer carried
out. As discussed in Sec. III this minimization would
have given a substantial reduction of 7 and 6o by itself,
thus reducing the role of the function x„(P) and hence
the predictive power of the method. It is interesting to
note, however, that the value of 6O at the point
Res =0.55, which corresponds to the minimum of the
solid curve, is almost the same for both graphs. One can
deduce from this observation that the value of II(0) ob-
tained by minimization of do, for that value of the trial
pole position, should be close to 1, which is the imposed
value for the solid curve. In fact that value obtained is
1.002.

In comparing the curves in Fig. 6 it is important to
note that the norms are different because of the different
forms of the weight function cr(P). (The error factor p
in Fig. 6 is 1 part in 5 X 10, this is the same as p2 in Fig.
5.)

In Fig. 7 we have plotted (the dashed-dotted curve)
the modulus squared of the form factor reconstructed—
using the method described in Sec. II at timelike ener-
gies. The minimization of 6o has been performed with
respect to all the parameters entering in the pole trial
function T&(s), that is, the pole position in the complex s
plane and the residuum value. ' Together with this
dashed-dotted reconstructed function, Fig. 7 also shows
"the true function" (the solid curve), i.e., the Heyn-Lang
input function used to produce the data in the spacelike
region. The agreement is remarkable. In particular one
sees that a correct prediction for the width of the reso-
nance has been obtained, together with a correct reso-
nance position.

The solution obtained by this method (6o minimiza-
tion) changes very little when the small Heyn and Lang
correction terms, which modify the pure Breit-Wigner
formula, are neglected (in contrast with the moments
curve, Fig. 2, which is quite unstable to this small
modification).

One question which might be asked is whether a
direct 7 fit to the same spacelike data by the pole func-
tion TI, (s) alone, without any of the relatively elaborate
analysis described above, might yield reasonable results.
We carried out such an exercise (using the same CERN
MINUIT minimization routines as we had used to obtain
the minimum of 5o ) and the resulting function obtained

IF.I

(-c &

J + T

S (GeV)
FIG. 7.

~
F„~ plotted against s, the energy squared in the

c.rn. frame. The solid line represents the function of Heyn and
Lang. The dotted-dashed line is the solution of the integral
equations (10). The dotted line represents a naive direct g fit
of the spacelike data.

in this way is shown as the dotted curve in Fig. 7. As
can be seen the result is rather poor: the predicted ener-

gy of the resonance is too low, and the imaginary part of
the pole position is small, yielding too narrow a reso-
nance. We also found that this method [naive X fit for
Tk(s)] is also quite unstable to small variations in the in-

put data; for example, if the input data had been precise-
ly the imaginary part of a Breit-Wigner formula (which
would have been the case if the small correction terms of
Heyn and Lang had not been included) then the result
would have been exact and the dotted curve would have
coincided with the input function, in contrast with the
result displayed in Fig. 7.

The above results indicate the effectiveness, both in
terms of accuracy and stability, of this 50 minimization
method. It should be possible to achieve further im-
provements by changing the weight function n (z) in the
spacelike region and it is our intention to investigate
this, as well as other variants of the general method.
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Tz(s) as defined above has the required behavior at s =sp,
but is not zero at s =0. To obtain the zero value at s =0
one uses a subtracted form, Tk(s) —Tz(0), for the trial func-
tion.

The only restriction has been to take a real residue for the
pole. This is certainly a reasonable assumption as in Sec. II
the formula given in Ref. 11 has been used with kp ——0, c =0.


