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A systematic investigation of all possible horizontal symmetries acting on four generations of
quarks in a minimal left-right-symmetric model is carried out. There are only two consistent mod-
els with realistic constraints on the quark masses and mixing angles. It is shown that Z4 is the
unique symmetry group leading to these models. The fourth-generation quark masses mb and m,
are constrained to be (A) mb/m, =mb /m, , (B) m, /m, =(m&+mb )/(m, +m, ). Thus, model (A)
predicts m„mb (43 GeV whereas model (B) has mb (58 GeV. The two models diA'er in the mix-

ing of the fourth generation into the first three. A crucial test which can distinguish the two mod-
els is a direct measurement of the mixing matrix element

~
V„b

~

. Model (A) predicts it to be
—10, an order of magnitude smaller than the prediction of model (B).

I. INTRODUCTION

The replication of fermion families is one of the least
understood aspects of present-day particle physics. The
discovery of the top quark will complete the third gen-
eration of quarks and leptons in the standard-model
menu. However, there is no convincing argument that it
will be the last entry. It is then natural to consider the
possible existence of a fourth generation of quarks and
leptons. This possibility, although not new, has been the
subject of vigorous discussions lately. ' The recent mea-
surement of B-B mixing by the ARGUS Collaboration
will only strengthen the case for a fourth generation if
the top quark is indeed discovered in the mass range
25 —50 GeV (Ref. 3).

In this paper we shall take the possible existence of a
fourth generation seriously. Within the framework of
the standard model, this only proliferates the number of
free parameters, since the model has all the fermion
masses and mixing angles arbitrary. However, meaning-
ful relations among the quark masses and mixing angles
can be obtained by resorting to additional symmetries
acting in the family space. These "horizontal sym-
metries" are essential if the relations are to be stable un-
der radiative corrections. Although the number of free
parameters can be reduced considerably in this ap-
proach, we still lack convincing arguments as to what
the horizontal symmetry should be. Therefore, a general
investigation of all possible horizontal symmetries will
serve to be of great value. Such investigations have been
carried out in the literature for the case of two and three
generations. Here we propose to extend them to the
case of four generations.

An aesthetically pleasing and phenomenologically vi-
able alternative to the standard model is left-right-
symmetric gauge theories based on the gauge group
SU(2)L X SU(2)it X U(1) (Ref. 7). These theories have

been shown to be very successful in obtaining natural re-
lations between the quark masses and the mixing angles.
The invariance of the Lagrangian under space inversion
naturally leads to Hermitian Yukawa coupling matrices,
which is a considerable simplification. En this paper we
shall confine ourselves to a left-right-symmetric model
with a minimal Higgs sector and investigate the effect of
all possible horizontal symmetries acting on the four
generations of quarks. The analysis can in principle be
extended to the leptonic sector as well, but lacking the
experimental information on the leptonic mixing angles
and the neutrino masses, we shall not pursue it here.
Ecker, Grimus, and Konetschny have carried out a gen-
eral analysis of all horizontal symmetries within the
framework of such a minimal left-right-symmetric model
for the case of two and three generations of quarks.
These authors show that in either case there is essential-
ly one model which leads to phenomenologically accept-
able predictions on the quark masses and mixing angles.
Furthermore, the cyclic group Z4 was shown to be the
unique symmetry group that leads to these predictions.

The number of possible symmetry groups proliferates
considerably while going from three to four generations.
However, we have been able to show that the minimality
of the Higgs sector when combined with the requirement
that none of the generations decouple from each other
implies that one can choose a basis in which the hor-
izontal symmetry is essentially Abelian, thus simplifying
our analysis. We show that there are only two models
with realistic predictions on the quark masses and mix-
ing angles. Remarkably, Z4 is again the unique symme-
try group which leads to these models. In both models,
the masses of the top and the fourth-generation quarks
(t', b') are constrained to be m, , m&. 550 GeV, m, ~ 180
GeV. The two models differ in the mixing of the fourth
generation into the first three. In model (A) the fourth
generation mixes preferentially with the second, whereas
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in model (B) it mixes with the third generation. Another
test which could distinguish the two models is the mix-
ing matrix element

~
V„b

~

—model (A) predicts it to be
—10, an order of magnitude smaller than the predic-
tion of model (B).

In the next section we describe the minimal left-right-
symmetric model in some detail and begin investigating
the action of possible horizontal symmetries on the four
generations of quarks. There we arrive at the two realis-
tic models (A) and (B). In Sec. III we analyze the special
case of degenerate Yukawa coupling matrices and assert
that they do not lead to realistic models. The phenome-
nology of models (A) and (B) is worked out in Sec. IV.
In Sec. V we conclude. A proof that the horizontal sym-
metry can always be chosen to be Abelian in the
minimal model is given in the Appendix.

II. HORIZONTAL SYMMETRY
AND A MINIMAL LEFT-RIGHT MODEL

We shall assume the gauge group to be
SU(3)c X SU(2)I X SU(2)z X U(1). The left-handed and
the right-handed quarks 1(L and fz transform under the
group as (3,2, 1,—,') and (3,1,2, —,') multiplets, respectively.
Fermion masses arise upon spontaneous symmetry
breaking through their Yukawa coupling to a Higgs
multiplet P(1,2, 2, 0). Additional Higgs scalars which do
not couple to the quarks are also introduced in order to
break SU(2)z XU(1) down to U(1)r at an energy scale
greater than a few TeV. The model is minimal in the
sense that only one P(1,2, 2, 0) field is introduced.

In addition to the Higgs field P, the charge conjugate
field P=r2$*r2 also couples invariantly to the fermions.
The most general Yukawa coupling to the four genera-
tions of quarks is defined by

M„and Md will be block diagonal depending on the de-
generacy of S. If none of the generations decouples from
the rest, S should be completely degenerate, i.e.,

S=e' I . (2.6)

Absorbing the phase factor into the definition of l, one
can restrict oneself to Hermitian I, .

Now consider an arbitrary horizontal symmetry group
H (discrete or continuous) represented by unitary trans-
formations on the quark fields as well as on the Higgs
field P:

i)'L =KL(g)PL

PR =K~(g)A
i a(g)y

(2.7)

for each g HH. Invariance of the Yukawa coupling un-
der this transformation implies

KL 1 )K~ ——e ' I ), I( I I 2K~ ——e' I 2,
or, using the Hermiticity of r, ,

[r, ', K, ]=[r,', K, ]=0 (i =1,2) .

(2.8)

(2.9)

=vivl &1 zKL(e ' —1)+H.c. ,

[KR,M„M„]= [KR,Md M„]

=vtvI, I 2K~(e ' —1)+H.c.

(2.10)

This relation will prove to be quite powerful in eliminat-
ing many possible horizontal symmetries.

Before we proceed, we observe that, by virtue of Eqs.
(2.8) and (2.9),

[KL,M„M„]= [KL,Md Md ]

I.,= y (q„yr „,q„+q„yr „,q„, )+H . . (2.1)

(2.2)

this leads to the mass matrices

(2.3)

for the charge —', and ——,
' quarks, respectively.

By virtue of the U(4) XU(4) symmetry of the quark
gauge couplings, the most general parity operation act-
ing on the quark fields has the form

When the neutral components of the P field acquire vac-
uum expectation values, which we parametrize as

If e ' =1, all the commutators above vanish. But then
in a basis where KL (or K~ ) is diagonal either some
fiavors decouple or KI (and Kz ) are completely degen-
erate leading to no constraints on the mass matrices at
all. Hence, the case e ' =1 is "trivial" and will not be
tolerated in the subsequent discussions.

Ifboth I, and I 2 are fourfold degenerate, I, =C, I
and it follows that [M„Mt,MdMd ]=0 leading to a trivi-
al quark mixing matrix. Hence at least one of the I;,
say I &, cannot be fourfold degenerate. We are then led
to consider the cases (1) I

&
nondegenerate, (2) I &2 two-

fold degenerate, (3) I
&

twice twofold degenerate, and (4)
I, threefold degenerate. Consider the case of nonde-
generate I

&
. Because of Eq. (2.9) there exists a basis

where I,, EL, and Kz are simultaneously diagonal:

4L 0R& 1 R ~4L (2.4) r, =diag[g&&, g2~, g33 g44]

I, =r,S or [r, ,S)=0, i =1,2 . (2.5)

In a basis where S is diagonal, I, and I 2 and therefore

where S is a 4 & 4 unitary matrix. Under parity,
with

~
il

~

=1. By redefining the field p, we
may set i'd=1, in which case the invariance of (2.1) under
parity implies

EP I 1P2 1 P3 1 P4
KL =diag[e, e, e, e ],
Kz ——diag[e ', e ', e ', y '].

(2.1 1)

In this basis at least three of the off-diagonal elements of
I 2 should be nonzero in order that none of the genera-
tions decouple. Denoting I 2,- by h," we can choose
them to be (a) h, 4h24h34+0 or (b) h, 2hz3h34+0. Any
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i (a —p, +y, ) —i (n+p, —y (2.12)

other choice can be reduced to one of the above by a
permutation of the family indices.

Combining Eq. (2.8) with (2.11) we obtain

iP1 iP2 iP3 iy, 1 y2 1 y3e =e =e , e =e =e

i y4 i (y
1
+pl —p4); i (y 1

—p4)
e =e e' =e

(2.13)

For case (a), h, 4h24h 34+0 implies Consequently

i (2y l
—pl —p4) i (2~

1 pl p4) i (2y
l pl p4) i (2y

1 +pl 3p4)r( ——diag[g»e ' ' ', g, 2e
' ' ',g„e ' ' ',g44e

' ' '
] . (2.14)

I Pl iP4
Clearly if e =e, I

&

——0 for nontrivial symmetry
which means a trivial mixing matrix. Therefore

iPl i P4e '&e ', in which case the second of Eq. (2.12) implies
that all elements of I 2 besides h&4 624 h34 and their
complex conjugates are zero. For example,

(Pl —P4)
h44 ——e ' 'h« ——0 .

Furthermore, from Eq. (2.14) it follows that

for a realistic mass spectrum. Hence we arrive at the
following matrices for case (a):

tal lower bound of 22 GeV (Ref. 9) and the upper bound
of about 300 GeV from the measurement of the elec-
troweak p parameter' on the heavy-quark masses.
Hence e ' =1 is required. We shall call the matrices of
Eq. (2.15) with this choice of a model (A).

The simplest symmetry group which yields the ma-
trices of Eq. (2.15) is the group Z4. Alternately, any
symmetry group which reproduces model (A) should
have Z4 as one of its subgroups. Under Z4 the transfor-
rnation properties of the quark and the Higgs fields may,
for example, be"

e' = —i

I2 ——

0 0 0 h, 4

0 0 0 h24

0 0 h34

h 4 h24 h34 0

4icr 11,=diag[g1(, g22, g33, g44 ],
(2.15)

KL =diag[1, 1, 1, —1],
KR ——diag[i, i,i, i] . —

(2.16)

We shall analyze the phenomenological consequences of
this model in Sec. IV.

Now consider case (b) with h, 2h23h34&0. From Eq.
(2.12) it follows that

If e ' &1, g44 ——0 in which case

~

detM„~ =
~

detMd or
or

m„m, m, m, .=md m, mI, mg. .

i Pl iP3 iP2 iP4
e =e , e =e

iyl ig
& i] 2 iy4 i(yl+P1 P2e =e , e =e =e

e' =e

(2. 17)

Such a mass relation is inconsistent with the experimen- and consequently

i (2y( —p( —p21 i (2y(+ p( —3p21 i (2y( —p( —p21 ((-y(+ p) —3p, (

1 ag g 1 1 g22e g33e g44 (2.18)

/Pl IP2For e =e, I, is identically zero for a nontrivial sym-
1P1 1P2metry. Hence e &e in which case Eq. (2.12) implies

that only h ]4 can be nonzero besides A ]2 A 23 A q4. For
example,

i (P2 —Pl )

h]3 —e''h/30
and so on. Furthermore, from Eq. (2. 18) we have

I2 ——

0 h, 2 0 h, 4

h ]2 0 h23 0

0 h23 0 534

h, 4 0 h 34 0

r, =dtag[g „,g„,g„,g„],
(2.20)

1 (2y —P —P2) i (2y +P —3P )

(2.19)

or else I
&

will be degenerate contrary to our assumption.
Thus, we arrive at the matrices for model (B):

It is remarkable that the simplest symmetry group which
produces these mass matrices is again Z4 with the fol-
lowing assignment:"
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e' =i,
Kl ——diag[i, i—,i, i ]-,
K+ ——diag[1, —1, 1, —1] .

(2.21)

Furthermore, case (2) can be obtained as a special case
of (1). Hence our task reduces to analyzing the matrices

0 g)2 0 0

0 0
Such a model has been studied recently by Mohopatra
and Mohopatra. ' In Sec. IV we shall come back to the
phenomenology of this model and compare it against
model (A).

III. THE CASE OF DEGENERATE I,

r 0 g34

0 0 g34 g44

0 0 0 hi4

0 h22 h23 0

(3.3)

In this section we turn to the remaining possibility
that I ] is degenerate. As discussed before, we have to
consider three cases: I, twofold, twice twofold, or
threefold degenerate. First of all, we note one
simplification. In the previous section we analyzed the
case of nondegenerate I &, allowing for an arbitrary I 2 .
Therefore, while discussing degenerate I &, we may safe-
ly exclude the possibility that I 2 is nondegenerate since
it will not give any new model. (Note that the problem
at hand has a symmetry 1,~1 2, P~P.) Next we state a
very useful lemma.

Lemma. In the minimal model, the requirement that
the horizontal symmetry and the resulting mixing matrix
be nontrivial and that none of the generation decouple
from each other implies that there exists a basis in which
EL and KR are simultaneously diagonal.

The proof of the lemma is somewhat tedious and is
given in the Appendix. The lemma means that the hor-
izontal symmetry group can be chosen to be Abelian.
This brings in considerable simplifications in our
analysis. In a basis where El and ER are diagonal, if
I

&
is twofold degenerate, I

&
has the form

0 g)2 0 0

g)2 0 0 0

g33 g34

0 0 g 34 g44

(3.1)

up to a permutation of the family indices. A twice two-
fold I, is obtained by setting g33 —g44 —0 in the above.
Similarly, a threefold degenerate I, is possible only if

1,=diag[0, 0, 0,g44] . (3.2)

A fourfold degenerate I 2 implies I 2
——0. These restrict-

ed forms of the matrices follow simply because the
nonzero elements of the matrices are unrelated if the
horizontal symmetry is Abelian. ' The case of fourfold
degenerate I 2 is trivially excluded from the above argu-
ments. Similarly if I ] is threefold degenerate some gen-
eration will necessarily decouple from the others because
of Eqs. (3.1) and (3.2). Hence we are left with the fol-
lowing possibilities: (1) I, and I z twofold degenerate,
(2) I, twofold degenerate and 1 z 2 + 2 degenerate, or
(3) I, and I z 2+ 2 degenerate. Setting g» ——g44 ——0 in
Eq. (3.1) and allowing for all possible permutations of
the family indices we see that in case (3) two generations
decouple from the remaining two which is unacceptable.

0 h23 h33 0

h[4 0 0 0

Here we labeled the family indices so that decoupling of
generations does not occur.

So far we have not used the invariance of the La-
grangian under the horizontal symmetry. Since

ER =diag[e ', e ', e ', e '],
we have, from Eq. (2.8),

J
i(a —p, +y )

( +p, —y )

lJ lj

We immediately see that

g,"h,*(1—e ' )=0 (no summation) .

(3.4)

(3.5)

(3.6)

(3.7)

Furthermore,

i p y + a i(y —p —3a)
g 24 g 24 g 33 g 33

i (Pl —y 1
+ 3a)

g44 e g44
i (pl —y 1+Sa) i (y& —pl —5a)

h22 ——e ' '
h22, h33 e ' '

h33

(3.9)

i (pi —yi+Sa) i (y& —
P&

—3a)
Since g24

——g33
——0,

This implies that g44
——h22 ——h33 —0 leading to decou-

pling of generations.
(ii) h, 4

——0, g&zg34h23~0. In this case from Eqs. (3.5)
and (3.6) we have

For nontrivial symmetry we need g, h, =0. Consequent-
ly we can set g33 0 without loss of generality in Eq.
(3.3) and consider the cases g44 ——0 and g44&0.

If in Eq. (3.3) g, 2
——0, then g34h, 4h23+0 so that no

generation decouples. If h &4
——0, g &2g34h»&0. For

nonzero g, 2 and h, 4, either g34 or h 23 has to be nonzero
as well in order that all generations mix. We shall ana-
lyze these four possibilities one by one.

(i) g&2
——0, g34h)4h23+0. From Eqs. (3.5) and (3.6) we

have

p2 ' yl 3a p3 pl+2a) ip4 i(y& —a)

(3.8)

iy2 ' pl+ 'y3 '(y1 2a) iy4 i (pl+a)
e =e e =e e =e
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ip ip4 i (y1+a)
e =e =e

iy2 iy4 i(p1 —a)
e =e =e

i p3 i (p1 —2a)
e '=e

i(y, +za)
e =e

(3.10)

p2 y 1
+a p3 pl +2a )

e '=e ', e '=e ip4 i (y1 —a)
e '=e

(3.1 1)

Then from Eq. (3.5) we see that g &4 cannot be kept zero
consistently. Hence this case is disallowed by symmetry.

(iii) g, zg34h]4&0. Equations (3.5) and (3.6) imply

iy2 i(pl —a) iy3 i (y1 —za) iy4 i(p1+a)

and consequently

i (y1 —p1+a)
e

g1Z

i(y —p —a)g4 1 1

0

h„e

g1Z

i (pl —y1 —a)
gzze

0
'(p1 —y1+a)

g z4e

0

i(y —p —a)
1 1e

0
i (yl —pl —3a)

33e

g34

i (yl —p1 —3a)
h, 3e

p, —y, +
gz4e

i (p1 —yl+3a)
g44e

(3.12)

Iz ——
0

i (y1 —p1 —3a)
13e

i (p1 —y 1
—3a)

h zze

y e —4ia
r~l 23e

i (pl —yl —a)
h 24e

h 33e

—41 a
z3e

0

i (p1 —y1 —a)
h z4e

0
i (pl —y 1+a)

44e

2l a i (y1 —pl —3a)
where the vanishing entries result from e ' &1. Now since h, 3=0, e &1 which implies g44 ——0. As g24 ——0,

~ (p1 —y1+ a) —4iae &1. Then if h23&0, e ' =1, which means hzz ——h33 0 leading to generation decoupling. Hence hz3 ——0
in which case one can consistently choose

0 g12 0 0 0 h, 4

0 0

0 0

o h»
0 h33

0 0g1Z

o o 0o g ' rz o (3.13)

0 0 g34 0 h 4 0 0 0

We shall analyze the mass spectrum of this model Later in this section.
(iv) g&2h &4hz3&0. Analysis similar to the above yields

i p2 i (y1+a) ip3 i (p1 —2a) ip4 i (yl —a) iy2 i (pl —a) iy3 i (y1+2a) i y4 i (pl+a)
(3.14)

and

Iz=

i (a —p1+ y1)
e

g1Z
i (y1 —pl+ 3a)

e

0

h„e
0

' yl p1+
13e

g1Z

i(p —y —a)
1 1

gzze

0
i (pl —y 1+a)

g 24e

0
i (pl —y1 —3a)

h zze

hz

(p, —y — )
h 24e

i ( y1 —pl + 3a)

0
i (y1 —pl +5a)

e

4l a

i (y1 —pl+a)
13e

hz3
i (y1 —pl+3a)

33e

0

0
i (pl —yl+a)

gz4e

4ia

i (pl —y 1+3a)
g44e

h, 4

i(p —y —a)
1 1h 24e

0
i (p1 —y1+a)

44e

(3.15)

i (y1 —pl+ 3a)
Since g13 ——0, e. ~1 implying that hzz ——h33 —0.

i (p1 —y1 —a)
As h 24

——0, e ' ' ~1 leading to g 34g44
g44=0 the model is again with decoupled generations.
For g44&0, g34 0 a consistent model emerges, but it is

a special case of the matrices Eq. (3.13) and will not be
treated separately.

To summarize, we have shown after some tedious ma-
nipulations that for the case of degenerate I 1, there is
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essentially one model given by the matrices of Eq. (3.13).
After a permutation of the indices 1~3, 2~4, the result-
ing mass matrices are

g11 V h 14LU 0

14 g44V h 34W h 24LU

w*h3,

Vg 34

Ug 34

w*h*
14

W h14

0 Ug 12

h 24LU 0 g22V

M„=M„(u~w) .

0 h 34w* g33v 0

(4.1)

0

Md ——M„(u~w) .

0 Ug]2 W h22

(3.16)

mbmb

m(mt

mdm,

m„m,
(3.17)

If h33 0 this is of the Fritzsch type. It has been shown
in Ref. 14 that this case leads to three mass relations

In analyzing the predictions of the model on the quark
mixing matrix we shall make the following approxima-
tions. First of all we assume CP invariance so that the
Yukawa couplings h, - and the vacuum expectation
values v and w are real. In left-right-symmetric models
the observed CP violation can be explained by the right-
handed currents alone. With this assumption the mass
matrices becomes Hermitian. The ratio of the vacuum
expectations values is given by

mb —mb

m ~
—m

m mbmb

m m, m

1/3 2mdm mb mb

m„m, m, m,2

md+m, +mb+mb
m„+m, +m, +m, .

(4.2)

which are unrealistic. The case h33&0 will be analyzed
by treating the first-generation quark masses m„and md
as perturbations. In the limit m „=m d ——0 from the
determinants of M„and Md, disallowing the possibility
that v = w (in which case M„=Md ), we have

If we identify the first row with the first generation,
second row with the second, and so on in the matrices of
Eq. (4.1) (other possible identifications will be discussed
later), in the limit of neglecting the first two generation
masses we have the mass relation

g12g34 0 h22h33 l
h i4 (3.18) mb mb

(4.3)

If g, 2
——h» ——0 or g34 =h 33 0 we have the following

mass relations in this limit:

mb. —mb

m. —mt

m mbmb

m m(mt

1/3 '2
m mbmb

m mfm)
(3.19)

These relations predict a t' mass below the experimental
lower bound of 22 CxeV. If Eq. (3.17) is satisfied by
choosing g34 —h14 0, we see that

m mr'

barring unnatural cancellations. This relation will get
only small corrections when the first two generation
masses are turned on. Since the mixings are known to
be small and since they arise through h, in Eq. (4.1) we
shall assume the h's to be small compared to the g's.

Because of Eq. (4.3), lr «1 and we can safely ignore
the oA'-diagonal elements of M„. The up-quark masses
are then

m,

mc

m ~
—mt' t

mb —mb

mbmb ~

mtm

' 1/2

(3.20)
and

m =g1]U, m =g44U mt g33U

m, mb
(3.21)

which are also not realized in nature. For g12:h14:0,
one obtains the unacceptable relations

1/3 ' 1/2
m m,

m =g22 V

With these approximations, the eigenvalue equation for
M„yields

m, m, m,

Finally, if g34 —h 22
——0 or g, 2 h 33 —0, m, =m, and

m, =mb will follow. Hence the mass matrices in Eq.
(3.15) do not lead to realistic models.

m&m& -m, m, lr —u (h, 4 +h24 +h34 ),2 2 2 2 2

m, m&m& -m, m, m, x —~u [m, (h, 4 +h24 )+m, h34 ],3 2 2 2 2

IV. PHENOMENOLOGY OF MODELS (A) AND (B) 4
md m5 mb mb —m„m, m, mt'K

(4.4)

Having established that even with an arbitrary hor-
izontal symmetry there are only two realistic models
[Eqs. (2.15) and (2.20)], we now turn to the phenomeno-
logical consequences of these two models. Model (A)
[see Eq. (2.15)] corresponds to the following mass ma-
trices after a permutation of family indices:

—~ u ( m, m, h, 4 +m„m, h24
2 2 2 2

+m mh34).
The quark-mixing matrix has the approximate form (in
units v =1)
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md —Km„ —h 34 md —Km„ —h24 md —Km„

K)4 h)4 Km, h, 4 Km]

h34 mb

—h, 4 Km, —mb

h~4 mb

h(4

m —KmS

—h&4 Km —mb (Km mb )

h34

—(Km( —mi, )

hz4

—h34

Km —mt S

h34 Km ' mb'

h~4 Km, —mb

—h24

Km —m S

h24 Km mb

h34 Km, —mb

(4.5)

m„mb & 43 GeV, (4.6)

where we used mb ——5. 3 GeV (Ref. 15) at the scale 1

GeV and took account of QCD corrections with

A&CD
——100 MeV. A recent and more complete analysis

of the neutral-current processes indicates that the upper
bound on the quark masses may be considerably
smaller —in the neighborhood of 200 GeV (Ref. 16). If

A few remarks are in order on the masses of the t, b',
and t' quarks in the model. The approximate equality
mb /m, =mb /m, when combined with the DESY
PETRA lower bound of 22 GeV on the heavy-quark
masses and the upper bound resulting from the measure-
ment of the electroweak p parameter severely constrains
m„mb, and m, . If we choose a conservative value of
300 GeV for the upper bound from p parameter, ' we
have

we choose it to be 225 GeV, for example, the bound Eq.
(4.6) reduces to 32 GeV. Both the top and the b' quarks
should then be observable at KEK TRISTAN which is
indeed an exciting possibility.

In order to get an idea of the kind of mixing matrix
predicted by the model, we present two typical exam-
ples. The light-quark masses defined at the energy scale
1 GeV are chosen to be'

m„=5. 1 MeV, m, =1.35 GeV,

m, = —175 MeV, mb =5 ~ 3 GeV,
(4.7)

and QCD corrections are taken into account with

A&CD ——100 MeV. The mixing matrix is rather sensitive
to md defined at 1 GeV which are chosen differently for
the two cases. m„mb, and m, given below are the
physical masses.

Case (a). md ——9.56 MeV, m, =30 GeV, mb ———35 GeV, m, = —235 GeV:

0.976
0.220

—9.79 X 10

2. 98 X 10 0.013 5.33 X 10—4 1.00

—0.220 3.22X 10 9.81 X 10
0.975 0.043 —0.014

—0.042 0.999 5 ~ 31 X 10
(4.8)

Case (b). md ——10 MeV, m, =30 GeV, mb ———25 GeV, m, , = —184 GeV:

0.974
0.225

—0.014
2.52X10 '

—0.226 4. 54 X 10 1. 19X 10

0.972 0.059 —0.011
—0.057 0.998 8.26X 10

0.011 5-81 X 10 1.00

(4.9)

Note that in both the cases the fourth-generation mixing
into the second generation is the largest, the reason for
which is obvious from the form of the mass matrices Eq.
(4.1). The value of the matrix element

~
V„b

~

is predict-
ed to be —10, 2 orders of magnitude below the
present experimental bound. A direct measurement of

~
V„b

~

can thus confirm or rule out the model.
By permuting the generation indices. in the mass ma-

trices of Eq. (4.1), it is possible to obtain three more in-

dependent models (i.e., we may, for example, identify the
first row with the third generation, etc.). However, we
see by analysis similar to the above that all these cases
lead to unrealistic mixing matrices —either the Cabibbo
angle is predicted to be too small or

~
V„b

~

is predicted
to be greater than V,b ~

in contradiction with experi-
ment.

Now we turn to model (B) defined by the mass ma-
trices
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h w*
12

h 14W

h*w23 g33v h 34w

h 12W

g22v h23w*
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h*w14 h w34 g44v
(4.10)

APPENDIX

Md ——M„(u~w) .

Such a model is studied in detail in Ref. 11 and we shall
only summarize the main results and compare them
against the predictions of model (A). With the same ap-
proximations as for model (A), model (B) yields the mass
relation

m,

m,

mb+mb

mt +mt
(4.1 1)

yielding an upper bound of 58 GeV on the b'-quark
mass. The third and the fourth generations mix even in
the limit of zero first- and second-generation masses.
This implies that V,b. can be even as high as 0.3 in con-
trast with model (A). Furthermore, V,z, is smaller than

V„~ and V,b in the model. Recall that model (A) had

V,b larger than V„b and V,b. A crucial test which can
distinguish the two models is a direct measurement of

~
V„~

~

. Model (B) predicts it to be —10, an order of
magnitude larger than the prediction of model (A). If
the top quark is not discovered below 45 GeV or so,
model (A) will be ruled out while model (B) may still
stand some chance.

In this appendix we prove the lemma stated in Sec.
III, viz. , in order that none of the generations decouple
and that the symmetry be nontrivial, there must exist a
basis where KL and KR are simultaneously diagonal in
the minimal model.

The invariance of the Lagrangian under the horizontal
symmetry implies

K I,K„=e ' r, , KLI 2KR ——e' I 2 (Al)

or

[1, ,KL]=[I, ,K„]=0 (i =1,2) . (A2)

ip3

Because of Eq. (A2), in a basis where I, is diagonal KI
and KR will be block diagonal depending on the degen-
eracy of I 1 . Clearly for a nondegenerate r1 there ex-
ists a basis where KL and KR are diagonal.

Consider the case of a twofold degenerate I, . In a
basis where I, is diagonal KI and KR will have the
form

V. CONCLUSIONS ip4

In this paper we have carried out a systematic investi-
gation of all possible horizontal symmetries in left-right-
symmetric gauge theories with a minimal Higgs sector
and four generations of fermions. Although horizontal
symmetries are quite powerful in constraining the pa-
rameters of the model, there is no convincing argument
as to what the correct symmetry is. We hope that a gen-
eral analysis such as the one presented here will help
gain deeper insight into the problems of family replica-
tion and mixing-angle hierarchy.

We have shown that there are only two consistent
models with realistic predictions on the quark masses
and mixing angles in the case of four generations. Z4 is
the unique symmetry group which leads to these models.
The phenomenology of the two models is studied in Sec.
IV. Both the models predict m „mb. 5 50 GeV, and
m, . ~180 GeV. They dieter in the mixing of the fourth
generation into the first three. In one of the models, the
fourth generation mixes preferentially with the second,
whereas in the other it mixes with the third generation.
A direct measurement of

~
V„b

~

can distinguish the two
models. Accelerator experiments planned for the near
future will tell us which one of the two, if either, is the
correct description of nature.

(A3)

KR =
l y3e

iy4
e

1PI
I P2 I P3 I P4

KL ——diag[e, e,e, e ] .

I
1 has the general form

(A4)

G 0

0
g44

(A5)

with 2&2 Hermitian G.
iPI i P2If e =e, KR can be diagonalized. Hence consider

i PI iP
e '&e '. From Eq. (Al) we have

i (y3 p& o'. )

h» ——e ' h13,
i (y4 —pl —a)h4=e ' ' h4,

where k and k are 2)&2 unitary matrices. We make a
basis transformation so that KL is diagonal without
altering the form of KR ..
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i(y, —p, —a)
h23 =e '

h23,
i(y —p —a)4 2

h24 ——e h2
(A6)
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i (a+p))
h *,3k„+h 23k2, =h *, 3e

1 (a+p4)
h *,4k„+h 24k2, =h;4e

i (a+p~)
h 13k 12 +h 23k22 =h 23e

(A7) h14&0, h 3
——h23 h24 0 (A12)

without loss of generality. From Eq. (Al) we then have

ously diagonalizable. We are left with the case
'y4

e '&e ', e '&e ' in which case, from Eq. (A9),

i(a+ p4)
h *,4k, 2+h 24k22 =h 24e k 11k 43 —k 12k 43 —k 12k 44 —0 (A13)

i Ple 0
0

From Eq. (A6) it follows that h»h23 ——h, 4hz4
——0 since

iPl iPz
e &e . If h13 ——h14 ——0, h23k21 ——h24k21 ——0 from Eq.
(A7). Choosing h23 ——h24

——0 will result in a block diago-
nal I 2 resulting in decoupling of families. Hence k2, ——0
in which case KR is diagonal. Now let h13 ——h24 ——0.
Then h 23k 2, ——h *,4k, 2

——0. Again the only consistent
choice is k 2,

——k 12
——0 for no decoupling. Similarly

h» ——h, 4 ——0 and h» ——h 24 ——0 also give either decoupling
of families or k» ——k2, ——0. This proves that KI and KR
can be simultaneously diagonalized for the case of a two-
fold degenerate I

1
.

Now consider the case of a twice twofold degenerate
I

1
. In this case we can find a basis where

k 0
iy40 e

G 0
r, =

g44

with 3 X 3 unitary k and Hermitian G. Clearly if
'pz

e =e =e, KR can also be diagonalized. Equation
(Al) results in

The only solution is k12 —k43 —0 in which case KI and
KR are diagonal. This proves the lemma for the case of
twice twofold degenerate I"

1 .
Finally, consider the case of threefold degenerate I, .

(As discussed in the text, a fourfold degenerate I
&

leads
to trivial mixing matrix and is ruled out. ) By virtue of
Eq. (A2) one can find a basis where

iPI iPz iP~ iP4
Kl =diag[e, e, e, e ],

(A14)

0 iP2

k33

k43

k34

k44

i(y4 —pl )

h14e' =h14e
I (y4 —Pz)

h24e' =h24e
i (y4 —p&)

h 34e' =h 34e

(A15)

k„

k2,

k, 2

k22

lyg
e

0

0
(A8)

For all families to mix at least one of h, 4, h24, or h34
iPl iPz iP~

must be nonzero. Consider e &e =e . Then by
a unitary transformation in the 2-3 plane k can be
brought to

k11 k12 k13

0

0 iy4
e

k = k2, k22 k23

0 k32 k33

(A16)

G, 0
1 0 G

Furthermore, from Eq. (A15) either h, 4=0, hz4h34&0 or
h, 4~0, h 24 ——h 34 0. Consider h, 4 ——0. Using

with 2&&2 Hermitian G, and Gz. Then Eq. (Al) implies h *,&e' =e '(h &4k && +h z4kz, +h 34k„), (A17)

Ia Ia '(y4 —pz)
h, 4e' =e h, 4, h24e' =e h24,

Ia ia '(y~ —pz'
h13e' =e h, 3, h23e' =e h23

(A9)

14 24+ ~ 13 23 (A10)

Using

Note that at least one among h, 4, h24, h», and h23 has
to be nonzero for generation decoupling not to occur.

I Pl iPzLet e =e in which case KR can be diagonalized.
If e '=e ', KL can also be diagonalized proving the

'y4lemma. For e '&e ', from Eq. (A9) we have

ipz ip~
we see that k 2, ——0. Since e =e, KR can be diago-
nalized in this case. Similarly if h, 4&0, h 24

——h 34 0,
with

h 34e' =e '(h ]4k]3+5 $3k23+/1 3gk33 ),
(A18)

h,*4e' =e '(h*,
C ,k+324 22+ 34

it follows that k, 2 ——k,3=0. Again KR can be diagonal-
rzed.

If e- '&e '&e ', we have from Eq. (A15) h &4&0,
h 24 ——h 34 ——0. Then using Eq. (A18) we see that
k12 —k13 —0, or

h*„e' =e '(k33h f3+k43h*,4), (Al 1) e ' 0 0

we see that k43 0 and hence KL is also diagonal. Simi-
'pz 'y~ 'y4

larly if e &e, e =e, KL and KR are simultane-

0 k22 k»
0 k32 k33

(A19)
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With this simplified form of Kz, we have

ia 4 ' ~] t2 0 —iah (2e =h )2e, g )2e =g, 2e
(A20)

'~rl —l 3»e h»e —ia e ~1 3
j( —R )

g»e =g 13e

Clearly h, zh» ——0, g, 2g» ——0 from above. Furthermore,
one among h, z, h, 3, g, 2, and g» must be nonhero, or

else the first and fourth families will decouple from the
second and third. Consider h&2&0. Then from

~ —ip
h &2e' =e '(h &2k22+h &3k32) (A21)

it follows that
~

k22
~

=1, or Kz is diagonal. Similarly

g, 2&0 yields the same result. This completes the proof
of the lemma.
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