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We study the effects on the vector-boson parameters due to a heavy scalar singlet interacting
strongly with the Higgs sector of the standard model. The one-loop-induced effects due to the ad-
ditional scalar are not suppressed by inverse powers of its mass. In the limit that the singlet-

Higgs coupling becomes much larger than the Higgs self-coupling, the 48' vertex differs from that
in the standard model. In this limit the leading corrections are not related to the divergences of
the gauged nonlinear cr model.

I. INTRODUCTION

X = —
—,'(D„@)"(D"&0) (+ &0 f —)', — —

tIi=(t7+ir p) 1 (1.2)

At the tree level, the Higgs particle can be removed
from (1.1) by taking the limit A, ~ oo or, equivalently,
mH ~ op. The standard model then turns into a gauged
nonlinear o. model

p2
Tr(D U) (D"U),

4 P (1.3)

U =+ 1 sr +i v"—sr, (1.4)

which is equivalent to massive Yang-Mills theory. That
the standard model has the limit (1.3) can be see on a
formal level by noting that for a finite energy density
N @~f as A, ~ oo. In the language of diagrams, the
sum of all light-particle-irreducible (LPI) contributions
from (1.1), with only external P lines, converges to the
corresponding term in the expansion of (1.3) for small
42/f 2

It is now known for certain that the weak interactions
are mediated by massive vector bosons. Because the
theory of massive vector bosons is not renormalizable,
one postulates in the standard model the existence of an
additional scalar field: the Higgs boson. This extra par-
ticle makes the model renormalizable. Since evidence of
the Higgs particle has not been found so far, it is natural
to study the standard model in the limit that the Higgs-
boson mass becomes very large. ' In this limit the
Higgs sector becomes strongly interacting and, therefore,
the decoupling theorem is not applicable. As a result,
the low-energy effective Lagrangian for the vector bo-
sons contains terms that grow with the Higgs-boson
mass. In order to discuss the possible effects, it is useful
to describe both the standard model and the efFective
theory in a gauge-invariant way.

The standard model is a gauged linear o model:

At the one-loop level it is found that the effective in-
teractions induced by the heavy Higgs particle can be
described by higher-order covariant-derivative terms of
U; in the unitary gauge these terms correspond to extra
interactions of the vector bosons beyond the ordinary
gauge couplings. The corrections to vector-boson pa-
rameters grow only logarithmically with the Higgs-
boson mass. The corrections can be found in two ways.
The first is to calculate in the linear model (1.1) keeping
only terms of O(lnmH ). The second method is the cal-
culation of the logarithmic divergences in the nonlinear
model (1.3) using dimensional regularization. A compar-
ison of the two calculations gives the following
correspondence: The coefficients of the nonrenormaliz-
able logarithmic divergences of the gauged nonlinear o.
model (poles in n —4) describe correctly the effects of a
heavy Higgs particle on low-energy physics. The exact
correspondence is

linear mode1: lnmH ~nonlinear model:2 2

n —4

(1.5)

Explicit two-loop calculations indicate that there is no
simple relation between these models at that level. This
is at least partly due to the presence of the Higgs self-
coupling in the two-loop diagrams; at the one-loop level
the diagrams that contain a Higgs self-coupling either
cancel or the A, dependence of a vertex cancels that of a
propagator.

One can, therefore, ask whether a relation such as Eq.
(1.5) will hold in more general Higgs models as well.
One would normally expect the only requirement to be
that the model have (1.3) as its limit when the Higgs-
boson mass becomes large. It is already known that (1.5)
is independent of the exact form of the Higgs potential if
no more than one Higgs particle is present. The next
simplest model one can consider is the addition of a
singlet particle which only interacts with the Higgs sec-
tor of the standard model. Because the singlet does not
couple directly to vector bosons, one would expect (1.5)
to be unchanged. In particular, the decoupling theorem
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seems to indicate that contributions of such a particle
would be suppressed by inverse powers of its mass.
However the possibility of Higgs-singlet mixing compli-
cates the situation and thus only an explicit calculation
can settle this question. The purpose of the present pa-
per is to study such a model ~ The quantum corrections
to the p parameter, the 3 W vertex and the 4W vertex are
calculated. They are then compared to the correspond-
ing corrections obtained in the standard model without
the additional singlet field.

The model is described in Sec. II and it is shown to be
renormalizable in Sec. III. Sections IV, V, and VI are
devoted to the calculation of the one-loop corrections to
the p parameter, the 3 W vertex, and the 4W vertex, re-
spectively. A discussion of the results follows in Sec.
VII.

V= ' (2f,x —f, ')'
8

4
(2fpx f, —)(4 4 —f, )

(g)t@ f 2)2
8

k3 ——A, )+k2 .

(2.4)

(2.5)

Therefore, both x and o. develop a vacuum expectation
value. The Higgs self-coupling is replaced by k3 which
changes the relation between the coupling constant and
the Higgs-boson mass (cutoff' parameter). The eigenval-
ues of the mass matrix are

m+ = —,'(A2f2'+A, 3f, )

II. THE MODEL

The fundamental gauge-invariant building block of the
Higgs sector is N N. Therefore, the simplest coupling of
a particle to the Higgs fields is

(2.1)

2f 2f 2+ ]
( gg 2 g f 2)2]1/2

and the Higgs propagator changes to

a 1 —a+
k 2+m 2 k2+m 2

the mixed propagator

(2.6)

(2.7)

where x is a scalar field. In an unbroken theory the
corrections due to an interaction of this kind would be
suppressed by factors of m, according to the decou-
pling theorem. In the broken case, however, the Higgs
field develops a vacuum expectation value and, after
shifting it, the vertex (2.1) leads to mixing between the
scalar and the Higgs. This can give rise to new effects
even in diagrams that do not involve the scalar explicit-
ly.

The simplest Lagrangian which incorporates the ver-
tex (2.1) is

X= —
—,'(D„4) (D "4)—,'(r)„x ) — —(&00& f, )—

x —o:

where

and

m+ —A,2f 2

2 2m+ —m

and the x propagator

k2+m k +m

(2.8)

(2.10)

1 —(x a+ (2.9)k2+m 2 k2+m 2

8
(2f2x —4 0& )'+Xs,„,, (2.2)

where f &
is the vacuum expectation value of the Higgs

field, which is related to the vector-boson mass M~
through

(2. 1 1)
m+ —m

Note that 0 & a & 1.
The Feynman rules that deviate from those of the

standard model are listed in Table I. In all calculations
it was assumed that both masses m+ are large com-
pared to the 8' mass. This is the relevant limit for
studying the effects of heavy particles on low-energy

Mg ——
2

(2.3) TABLE I. New vertices in the extended lagrangian.

and x is a scalar under all transformations. It is evident
from (2.2) that, in the limit k&~ oo, the model (2.2)
reduces to the nonlinear model (1.3) and a free field x.
Note that this argument is independent of the strength
of the new coupling X2,' again, as in the simple model,
the sum of all LPI tree graphs converges to the ap-
propriate term in the expansion of (1.3), as can be
verified by explicit calculation.

The potential of the extended model can also be writ-
ten as

a 1 —o.+ k2+m

1 1

k 2+m 2 k 2+m 2

1 —o. CX

k+m k+m+
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TABLE II. The eAective vertices.

=ige, b, (5g + —Zw+a3g )[(p —q) 5(„+(r—p) 5„(+(q —r)„5 (, ]

=2a,g e,b, [5 p(q —r)+q, q —r„r ]

=4i cz,g e,&, (pqr„—prq„)+0 (p, q, r)

=[—2g'(5g +Zw+a, g')(25„5p —5„p5, —5„5„p)
+2a,g 5„,5 +aug (5„5„+5„5,)]5,b5,„+ permutations

= [8a, [ —s(t+u)+(p'+q')(r'+k')]
+4az[ —2ut —s(t +u)+2(p q +r k )+(p +q )(r +k')]]5,b5,„

+ permutations

physics; i.e., in this limit the question of decoupling can
be investigated.

One could just as well write the Lagrangian (2.2) in
terms of the diagonalized fields x and o. . They would
then both couple to the vector bosons. This obscures,
however, the scalar nature of x; in other words, the
finiteness to all orders of xW vertices is not obvious.
Consequently the analysis of the 3W and particularly the
4W vertex becomes more complicated.

With the exception of 5p, for the purpose of this paper
it is sufficient to investigate only the SU(2) model since
the inclusion of the U(l) group would merely complicate
the a; (Ref. 7) [see Eq. (2.13) below] without altering the
main conclusion. The covariant derivative in Eq. (2.2) is
then

(2.12)

where

+ga3Tr(F& [ V", V ])

+a4Tr(D„V"D, V ), (2.13)

All calculations were performed in the Feynman gauge.
In the SU(2) model, the logarithmic effects of a strong-

ly interacting Higgs sector can be summarized by the
effective Lagrangian of Appelquist and Bernard:

ff—a+o+al Tr( V„V")Tr( V V')

+azTr( V„V')Tr( V, V")

and

V„=(D„U)U

(3 ——W -gIg
P'v P 2 P

W -g

(2.14)

(2.15)

These coefficients are determined by comparing the re-
sult of the one-loop calculations with the Feynman rules
which follow from (2.13). That this can be done is a
consequence of the fact that (2.2) reproduces the non-
linear o. model in the limit A. ] ~ ~. The rules for the re-
quired terms in the expansion of (2.13) for small vr fields
are shown in Table II.

Since the structure of (2.13) is the same for the simple
and the extended model, differences can only appear in
the coefficients a, . As in the standard model, the struc-
ture a4 turns out not to have a logarithmic divergence
and will therefore be omitted from the following.

III. RENORMALIZABILITY

D =nL, —2I+0,
L =I —V+1,

(3.1)

(3.2)

A simple power-counting argument establishes that
the Lagrangian (2.2) is indeed renormalizable even
without x self-couplings. The scalar appears only in
three-point vertices and then only linearly.

The superficial degree of divergence of a diagram is
given by

TABLE III. Degree of divergence for vertices absent from Eq. (2.2).

Vertex
D&

2x o x o
—3

x(r(o'+P')
—1

xo.8'
—1

xW
0

x W
—2
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/

/

change in 6p due to the presence of the scalar, results
entirely from the change in the Higgs propagator (2.7) it-
self. The contribution of each term in it can be calculat-
ed separately and yields the obvious replacement

FIG. 1. Cancellation of contributions to the x 8' vertex.

lnm if
' ~a 1n m + + ( 1 —a ) 1nm

= lnm + cc lnP, (4.1)

where n L, I, V, and 0 are the number of dimensions,
loops, internal lines, vertices and derivatives in vertices,
respectively.

The Lagrangian can symbolically be written as

where

p=m + /m

6p is then found to be

m

(4.2)

/ =a, x(o. +g')+aqcr(o'+P )
tan 0„, ln, +a lnP

64
(

mw'
(4.3)

+a, cr W +a48crPW+a~c)$ W

+a6c) W +a, (cr'+(h')'

+a s W'(cr +P )+a, W (3.3)

With the usual relations among the above quantities and

V) ——E +2I +I (3.4)

which follows from the fact that each vertex a, contains
exactly one x line, D can be expressed as

D =4—Vq —V, —2I,. —I, —2E, —E —E~ —E~ .

(3.5)

IV. CORRECTIONS TO THE p PARAMETER

It can be shown that the Higgs-boson-mass dependent
contribution to 6p only arises from the diagram in Fig.
2; note that it is logarithmically divergent and contains
one Higgs propagator. The relative simplicity of both
6p and the new coupling allows one to bypass the com-
plications of the full SU(2) &&U(l) Lagrangian. At the
one-loop level, there are no diagrams involving the sca-
lar x in the W-propagator corrections; therefore, the

The degree of divergence D for the dimension-3 and -4
vertices that do not appear in (2.2) is listed in Table III;
note that, since x is a singlet, all gauge-invariant vertices
involving only x and W fields are of dimension 5 and
higher and are therefore not divergent. The two dia-
grams, which contribute to the x W vertex in leading or-
der, cancel (see Fig. 1). Note that D =0 for this vertex,
so that only gauge invariance ensures the renormalizabil-
ity of the Lagrangian (2.2) without this term. This is
similar to the cancellation of the fermion loops that con-
tribute to the A„vertex in QED. There is also a D =2
tadpole term in x which, however, has no physical
effects.

where 0„ is the weak mixing angle.
Note that in both limits X2~0 and fz ~ cc the loga-

rithmic term in (4.3) reduces to lni ~f &
as in the simple

model. If f q ~0, the logarithm becomes Ink, 3f ~

Since the Higgs self-coupling is k3 as well, this is again
the simple model. In the limits A.q~O and fz ~0 this is
evident as x then decouples in the Lagrangian (2.2); in
the limit fz ~ a it is a consequence of the decoupling
theorem. Equation (4. 1) is not valid when kz~O, since
then m ~0, which violates the assumption that both
scales are large compared to the W mass. For future
reference note

f 2

lim cz =
iL2/X] f i +f2

2 2
(4.4)

and

lim u=O .
2f,

(4.5)

lnm + cc 1nP —ink
~f &

2 I-
//v

1

[ lnx +y lny +(1—y) ln(1+y)), (4.6)l+y
2f."/f'1

lny
(4.7)

A graph of the deviation of (4.1) from 1niL,f, '
vs various

values of f2 /f, is shown in Fig. 3(a); it is evident that
the correction to 6p in the extended model can become
arbitrarily large as P~ m, but this only happens if
k2/A, , ~ ~, P is bounded for finite values of iL2/iL, [see
Fig. 3(b)]. This may be understood as follows: If P cc
for finite values of both it~/A. , and f2, the theory would
have a singularity, and if f&~ co, then x decouples. The
asymptotic behavior of the deviation from the standard
model is

[cf. Figs. 3(a) and 3(b)], where

x =k2/k],

y =f~'/f i'
(4.S)

(4.9)

FICy. 2. One-loop correction to 6p.
Note that the limit y~ ~ is independent of x; this is
also clear from Fig. 3(b). In the limit x ~ co the



36 STRONGLY INTERACTINACTING SINGLET-DOUBLE T HIGGS MODEL 3467

crossings
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+
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FIG. 5. One-looe- oop correction to the 8'8' vertex.

model with the
coming):

the replacement (4.1) (all momenta are in-
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lg E b ln

m
+a lnP

w

0
1oo 1O'

A.2/A. 1

102 x[(p q) o„—+(r —p) 6 +( — „~ . .1q r)„6 ] .— (5.1

2.0

l

(b)
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The eA'ective Lagran ian
tex,

ngian (2.14) yields, for the 3W ver-

ig e'ghee (5g + i Z gr +a )

1.5
x[(p —q)~5 +(r —p) 5 +(

Analogously to (5.1) one finds

(5.2)

g
1.0

+

o.s

0.0
100 1O'

g 2/f 2
102

FIG, 3. (a) Logarithmic diver eniver en . ogarit mic

Zw
m

12 16"2g' ln +a lnP
w

(5.3)

n3 can easily be calculated from ei

th o1 t t thth po
Igure 5 lists the

er Ices

rib o h WWP

g2 m
e.b. ln, +a lnP~w'

X p q —r)5 +q„qz —r, rz] . (5.4)

difterence grows as

o sca es are widely separated.

Comparison with (2.14) gives

m

24 16ir Mii
(5.5)

V. CORRECTIONS TO THE 3W VERTEX This can bee checked with the 8' vertex (Fig. 6)

Onl oy ne diagram and its ermp

1 't}1 '
ll d'

p p gator, the result can be co ie n arcan be copied from the standard

1 1 ig
ln

m
+a lnP (r„pq q„pr), —

(5.6)

from which'ch again follows (5.5).

FIG. 4. One-loo c- oop correction to the 38' vertex. FIG. 6. One-loo c~ . ne- oop correction to the 8' vertex.
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FIG. 7. Full single-Higgs-boson-exchange contribution to
the 4W vertex. FIG. 8. Typical cancellation of diagrams in the 4W vertex.

3
g3 w g wyq= 3g

Since the fermions are massless, they do not interact
with the Higgs fields at the tree level and, therefore, the
W-fermion coupling does not receive any one-loop
corrections. One can thus define 6g by requiring that
the total one-loop contribution to gw&& be zero. This
immediately gives

6g+ —,'Zw =o . (5.8)

As a consequence of Eq. (5.8) one finds from Eqs.
(5.1)—(5.3) again that a3 is given by Eq. (5.5). Note that
the Higgs-boson mass dependence of the correction to
the p parameter and the 3W vertex is the same. This
shows that in processes in which the 4W vertex does not
occur, one cannot distinguish between the model with an
additional singlet and the simple standard model. This
is not too surprising, since in both cases only diagrams
with one Higgs propagator are involved. To find a pro-

In processes involving external vector bosons only,
one cannot distinguish between a contribution of the
form Tr(F„[V",V ]) and a renormalization of g. In or-
der to understand the physical meaning of a3 one intro-
duces a coupling of the vector bosons to massless fer-
mions for the purpose of fixing the corrections to the
coupling constant g. This does not change any of the
one-loop corrections considered in this paper, since the
fermions are assumed to be massless. Because of gauge
invariance, W bosons couple to fermions at the tree level
with the same strength as to each other. Radiative
corrections change this equality.

In fact, a3 is a measure of this difference and one
has"

cess that might be sensitive to the presence of the extra
particle one, therefore, has to study the 4W vertex. It
provides the first example of multiple-Higgs-boson ex-
change.

VI. CORRECTIONS TO THE 4W VERTEX

It is convenient to classify the contributions to the 4W
vertex as follows. There are three groups of diagrams:
(i) those proportional to the tree-level vertex, in which
there are only the counterterms and terms proportional
to a3', (ii) the completely symmetric diagrams, i.e. , those
proportional to

(6~,6p. +6i p6, ,.+69.6,P)6.b6,d+ permutations;

(iii) those proportional to

6„,,6 6,b6,d + permutations .

u2 can be calculated directly, whereas o. ] contains the
diagrams in Fig. 7 which depend on the Higgs counter-
terms. Therefore, a discussion of the renormalization of
the Higgs sector precedes the evaluation of o. ]. Several
diagrams cancel, such as those in Fig. 8. The calcula-
tion can be checked by considering other processes; here
the 4P vertex was chosen because it is the only four-
point function that does not involve W particles and is
independent of whether or not the o. model is gauged.

A. Calculation of a2

It follows from Table II that a2 is determined by the
diagrams in groups (i) and (ii) alone; its structure does
not contain 6„,,6 6,&6,d. All counterterms have already
been determined; (5.3), (5.5), and (5.8) give

m
64~(counterterms) = —— g ln

6 &6~' 2 +a Inf3 (26„,,6z —6„~6,, —6„6,,~)6,b6,d+ permutations .
Mw

(6.1)

The box diagrams of Fig. 9 involve two Higgs propagators. A logarithmically divergent diagram which contains two
propagators of the form (2.7), gives rise to the following deviation from the standard model:

2

lnmH ~a lnm+ +2a(1 —a) lnm + In/3 +(1—a) lnm
m+ —m

= lnm [2m+ —a(m+ +m )] lnP .
m —m+

Figure 9 then gives
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2

54~(box graphs)= — g ln + [2m+ —a(m+ +m )] InP
16~ M m —m

X (5„5~ +5„~5 +5„5,~)5,b5,d + permutations . (6.3)

(6.4)

The structure of az is proportional to that combination of (i) and (ii) which does not contain 5„5 5,b5,d', therefore,

2
1 1 CX 2 2Q2= ln — [2m —a ( m + +m ) ] In13

12

This confirms that, in the Lagrangian (2.2), the correc-
tions to the a; depend on the number of Higgs propaga-
tors involved. To illustrate this further, note that one
can form a combination of the o.; which is independent
of the Higgs-boson mass in the standard model:

1 1 I+@
o,'2+ 2a3 ——

z
a(1 —a) lnP .

1 —P
(6.5)

1 1
cx2+ 2cx3 =— a(1 —a) InP . (6.6)

Notice that if m+ and m are of the same order of
magnitude, there is no essential difference with the stan-
dard model because (6.5) is bounded. However, if the
mass ratio P becomes large, the diiference with the stan-
dard model becomes large. This happens if k2 ~&A, An
example is provided by A, 2

——A.
&

. Then one finds
InP~ ln(m /M~ ) and the relation with the non-
linear model, which gives az+2a3 ——O(1), is lost.

In the limit P~ ca, (6.5) simplifies to

counterterms will be defined in an on-shell renormaliza-
tion scheme. The cross section for 8'-W scattering due
to one-Higgs-boson exchange in the extended model has
two maxima and reaches zero between them [cf. Eq.
(2.7)]. The maxima are at the poles of the Higgs propa-
gator, m+, and the zero is at k = —m0, where, at the
tree level,

mo =~zfz2 2 (6.8)

The counterterms are defined such that the parameters
in the Lagrangian describe the physical location of these
three points; i.e., the sum of all one-loop corrections to
the zero of the Higgs propagator, including the counter-
terms, vanishes at k = —m o and analogously for m + .
The parameters m + and m 0 are then the physical
masses and the physical location of the zero of the cross
section, respectively.

The quadratic part of the Lagrangian can be written

A graph of (6.5) and (6.6) for a= —,
' [this gives the max-

imum value for a(1 —a)] is shown in Fig. 10.
Consider now the 4P vertex in order to verify Eq. (6.4)

analogously to Eq. (5.6) in Sec. V. For this, the 4P ver-
tex has to be expanded to O(p ). In almost all cases for
every diagram with a Higgs propagator, there are also
the same diagrams with mixed and x propagators.
Therefore, the number of diagrams becomes very large,
but only the box diagrams of Fig. 11 contribute to a2,
they were calculated in the limit P~ ac and give

with

= —
—,'(x o. )b.

I I t I 1 I 1 f

!
I I I I I I I

——,'A.3f ) cr +A,zf) fzxo——,'A, zfz x.
(6.9)

m
+2= ln +a 1nP

12 16m. Mg
(6.7)

This agrees with (6.4).

B. Renormalization of the Higgs propagator

There are three propagators in the scalar part of the
Lagrangian of the extended model; the three associated

Eq. (6.1.6)
I I I I I I I I !

101
I I I I I I I !

102
m+/xn

FIG. 9. Box diagrams contributing to the 48 vertex. FIG. 10. Deviation of a&+2a3 from standard model.
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+ 4
t2

+ crossings

FIG. 11. Box diagrams contributing to az in the 4P vertex. (b)

k +X2f, —it+,f~

—X2f tf2 k +A.3f, '
(6.10)

FIG. 13. (a) Tadpole graphs. (b) Graph which cancels coun-
terterm.

The one-loop corrections to the inverse propagator, in-
cluding the counterterms, can be written as An(k') =X2f~ —3 (k ) . (6.15)

C
C B (6.1 1)

The counterterms in 3, B, and C are now defined
through

A. +( —m+') =0 (6.16)
The corresponding diagrams are shown in Fig. 12.

Fields with vacuum expectation values have two types
of mass counterterms: one is determined by the require-
ment that there be no tadpoles; the second type can still
be fixed. To describe the effects of tadpole graphs one
must allow for arbitrary shifts in the fields x and o. . An
arbitrary shift in the x and o. fields effectively adds to
the Lagrangian (2.2) a term

&„,p„,———c, [f,rr+ ,'(rr'+a'—)] c2f2x—(6.12)

The coefficients c
&

and cz are determined by the require-
ment that the vacuum expectation values of the x and o.

fields vanish. The coefficient cz appears only in the term
linear in x and has no physical consequence. The
coefficient c I, however, gives a contribution to the ~ and
o. propagators. c& is given by the tadpole graphs of Fig.
13(a): c i

——t
& + t 2. Notice that t

&
cancels the contribu-

tion from the graph of Fig. 13(b), so that only tz appears
among the diagrams of B(k ) in Fig. 12. The Ward
identity m =0 provides a check on the value of c].

The poles of the propagator are given by the zeros of
the eigenvalues of 6—X. The eigenvalues are

and

ko( —m o' ) =X2f~ (6.17)

3, B, and C contain the three unknowns (cf. Fig. 12)

——X ————X and
2

X

m+ 5+!k )=(1—a)[A ( —m+~) —3 (k )]

+a[B(—m+ ) B(k )]-
—2y[C( —m+ ) —C(k )],

m '5 —(k )=a[A( —m ) —A(k )]

+(1—a)[B(—m ) B(k )]—

(6.18)

and these are determined by Eqs. (6.16) and (6.17). One
can then solve (6.16) and (6.17) for the counterterms.
Writing

A+(k ) = k '+ m+ [1+6+(k )],
one finds

A, +(k )=k +m+ —(1 — )Aa(k )

aB(k )+2yC—(k ),
(k )=k +m —aA (k )

(6.13) and

+2y[C( —m ) —C(k')],

mo 5o(k )=3(—mo ) —A(k ) .

(6.19)

(6.20)

—(1 —a)B(k ) —2yC(k ) . (6.14)

Vn

The location of the zero of the Higgs propagator is
determined by

A, B, and C are here defined as 3, B, and C in Eq. (6.11)
but without the counterterms labeled with a 2 in Fig. 12.
That is, 3, B, and C are the corrections to the propaga-
tor (6.10) but without those counterterms that are fixed
in Eqs. (6.16) and (6.17).

As stated before, m + and m 0 are the physical mas-
sive parameters in the theory; consequently, one has, by
construction,

+2
5+( —m+') =So( —mo') =0, (6.21)

t2

FIG. 12. One-loop Higgs propagator corrections.

which is an alternative way of formulating the preceding
statement. The diagram in Fig. 7 can now be calculated
with the one-loop corrected Higgs propagator at k =0,
which is
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FIG. 14. (a) Deviation of 6+ from asymptote. (b) Deviation of 60 from as rn tote. c D
viation of 6H from asymptote.

evia ion o 0 rom asymptote. (c) Deviation of 6 from asymptote. (d) De-

A,o(0 )
Ir —cr(k =0)=

A, +(0)A. (0)
2m0

~
[1+5p(0)—5+(0)—5 (0)] .

rn+ m

(6.22)
I

I,b(p ) = f d "k
(k +m, )[(p+k) +mb ]

(6.23)

The calculation of the 5 requires the evaluation of the
integral

for arbitrary values of p . Since it is not practical to quote the anal tic ex r
graphically in Fi . 14. Onl in h

q e e ana ytic expressions for the 5, they are presented
ig. . n y in t e limit P~ oo, simple expressions result. They are

2

3 2 —ln —(1—a) lnP + —'A. 2 2(1 —a+a ) —2a
W 1 —e

+2a lna —(4 —2a+a ) ln(1 —a) +O(A.
&
lnP), (6.24)

2
+ 9

ln —2 ——,'Az(1 —a) 1nP+A2 —a 2 — — +(1—a)(1+3a)
8 2 v'3

—4vr+A, , A, ~ a (1 —a ) +0 (A, I lnP), (6.25)
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3 X,m
(0)=-

m —m

2

ln —2 + —„'A.z(1 —a)(3 —a)+0 (A.
&

ln/3) .
Mw'

(6.26)

The deviation of the exact expressions for the 5 s from the asymptotic formulas above is plotted in Figs. 14(a) —14(c).
In these graphs the terms involving the factor 2 —ln(m+ /M~ ), i.e., all diagrams containing n loops, have been om-
itted. This is because their contribution depends on a choice of scale which is independent of a and P. Also, terms of
0(M~ /m ) have been neglected as we are only interested in the limit of large Higgs-boson mass. Figure 7 then
becomes

m
54~(Fig. 7)= —,'g —ln

Mw
. ——'a 2 — ——'(4 —2a+ a ) ln( 1 —a )2 Q3 2

+cx 1—2 3++
1 —a

] /2
1 —u

arctan
3+a,

]/2

+a Ina —
—,'(1 —a)(3+ 17a)

1/2
2 a (1 —a) 5„„5~ 5,b5,d+0(k, lnP)+ permutations . (6.27)

2
3 m= 4g
—ln

2 +6H 6».6~~6,b6,d + permutations .
Mw

(6.28)

The deviation of 5H from its asymptote is shown in Fig. 14(d). It is obvious from Fig. 14 that Eqs. (6.24) —(6.27) are
correct to 0(+kqlk~); the difference grows only logarithmically. Note finally that no tadpoles nor, in fact, any
momentum-independent diagrams contribute to the expression (6.27) since they always cancel against the mass coun-
terterms, as is already evident from Eqs. (6.18) and (6.19).

C. Calculation of a&

The diagrams that give nonzero contributions to a~ are listed in Figs. 7 and 15. All others cancel similarly to those
in Figs. 1 and 8. The parameter a, is then found to be

1 1
a& —— ln

24 16~'
m

+ 35H + — [ 8m —6m + —a( m + +m ) ] ln/3
Mw' 2 m —m

(6.29)

where 5H has been defined in the previous paragraph. In the limit /3~ oo, a& simplifies to

1 1
a& —— ln

24 16~'
m

+35H —
—,'a(6+a) In/1

Mw
(6.30)

Analogously to (6.6) there are now two more combinations of the a; which vanish in the standard model, but are finite
in the extended model: namely,

1 1
a&+a3 —— [35H ——,'a(8+a) In/3]

24 16~
(6.31)

and

2Q) —Q2=
1 1

5H + — [4m —2m + —a ( m + +m ) ] In/3
1 a 2 2 2 2

4 16~2 2 m —m
(6.32)

As before, the leading term in a& is independent of the Higgs-boson mass if m+ =m
The structure constants o.; completely specify the eA'ective Lagrangian at one loop. The calculation of cz], therefore,

concludes the determination of L,z. There is no obvious analog of the tree-level relation g4w ——g3w since the one-
loop corrections to the 48 vertex are not proportional to the tree-level term; a new structure is generated. Even if
6g4w is defined as the correction to the tree-level vertex, its magnitude still depends on how the new structure is
chosen. If one takes the completely symmetric term as the new structure, as was done in Ref. 5, one finds, for the 48'
coupling,

W =g4~(25„5 —5„5 —5„5,, )5,b5,d+g„,„(5„,,5 +5„5,, +5„5„)5,~5,d+ permutations (6.33)
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FIG. 15. Remaining contribution to a~ in the 4W vertex.

with

g 4 g/ —g 3 gt + 3 g ( 2a t
—a z )

2 & 4

= —g (a&+a2) .

(6.34)

(6.35)

VII. CONCLUSION

We studied a model for the weak interactions in which
the standard-model Higgs particle interacts strongly
with a heavy singlet scalar. Because the masses of the
particles are proportional to their coupling constants,
the decoupling theorem does not apply and large effects
may be present in the vector-boson interactions. The
Higgs-boson-mass-dependent corrections to the effective
Lagrangian of the vector bosons were calculated. The
results were compared to the corrections in the standard
model with a heavy Higgs particle but without the sing-
let. As long as the masses of the Higgs particle and the
singlet are of the same order of magnitude, the effective
Lagrangian contains only terms growing logarithmically
with the Higgs-boson mass and the results are indepen-
dent of the presence of the singlet scalar. The logarith-
mic effects remain related to the logarithmic divergences
of the gauged nonlinear o. model.

If the ratio of the masses of the singlet and the Higgs
scalar grows with the Higgs self-coupling, new correc-
tions appear that are no longer related to the diver-

gences of the nonlinear o. model. These corrections are
only present if the Higgs-singlet coupling kz increases
more rapidly than the Higgs self-coupling A, (i.e.,
Aq/A&~ co as A~~ ao ), so that there is a hierarchy of
coupling strengths. In particular, there is a correction
to the 4W vertex growing as kz/XI =m+ /m . There-
fore, the model can describe massive vector bosons that
have strong interactions among themselves and it makes
a prediction of the structure of the strong-interaction
vertex. It is remarkable that the 4 W vertex can be
stronger than indicated by the standard model without
affecting the p parameter and the 3W vertex. The lead-
ing effects cannot be inferred any more from the under-
lying nonlinear ~ model, but depend on the details of the
scalar coupling. The assumed hierarchy of coupling
constants is rather unnatural, but this might not be too
much of a problem because the concept of naturalness is
not well defined in strongly interacting theories. Such a
hierarchy can perhaps arise in more complicated models
such as technicolor, where the scalars are composite ob-
jects. In any case, it is consistent with experimental data
which do not rule out strongly interacting W bosons.
The situation is reminiscent of the standard model with
a heavy top quark. Also, in this case, one has radiative
corrections growing quadratically with the mass because
the Yukawa coupling becomes strong. Large mass ratios
can also be achieved through a hierarchy of vacuum ex-
pectation values, but in this case the corrections do not
grow with the mass ratio.
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