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The spin-dependent potentials which determine the spin splittings of heavy-quark bound states
are evaluated by a lattice Monte Carlo calculation. One of the spin-orbit potentials is found to
have a long-range nonperturbative component, while all other potentials exhibit a short-ranged
perturbative behavior. Calculations at two different values of the bare coupling constant dernon-
strate scaling. The spin splittings that follow from the calculated potentials are evaluated. Good
agreement is found with experimental data provided that vacuum-polarization effects from qq pairs
at short distances are taken into account.

I. INTRODUCTION

One of the most important tests for any theory of par-
ticle interactions is its capability of predicting the
correct spectrum of bound-state masses. The calculation
of mass levels in quantum chromodynamics (QCD) in-
volves the long-range behavior of the interaction be-
tween quarks. Such a behavior cannot be determined by
the standard analytical tool, namely, a perturbative ex-
pansion; however, as has become dramatically apparent
during the last few years, it is one of the nonperturbative
features of the theory which can be reliably inferred
from lattice numerical calculations.

Two strategies can be followed for a numerical calcu-
lation of the spectrum. One can evaluate the Green's
functions for the products of operators creating and an-
nihilating composite states with definite quantum num-
bers. The masses are then determined from the rate of
decay of the Green's functions as the Euclidean time
separation increases. This method involves no restric-
tion on the relativistic features of the quark motion, but
can produce reliable results for the lowest masses of the
states with given quantum numbers at best. Alternative-
ly, assuming that the masses of the constituent quarks
are large and that their motion is essentially nonrelativis-
tic, one can describe the bound states in the framework
of a Schrodinger equation. The numerical calculations
are then used to determine the potential functions which
enter into the Schrodinger equation.

Fundamental to this second approach, which is the
one we shall be concerned with in this paper, is an ex-
pansion of the equation for the bound states of two
heavy quarks into powers in the inverse quark mass. '
The ensuing Hamiltonian to leading order contains a sin-
gle scalar potential V(r) V(r), which is the. QCD po-
tential between static sources with the color quantum

numbers of quark and antiquark, is one of the observ-
ables best determined by lat tice numerical calcula-
tions. At the next order, one encounters the poten-
tials V, —V~ which determine the spin-orbit and spin-
spin interactions between quarks. The behavior of the
spin potentials at small separations can be determined
from perturbation theory, but earlier assumptions that
such potentials only had a short-range component were
found to be inconsistent. One then faces again the non-
perturbative problem of determining the long-range
properties of the interaction.

The evaluation of the spin potentials V, —V4 is also
amenable to lattice numerical calculations. It is, howev-
er, a much more demanding calculation than the one re-
quired to compute the scalar potential V. If one wishes
to obtain phenomenologically relevant results one must
perform the calculation on a lattice of rather large ex-
tent and with high statistics. In this paper we wish to
report the results of one such calculation. Given the
complexity of the calculation, we developed a code
aimed at taking full advantage of the vectorized capabili-
ties of a modern supercomputer. The code was then ap-
plied to a calculation of the spin-dependent potentials on
a 16 &&32 lattice at two difFerent values of the SU(3) cou-
pling parameter: namely, P( =—6/g ) =6 and @=6.2. As
we shall see, the accuracy we achieve is sufficient to pro-
duce reliable information on the long-range behavior of
the potentials and, indeed, to evaluate the spin splittings
from first principles, with no intervening adjustable pa-
rameter.

Our calculation has been performed within the so-
called quenched approximation to QCD, by which
vacuum-polarization effects associated to the creation
and annihilation of quark-antiquark pairs are left out ~

In Ref. 10 it was found, however, that the modification
of the scalar potential at short distances from such po-
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larization effects is crucial for the possibility of repro-
ducing the spectrum of spin-averaged excitations of the
heavy-quark families. We shall find a similar situation
insofar as the spin splittings are concerned. One can ar-
gue that the required modifications, being at short dis-
tances, are under control of perturbation theory and can
be determined. Indeed, if we correct the quenched re-
sults along the lines of Ref. 10, the ensuing spin split-
tings turn out in good agreement with experimental
data.

Some of our results for the spin-dependent potentials
have been presented in Ref. 11. This paper expands our
previous communication with the results at a different
value of P, which permits a verification of scaling, and
with the explicit application to the evaluation of the spin
splittings. Earlier numerical results for the spin-

dependent potentials have been published in Refs.
12—15. The investigations of Refs. 12—15 dealt with

different gauge groups or could achieve more limited
statistics, so that no direct comparison with our results
is possible. However, Ref. 15 reaches for the pattern of

I

long-range behavior the same conclusions, which we
infer from our analysis. The plan of the paper is as fol-
lows. In Sec. II we review the form of the spin-
dependent terms in the Hamiltonian and the relation be-
tween the spin-dependent potentials and lattice observ-
ables. In Sec. III we present the results of our Monte
Carlo numerical calculation. In Sec. IV the lattice re-
sults are applied to the calculation of the spin splittings
for the states of the J/P and Y families. The role of the
vacuum-polarization effects is also discussed there. Fi-
nally, Sec. V presents a few words in conclusion.

II. THE SPIN-DEPENDENT POTENTIALS

The propagator for a quark-antiquark pair simplifies
under the assumption that the quarks are very massive.
It is indeed then possible to describe their motion by a
two-body Hamiltonian, whose terms are ordered in a
series expansion into inverse powers of the quark
mass. ' To order 1/m this Hamiltonian takes the form

S+ L++S -L
1 dV dV0= +V(r)+, — — +2

m 2m r dr dr
S+ L +S .L+ l dV2

- +
m r dr

, [(S+.r)(S r) ——', S+.S ]V,(r)+, S+ S, V4(r) .
1 1

(2.1)

The static potential V(r) and the spin-dependent potentials V, (r) are universal, the only dependence on the flavor of
the quarks coming through their mass. [It must be noticed, however, that the derivation of Eq. (2.1) involves taking
the limits of large mass and large time interval of propagation in a certain order, and that it has been argued in the
literature that nonuniversal terms, containing logarithms of mass ratios, should also be included. '

] The potentials in
Eq. (2.1) can be related to the expectation values of transport factors for the color gauge field with or without suitable
insertions of chromoelectric fields. Precisely, given a set of gauge-covariant observables O(x), such as the chro-
momagnetic or chromoelectric fields, B, (x) and E, ( ),xrespectively, for any closed path y going through the points x, ,

xz, . . . , we define

(O(x, )O(x, ) ) ~= TrP exp ig II),, A„( x)d x O(x, )O(x, ) (2.2)

W
V(r) = —lim

T~oo T
dVt(r, T)

e, ,r„=f dt f dt'(t' t )(g'B, (o, t)—E, (O, t') ) ~,
dr 0 0

dVp(r T) r y.

e~kr& ——f dt f dt'(t' —t)(g B;(O,t)E (r, t'))~,
dr 0 0

(r;r —
—,'5; )V, (r, T)+ —,'5, V4(r, T)= f dt f dt'(g B, (o, t)B (r, t')) ~,

0 0

(2.3)

V;(r, T)
V;(r) = lim-e (1&

( ) representing the ordinary quantum-mechanical expectation value in Euclidean space-time.
According to this definition (O(x~ )O(x, ) ) is the quantum-mechanical expectation value of the path-ordered

product of the observables and transport factors for the path y. In particular, (1)~ is the expectation value of the
transport factor itself, or Wilson loop factor. In the following we shall consider only rectangular paths with a space-
like basis vector r corresponding to the separation between the quark and the antiquark, and the height in the tem-
poral direction, corresponding to an interval of propagation T of the qq pair.

The potentials V(r) and V;(r) are then given by the equations'
ln(1&

The short-distance behavior of all the potentials can
be determined analytically, through perturbative con-
siderations, but any long-distance component must be of
nonperturbative origin. The potentials can however be

determined numerically, throughout the range of phe-
nomenologically relevant separations, by a Monte Carlo
calculation of the quantum averages appearing in Eq.
(2.3). The numerical results at short distances can only
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serve to check the validity of the calculational technique,
but, at large distances, they provide genuine new infor-
mation.

The numerical calculation proceeds through the for-
mulation of QCD on a lattice. The dynamical variables
are color-SU(3) matrices defined over the oriented links
of a hypercubical lattice, with lattice spacing a. The
quantum-mechanical expectation values are given by

(0 ) =Z ' IQdU"0( U)exp[ —SG( U)),
X,P

Z = f QdU„"exp[ —SG(U)],
X) )(L

(2.4)

where SG is the gauge action, for which we assume
Wilson's form:

SG( U) =P g —,
' Re Tr(1 —U""),

X,@ &V

U~'=U. U&'..U. „.U~.
(2.5)

P in Eq. (2.5) is the coupling parameter, related by
P=6/g to the bare coupling constant g. The continu-
um limit is achieved by letting a and g approach 0 simul-
taneously, according to a well-defined renormalization
relation.

The transport factors in Eq. (2.2) are given, over the
lattice, by products of the gauge dynamical variables U".
The chromoelectric and chromomagnetic fields can be
rendered by diff'erent lattice expressions, which, while all
equivalent in the continuum limit, can produce different
results at small lattice separations. In our calculation we
have transcribed E; and 8, over the lattice as follows.
We denote by U"„(s,s'=+1) the product of the link
variables U" along a closed square path, originating at x,
with further vertices in x +spa, x +spa +s'va, and
x +s 'va, and oriented counterclockwise in the plane.
For example,

U" =U" U U" U' .x —+ x —pa x —pa x —pa+ va x (2.6)

FP" ~ gFP~, (2.8)

FP~ —' gFP~ (2.9)

In order to evaluate the correlations between B and E
fields and the correlations between the components of B
in the direction of separation r, we made the
identifications

ga 8;(x)~F ", ijk in cyclical order,

ga 2E; (x ) =.F ' .
(2.10)

We used, however,

~ y(F~J Fv, ) (2. 1 1)

to reproduce the correlation between components BI, or-

In terms of these variables we define lat tice-field
strengths

(2.7)

thogonal to the direction of separation (assumed to be
along the i axis). The motivation for this last definition
is in the fact that the components of B orthogonal to r
are defined over spacelike plaquettes with one side in the
r direction. At short distances the correlations are quite
sensitive to the separation between the centers of the
plaquettes in the r direction and, by the prescription of
Eq. (2.11), we include in the averaging only plaquettes
with the correct r separation. The definitions of Eqs.
(2.10) and (2.11) were tested in Ref. 12, in connection to
a study of the spin-dependent potentials for the lattice
formulation of QED, and found to produce good agree-
ment with perturbative results even at small separations.

III. THE MONTE CARLO CALCULATIOIV

We formulated the theory on a 16 &32 lattice with
periodic boundary conditions, the long axis being
identified with the time axis, and performed two simula-
tions at the values P=6 and f3=6.2 of the coupling pa-
rameter. Each simulation consisted of 6000 iterations
from a cold start, by the Metropolis algorithm, with 10
hits per link and an acceptance of approximatively 50%.
2000 iterations were used for equilibrium and the observ-
ables were then measured every 20 iterations for the bal-
ance of the simulations. We thus collected measure-
ments over 200 lattice configurations at each value of /3,
including, in the averages, the factors corresponding to
all loops in the lattice with a spacelike basis ranging
from 0 to 7a, and the other side in the temporal direc-
tion, with extent 4a & T & 12a.

We used the variance-reduction technique of Ref. 17
for the calculation of the transport factors associated
with the bases of the loops. Namely, the values of the
U" variables entering into the basis factors were re-
placed by their averages over 100 hits of the Metropolis
algorithm, performed while keeping all the neighboring
variables fixed. To maintain the required statistical in-
dependence, we summed over the chromomagnetic-field
insertions, in the integrals of Eq. (2.3), only for a &t,
t'& T —a. All chromoelectric insertions can be includ-
ed, because the r components of the electric fields never
appear in the expression for the potentials. We associat-
ed to the chromoelectric fields temporal coordinates
equal to those of the centers of the timelike plaquettes
over which they are defined [an alternative definition of
E(x, t) would make the use of averages of plaquette vari-
ables consecutive in the temporal direction].

We performed the entire computation on the Cyber
205 computer at the Eastern Cybernet Center in Rock-
ville, Maryland. It is a 2 pipe, 8 Megaword machine,
over which our code runs, mostly in 32 bit arithmetic, at
an average speed slightly higher than 100 Mflops. The
calculation is, however, very demanding and, in spite of
the impressive computational resources, would not have
been feasible if we had not taken advantage of the free-
dom of performing gauge transformations and of some
additional time-saving procedures, in order to simplify
the computation. We have presented the details of our
code in a separate publication. Let us only mention
here briefly its most relevant features.
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Computationally, the main simplification comes from
performing the calculation of the loop factors in the
temporal gauge. This eliminates the need of evaluating
the transport factors, of varying length, associated with
the temporal sides of the loops, and gives the additional
advantage that the insertions corresponding to the chro-
moelectric and chromomagnetic fields can be accumulat-
ed while they are computed, so that the loops need to be
closed once only for the whole integral. More
specifically, in a first step of the code for the measure-
ment of the observables, the gauge configuration is
transformed to the temporal gauge U = 1. The periodi-
city in time is not maintained after the gauge transfor-
mation, and therefore we extended the lattice in time by
the amount necessary to contain all measurable loops.
In a second step, the code calculates averages of the
transport factors associated with the bases of the loops,
so as to implement the variance-reduction technique
mentioned above. In the process, the field strengths are
also calculated (the corresponding plaquette variables
must be evaluated anyway for the Metropolis pro-
cedure), and field strengths and basis transport factors
are temporarily stored in large memory. Finally, in a
double loop over the time coordinate and time extent of
the loops, the appropriate combinations of the field
strengths are summed and combined with the basis
transport factors so as to reproduce the required in-

teg rais.
The results of our numerical simulation are repro-

duced in Tables I and II and in Figs. 1 —4. The tables
give the measured values for the Wilson loop factors and
for the integrals of the loop factors with insertions V;

[cf. Eq. (2.3)]. They also reproduce the parameters of
the linear fits to the time dependence of the ratios
V;/(T(1) ii ). The coefficients of the linear terms give
the spin-dependent potentials in lattice units [cf. Eq.
(2.3)J. The tables give the results of fits to the depen-
dence on time to the whole range of measured values
4a —12a. We have also done fits in the range Sa —12a
and evaluated the potentials from the differences of the
values of the above ratios at successive values of T,
finding consistent results. We estimated the errors by re-
peating the calculation of all dynamical variables over
subsamples of measurements, obtained by leaving out
sets of approximatively 20 consecutive measurements.
The errors are then evaluated from the variance of the
results from the subsamples, following a procedure very
similar to the one adopted in Ref. 18. These are the er-
rors quoted in the tables. We also calculated the errors
from the quadratic Auctuations of the individual mea-
surements, finding generally consistent results. The
discrepancies (5 30%) between the two different deter-
minations of the errors can be explained by the overesti-
mate or underestimate of various correlations in the
second procedure.

Our results show very clearly that the potential V1 has
a long-range component, consistent with a constant be-
havior of dVi(r)/dr for larger r. Vz —V4, instead, all ap-
pear to decrease rather rapidly with increasing r, exhibit-
ing short-range behavior only. In particular, V4, which
is ~5 (r) to lowest order in perturbation theory, differs

from 0 only in the immediate neighborhood of the ori-
gin.

For small r, one would expect the spin-dependent po-
tentials to agree with the predictions from perturbation
theory. This gives, to leading order,

4 cx
V=O V= ——

1 ~ 2 3 r
&s

V3 ——4
r 3

(3.1)
V4=2V V2= — a, 5 (r), a, =g, '/4ir,

1a=—
A

51/121
8vr'P 4~'P

33
"P

33
(3.2)

with lattice scale parameter A=4. 14 MeV. This value
for A is taken from the calculation of the string tension
in quenched QCD of Refs. 3 and 4, which was done on a
lattice having the same extent as the present one and
with comparable statistics. Indeed, our results for the
Wilson loop factors are consistent with those of Ref. 3.

An additional renormalization factor f is required to
convert the bare, lattice values of the spin-dependent po-
tentials to renormalized ones. In Ref. 11 we determined
such a factor on the basis of the following, heuristic con-
sideration. The spin-dependent potentials always appear
in the Hamiltonian divided by m, m being the quark
mass. Since the energy levels must be a renormal-
ization-group invariant, it is plausible that the lattice
values for the potentials should be divided by the bare,
Lagrangian mass squared m0. Equivalently, they should

g, being the renormalized QCD coupling constant. On
the other hand, one also expects the lattice results to be
affected by the discreteness of the lattice when r equals
only a few lattice spacings. To estimate the magnitude
of errors induced by the lattice for small separations, we
calculated correction factors based on the following idea.
The correlations among the field strengths in Eq. (2.3)
are given by averages which involve several plaquettes.
The central points of these plaquettes are not all at sepa-
ration r; rather they are at separations r' which may
substantially differ from r at a small lattice distance.
The correction factors are then obtained by rescaling the
contributions of the plaquettes by the factors [either
(r/r') or (r/r') ] which would follow from first-order
perturbation theory. In Figs. 2 —4 we plot the potentials
before [symbols (P= 6) and A (/3= 6.2)] and after
[symbols 0 (P=6) and X (/3=6. 2)] multiplication by the
correction factors. Our correction factors are not meant
to account for the lattice artifacts in any rigorous way,
but only to give an indication of the likely magnitude of
lattice distortions. We see that while these are rather
pronounced for r =a, they become almost negligible at
r =2a already. We will comment on the fits in Figs. 1 —4
in the next section.

The representation of V;(r) in physical units, as in
Figs. 1 —4, involves multiplication by suitable renormal-
ization factors. We converted the dimensionless lattice
results into physical units by multiplying, first, potentials
and separations by the appropriate power of a(P), for
which we assumed the asymptotic scaling formula
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TABLE I. Results of the Monte Carlo calculation at P=6. All quantities are in units of 10 times the appropriate power of a.
The table contains the values of the Wilson loop factors W, of the Wilson loop factors with insertions (loop values) dVi/dr,
d V2/dr, V3, V4, integrated over t and t' but not divided by W, and of the coefficients of the linear term in the linear fits from t =4a
and to 12a to the ratios between loop values and Wilson loop factors. For computational reasons, the weights in the fits are based
on the errors from the quadratic fluctuations, rather than those in the table. This does not introduce any significant bias, since the
two determinations of the errors produce compatible results.

10

12

1 000 000
+0

1 000 000
+Q

1 000 000
+0

1 000 000
+Q

1 000 000
+Q

1 000 000
+Q

1 000 000
+0

1 000 000
+0

1 000 000
+p

167 087
+52

110670
+46

73 326
+42

48 580
+34

32 178
+35

21 316
+33

14 127
+33

9 373
+36

6 201
+32

55 002
+64

30 124
+40

16 529
+34

9 070
+32

5 009
+31

2 752
+21

1 510
+23
824
+19
445
+22

Wilson loop factors

22 534
+37

11 048
+33

5 448
+22

2 685
+23

1 331
+22
663
+17
344
+20
183

+11
105

+12

9 946
+24

4486
+21

2 040
+21
950
+14
428
+9
181

+10
72
+9
29

+10
35

+14

4 500
+13

1 888
+10
783
+8
329
+5
157

+11
60
+7
18

+8
8

+4
6

+9

2 054
+9

806
+9

326
+5
139
+7
61
+8
25
+5

4
+6
—6
+5
—5

+5

936
+8

336
+8
128
+6
44
+6
13

+4
7

+5
0

+5
—2
+4
—7
+3

10

12

0
+Q

0
+Q

0
+Q

0
+Q

0
+0

0
+p

0
+Q

0
+0

0
+0

—4 134
+11

—3 997
+16

—3 468
+15

—2 851
+28

—2 269
+39

—1 703
+67

—1 243
+84

—825
+96

—538
+132

Spin

—1 422
+6

—1 136
+13

—826
+14

—556
+27

—349
+21

—219
+34

—122
+56
—94
+50
—37
+59

potential Vi.

—553
+7

—399
+12

—275
+13

—171
+23
—95
+25

19
+28
—4

+42
—22
+66
—50
+43

loop values

—245
+4

—167
+6

—104
+8

—50
+9

—33
+23
—3

+21
—26
+18

10
+37

32
+51

—109
+3

—63
+5

—27
+11
—30
+12
—32
+19
—10
+15

3
+19
—42
+20
—49
+39

—49
+2

—23
+4

—21
+5

—15
+9

—31
+9

—17
+14

5

+18
—30
+26
—58
+24

—19
+2
—7
+2

—16
+5
—3
+8
17

+7
16

+11
—20
+11

24
+18

6
+16

0
+0

0
+Q

0
+0

0
+0

0
+p

0
+p

39 964
+23

37 056
+45

31 648
+69

25 694
+78

20 134
+ 104

15 428
+120

Spin

3 098
+23

2 577
+25

1 929
+31

1 357
+45
826

+37
530
+63

potential V2..

346
+8

268
+13
185

+25
88

+29
37

+36
24

+54

loop values

51
+7
24
+9

2
+18

8
+22

12
+18
—17
+37

9
+7

0
+11

11
+12

19
+21

27
+36

43
+30

—2
+3
—1

+7
6

+9
10

+14
21

+13
1

+24

+4
—3
+6
—7

+15
—7

+17
—7

+16
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TABLE I. (Continued).

Spin potential V&. loop values

0
+0

0
+0

0
+Q

11 572
+142
8 490
+163
6 077
+166

333
+89
206

+130
175

+153

4
+82

22
+ 104

62
+122

—4
+46

35
+47
140

+36

46
+38

15
+52
—9

+55

36
+29
—18
+36
—6

+48

4
+20

1

+35
1

+33

Spin potential V3. loop values

—438 462
+25

—593 523
+46

—748 616
+71

—903 710
+97

—1 058 795
+123

—1 213 872
+153

—1 368 954
+185

—1 524038
+218

—1 679 113
+252

25 504
+20

23 318
+25

19 715
+30

15 904
+37

12 440
+44

9 475
+47

7 099
+38

5 256
+37

3 808
+52

2283
+19

1 813
+20

1 3Q3
+21
898
+27
587

+22
391
+31
266
+34
180

+33
117

+35
Spin

50
+5
30
+5
20

+12
16

+12
32
+9
43

+12
34

+19
14

+23
—1

+25

306
+5

242
+10
174

+13
117

+11
85

+14
57

+20
50

+29
3

+25
—2

+26
potential V4. loop values

14
-+4

11
+6
—7
+7

4
+8
15

+12
10

+11
—17
+16
—10

+7
—8

+16

2
+4

2
+5
—3
+4
21
+5
24
+9
19

+10
11

+12
—5

+14
—14
+10

—1

+3
6

+5
6

+6
4

+5
7

+8
4

+8
—10
+10
—1

+10
3

+13

2 017 901
+199

2 734 875
+287

3 452 136
+373

4 169 426
+461

4 886 726
+556

5 603 994
+668

6 321 246
+783

7038 517
+902

7 755 736
+ 1006

—16 196
+43

—13 479
+52

—10 714
+61

—8 292
+74

—6 320
+80

—4 742
+71

—3 546
+58

—2 649
+69

—1 982
+77

—1116
+27

—761
+34

—463
+36

—311
+45

—215
+37

—165
+26

—169
+41

—176
+54

—170
+66

—88
+12
—66
+22
—36
+22
—28
+25
—23
+38

30
+37
—6

+52
—30
+44

3
+30

—6
+10
—7
+7

8
+11

28
+19

42
+25

2
+36

0
+30

7
+34

25
+31

6
+7

6
+16
—3

+17
—32
+17
—11
+21

8
+14

5
+17
—7

+33
—34
+28

8
+7
17

+8
22

+12
5

+10
—28
+13

4
+18

44
+24

11
+20

5
+15

2
+3
—4
+6
—8
+8
—5
+7

3
+17

4
+11

2
+12
—10
+11
—39
+15

Spin potential V~ from linear fit

0
+Q

0
+Q

—11 304
+76

—11 145
+290

—11 879
+352

—11 856
+473

—12 041
+944

—13 146
+2 510

—12 471
+882

—11 286
+3 669

—9 272
+2 702

—11 086
+10 168

—10 335
+4 650

—46 177
+10822

—10937
+4 779

—78 760
+37 439

Spin potential V2 from linear fit

0
+0

0
+Q

96 099
+364

96 874
+773

29 680
+672

30 713
+1 893

8 597
+1 398

6 810
+4228

—207
+2 761
—1 564
+8 132

1 853
+3 373
21 846

+19 180

4 379
+8 346
27 727

+27 183

—11 235
+10776
—30 139
+59 842
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TABLE I. (Continued).

—155 082
+27

—155 086
+28

717 222
+ 100

717 274
+105

58 199
+195

58 381
+321

—24 832
+362

—24 956
+537

Spin

18 843
+428

19 302
+865
Spin

—4 807
+885

—5 118
+1436

potential V3 from

9 156
+923

11 196
+1 878

potential V4 from
—1 818
+1 641
—1 147
+3 924

linear fit

2 866
+1 216

8 199
+4 223

linear fit

2 010
+1 678
11 829

+5 477

481
+3 774
—5 083
+8 100

—3 257
+6981

—21 890
+16699

5 786
+5 926
33 832

+12 936

18 279
+10504

14 790
+29 572

20 717
+13981

31 537
+26 051

—19 713
+16584
—36 474
+49 167

V+ V) —V2 ——0 . (3.3)

The pattern of long-range behavior, namely, dV&/
dr~const, dVz/dr~0, which emerges from the lattice
calculation, is consistent with such relation. Even more
remarkable is that, as observed in Ref. 11, by rescaling
V& according to the factor inferred from the calculation

be rescaled by a factor f =(m lmo ), to be used in the
Schrodinger equation in conjunction with a renormalized
quark mass m. A calculation of hadronic masses in the
quenched approximation, done on a lattice equal in size
to the present one and with P=6 (Ref. 19), suggests
m /mo -2, for quarks giving origin to mesons compara-
ble in mass to the lowest excitations of the J/tt family.
This gives then a value =4 for f, which is the one we
used to express V& —V4 in physical units in Ref. 11.

Here we would like however to use a slightly different
determination of the renormalization factor f. On the
basis of Lorentz invariance, Gromes has derived a rela-
tion among the potentials in Eq. (2.1): namely,

of masses, the magnitude of dV&/dr is also brought in
rather good agreement with Gromes's relation. There-
fore, it appears to us that a better determination of the
rescaling factor can be obtained by assuming the validity
of Gromes's relation for asymptotic separations. A fit of
dV, /dr to the string tension, o. =420 MeV, gives then
f =4.6, which is the factor we finally used to obtain the
physical values of V& —V4. We notice that such value for
f is consistent, giving the various sources of error, with
the value formerly derived from the calculation of
masses. The prescription based on Eq. (3.3) is, however,
computationally more precise.

The verification of scaling, in the comparison of the
data at p=6 and at p=6. 2, is not affected by the value
assumed for f (f can change only through an anomalous
dimension factor, whose variation between the two
values of p is negligible). From Figs. 1 —4 we see that
scaling is rather well satisfied. The most relevant
verification of scaling comes from V, , which, contrary to
Vz —V4, is not dominated by a scale-invariant perturba-

0.0
I

0.2
I

0.4
l- (fm)

0.6 0.8

FICs. 1. Values for the spin potential dVl/dr, in physical
units, after the renormalization discussed in the text. The
squares and triangles represent the results obtained at f3=6 and
6.2, respectively.

0.2 0.8
I )

0.0 0.4 06
~ (fm)

FIG. 2. Same as in Fig. 1, but for the spin potential dVz/dr.
The additional symbols represent the results at @=6 (circles)
and )33=6.2 (crosses), after a correction for lattice artifacts at
small distances. The lines represent the lowest-order perturba-
tive behavior with a, =0.244 (solid line) and a, =0. 175 (broken
line).
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TABLE II. Same as in Table I, but for P=6.2.

Wilson loop factors

10

1 000 000
+0

1 000 000
+0

1 000 000
+Q

1 000 000
+0

1 000 000
+00

1 000 000
+Q

1 000 000
+p

1 000 000
+Q

1 000 000
+Q

191 276
+68

131 110
+61

89 902
+59

61 663
+56

42 290
+52

29 009
+53

19 896
+56

13 639
+52

9 356
+43

71 574
+66

41 812
+56

24 484
+44

14 355
+39

8 431
+33

4 949
+29

2 897
+23

1 692
+29

1 010
+3Q

32 989
+75

17 720
+50

9 552
+36

5 170
+30

2811
+23

1 535
+14
836
+16
443
+12
242
+14

16 305
+47

8 258
+33

4 216
+24

2 155
+20

1 117
+17
577
+7
311
+10
159

+13
80

+16

8 261
+35

3 987
+25

1 954
+18
957
+17
483
+13
259
+g
126
+g
69

+10
46
+8

4210
+24

1 935
+17
908
+12
436
+12
206
+8

102
+7
43
+7
11

+9
7

+8

2 162
+13
949
+9

430
+g
197
+9
92
+6
42
+4
20
+5
12

+6
12

+7

10

12

0
+Q

0
+p

0
+Q

0
+Q

0
+p

0
+0

0
+0

0
+p

0
+Q

—3 849
+10

—3 802
+13

—3 399
+26

—2 879
+38

—2 401
+56

—1 925
+57

—1 537
+53

—1 166
+93

—742
+ 102

Spin
—1 420

+6
—1 182

+14
—913

+16
—652

+30
—430

+42
—307

+43
—210

+60
—164

+58
—85
+57

potential V~..
—596

+4
—460

+9
—330

+16
—221

+30
—116

+40
—69
+44
—21
+32

26
+53

29
+72

loop values
—284

+3
—209

+9
—149

+10
—85
+17
—34
+21
—30
+38

12
+46

75
+35
—26
+31

—131
+3

—87
+6

—55
+10
—35
+11
—15
+12
—7

+25
10

+43
5

+27
50

+48

—65
+2

—49
+6

—32
+7

—24
+13
—22
+11

1

+20
—15
+19

20
+23

24
+23

—33
+2

—23
+3

—15
+4
—1

+7
—10

+9
—6

+14
14

+14
—20
+13
—11
+31

10

12

0
+Q

0
+0

0
+Q

0
+Q

0
+0

0
+0

0
+Q

0
+p

0
+Q

45 811
+23

44 036
+30

38 985
+44

32 801
+55

26 643
+66

21 058
+78

16318
+ 100

12 479
+121
9 464
+172

Spin
3 974
+10

3 547
+12

2 851
+20

2 149
+13

1 551
+47
992
+52
613

+89
432

+156
264

+173

potential V2..
489
+8

446
+11
340

+20
252
+41

141
+47
140

+53
157

+52
55

+82
141

+ 104

loop values

68
+6
55

+12
55

+18
62

+34
84

+36
63

+32
54

+34
79

+74
177

+79

11
+3

0
+11

8
+17

21
+22
—14
+34
—28
+38

14
+38
—10
+35
—51
+47

4
+5

5
+7
—1

+12
—5

+11
6

+20
11

+18
48

+44
—11
+36
—30
+48

—1

+3
9

+5
—7
+8
—7

+10
—21
+14

0
+19
—59
+19

21
+17

11
+30
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TABLE II. {Continued).

36

Spin potential V3. loop values

10

12

—431 242
+20

—584 224
+32

—737 246
+44

—890 275
+60

—1 043 310
+75

—1 196354
+91

—1 349 391
+107

—1 502 422
+124

—1 655 458
+141

30 112
+10

28 476
+15

24 927
+23

20 814
+26

16 821
+3S

13 268
+51

10 307
+66

7 908
+77

5 980
+74

3 078
+13

2 594
+16

1 948
+15

1 387
+18
945
+22
654
+39
445
+4S
315

+43
217
+40

Spin potential

455
+10
373
+9

273
+14
181

+14
111

+1S
52

+26
—17
+22
—20
+31
—9

+35
V4..

82
+8
71

+10
62

+13
79

+16
73

+13
61

+14
43

+23
40

+19
61

+19
loop values

14
+4
19

+6
6

+9
10

+10
23
+9

5

+6
9

+13
13

+22
0

+24

4
+3

9
+4

2
+9

7
+7
17

+10
7

+10
—11
+11
—9
+8
24

+12

0
+3

2
+4

0
+3

4
+5
—2
+6
—1

+10
—5

+10
4

+14
—16
+12

10

12

1 964 378
+209

2 664 774
+315

3 365 516
+41S

4 066 305
+519

4 767 109
+611

5 467 867
+715

6 168 608
+832

6 869 344
+948

7 570 094
+1 064

0
+0

0
+0

—20 676
+28

—17 927
+36

—14 823
+52

—11 918
+66

—9 382
+75

—7 324
+88

—5 654
+94

—4 350
+96

—3 313
93

—8 899
+125

—8 977
+287

—1 757
+22

—1 298
+24

—830
+26

—498
+24

—264
+35

—193
+52

—168
+63

—137
+79

—183
76

Spin

—8 521
+286

—8 632
+708

—196
+16

—138
+25
—74
+32
—17
+33

19
+38

60
+25

69
+38

81
+56

63
69

potential V~ from

—7 928
+710

—7 762
+2 061

—10
+14
—6

+13
0

+20
—35
+12
—85
+21
—63
+26
—47
+17
—22
+30
—54

18

linear fit

—8 026
+979

—7 651
+3 077

1

+5
—6

+10
—17

+9
—7

+15
—2

+18
—3

+18
—20
+26
—6

+22
—3
26

—5 941
+1 591
—5 821
+5 297

—12
+7
—5
+6
—2

+12
—5

+13
—6

+12
—4

+18
33

+18
56

+26
18
20

—10 168
+2 990

—12281
+8 564

1

+6
9

+5
—3
+8
—2
+9

—13
+10

0
+13
—12
+19
—40
+18
—19

20

—8 942
+3 087
—6981
+9 446

Spin potential V& from linear fit

0
+0

0
+0

96 943
+138

97 807
+336

30056 10 511
+207 +939

31 784 11 117
+749 +2 485

4 212
+1 424
10 615

+4 341

—191
+3 155

4 091
+7 971

2 341
+3 407
—2 019

+10990

3 559
+5 617

—28 079
+17691

Spin potential V3 from linear fit

—153 022
+15

—153 033
16

700 702
+ 106

700 767
+108

59 959
+169

60 156
332

—28 578
+342

=28 650
+616

18 395 7 044
+273 +513

17 368 6335
712 1 061

Spin potential V4 from
—4 698 —347

+546 +1 512
—2 107 3 275
+1 030 +3 008

5 814
+1 285
12 746

3 269
linear fit

—2088
+1 611
—8 680
+3 492

2 664
+1 561

2 718
3 395

—2 689
1 651

—5 133
+4 840

3 369
+3 347

4 077
7 159

193
4 178

—1 045
11 886

77
+2 168
—5 862

9 584

2 117
6918

—19 806
18 361
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O
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FIG. 3. Same as in Fig. 2, but for the spin potential V3.
The line represents the lowest-order perturbative behavior with
a, =0.175.

tive contribution. The scaling of V& in physical units
implies a substantial variation of its lattice values from
/3=6 to P=6.2 and, with the exception of the lowest lat-
tice separation where lattice artifacts may be particularly
important, appears very well satisfied.

IV. APPLICATION TO
HEAVY-QUARK SPECTROSCOPY

The numerical results, obtained for a few discrete
values of the separation between quarks, must be inter-
polated by a smooth function in order to be used for the
actual calculation of energy levels. The limited accuracy

FIG. 5. The static potential V0, as determined from the re-
sults of Refs. 3 and 4, and its best fit in terms of a linear plus
Coulomb potential, using the square of the 1P bb wave func-
tion as weight for the fit.

of the numerical results does not warrant fits with
several free parameters and the observed pattern of
short- and long-range behavior suggests then that
dV& /dr (cf. Fig. 1) be fit by a constant function and all
other potentials by the lowest-order perturbative expres-
sions of Eq. (3.1).

As a consequence of our renormalization procedure,
the constant in the fit of dV&/dr is the string tension it-
self. Gromes's relation would also imply that the strong
coupling constant a, in the fit of d V2/dr is the same one

O

O

O
O

O—

O
O

O

0.0 0.2 0.4
r (fm)

t

0.6 0.8

FIG. 4. Same as in Figs. 2 and 3, but for the spin potential
V4.

0.0
I

0.2
l

0.4
r (fm)

0.6 0.8

FIG. 6. Same as in Fig. 5, but for the static potential
modified by the short-distance screening eFects from three
Aavors of light quarks (cf. Ref. 10).
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TABLE III. Values obtained for the spin-splittings in correspondence to diA'erent parameters used in the representation of the

potentials V, —V4. In columns 1, 3, and 6, all short-distance behaviors are parametrized in terms of common strong coupling con-

stant a, . In columns 2 and 4, a different a, [az, ] is used to parametrize Vz [and V4, cf. Eq. (3.1)]. All splittings are in MeV. r is

the ratio of the splittings of the 3P states.

a, =0.175
a, =0.175
a2, ——0.244 u, =0.351

a, =0.351
u2, ——0.489 Experiment Vl ———v /2

1(1S1)-1(1SO)
1(3P2)-1(3P1)
1(3P1)-1(3PO)

r (1P)
1(1P1)-1(3P1. )

2( 1S1)-2(1SO)

49.1

—0.9
16.7

—0.054
—2.4
33.6

68.4
10.3
22.4
0.460
3.2

46.9

98.3
22.0
45.5
0.485
7.2

67.2

136.9
44.5

56.7
0.785

18.4
93.8

115.9 (2.0)
45.6 (0.6)
95.8 (1.2)

0.476 (0.010)

92.0 (5.0)

98.3
45.9
57.3
0.801

19.1
67.2

1(1S1)-1(1SO)
1(3P2)-1(3P1)
1(3P 1 )-1(3PO)

r(1P)
1.(1P1)-1(3P1)
1(3D 3 )-1(3D2)
1(3D2)-1(3D1)
1( 1D2)-1(3D2)
2(1S1)-2(1SO)
2(3P2)-2(3P 1)
2(3P 1)-2(3PO)

r (2P)
2( 1P 1 )-2(3P 1)
3( 1S1)-3(1SO)

35.3
7.1

12.0
0.592
2.6

—0.1

1.5
—0.3
18.6
6.1

10.0
0.610
2.3

14.7

49.1

12.7
14.8
0.858
5.4
1.9
2.8
0.3

25.9
10.6
12.2
0.869
4.6

20.5

70.5
18.4
26.3
0.700
7.3
4.3
6.0
0.8

37.1

15.3
22.4
0.683
6.1

29.4

98.2
29.6
31.9
0.928

12.9
8.2
8.8
2. 1

51.8
24.4
26. 1

0.935
10.6
41.0

21.4 (0.9)
32. 1 (1.5)

0.667 (0.049)

12.9 (1.1)
25.2 (2.4)

0.512 (0.073)

70.5
22.7
28.5
0.779

9.4
8.7
9.1

2.2
37.1

18.5
23. 1

0.801
7.8

29.4

that would appear in a Coulomb plus linear fit to the
scalar potential V. Figure 5 illustrates the result of such
a fit. The solid line represents there the scalar potential,
as derived in Refs. 3 and 4, whereas the dashed line
gives the fit

4 a
V(r) = —— +err+const with a, =0. 175, (4.1)

3 r

which is obtained by minimizing the square deviation,
weighted by the square of the wave function of the 1PY
states. If we insert the value thus derived for e, in the
perturbative formulas of Eq. (3.1), we obtain for Vz and
Vz the values represented by the dashed-dotted curve in
Fig. 2 and by the solid curve in Fig. 3. The resulting fit
to V&, considering also that the first two points at one
unit of lattice separation are most likely affected by lat-
tice distortions, can be deemed satisfactory. The
dashed-dotted curve in Fig. 2 appears, however, to un-
derestimate the numerical values. A fit to the points at
all separations (and corrected for lattice artifacts as dis-
cussed in Sec. III) produces the value a, =0.244 and the
solid curve in Fig. 2. (The points at an intermediate sep-
aration remain slightly above the fit. This could be seen
as an indication of additional contributions beyond the

lowest-order perturbative formula, but, at the present
stage of accuracy of the numerical results, we do not feel
that pursing such an interpretation would be warranted. )

The expression obtained for the spin-dependent poten-
tials from the fits discussed above can be used to calcu-
late the spin-splittings in the J/g and Y families. The
results of the calculation, based on first-order perturba-
tion theory for the spin-dependent terms in the Hamil-
tonian and on the unperturbed wave functions obtained
from the scalar potential after correction for quark
vacuum-polarization effects, ' are reproduced in Table
III. The first column gives the splittings calculated as-
suming a common value, a, =0.175, in all short-range
potentials V2 —V4. The second column uses the higher
value a2, ——0.244 for V2 [and V4, according to Eq. (3.1)],
determined from the fit to the Monte Carlo data. (We
do not reproduce in the table the errors that would fol-
low from the statistical errors in the Monte Carlo calcu-
lation because they would be underestimates of the real
margins of error determined by various systematic
effects, which are less quantifiable but which our discus-
sion makes, we believe, apparent. )

The experimental results are reproduced in the fifth
column. We see that, irrespective of the choice for the
coupling constant in Vz, the theoretical values are too
small to account for the experimentally observed spin
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splittings and, also, that the pattern of splittings is in
qualitative disagreement with experiment, as evidenced
by the ratios r=(m3~ —m3~ )/(m3~ —m3~ ). Howev-

er, we recall that the calculation has been performed in
the quenched approximation and that quark vacuum-
polarization effects can modify substantially the inter-
quark potential at small separations. Indeed it has been
found in Ref. 10 that the quenched results for the scalar
potential V produce split tings among spin-averaged
masses which are approximatively 30% smaller than the
observed ones. At short distances it is, however, possi-
ble to correct for quark vacuum-polarization effects in a
perturbative manner, and then one finds excellent agree-
ment between the computed spin-averaged masses and
the experimental ones.

In order to perform a similar correction also to the
spin-dependent potentials, we proceeded as follows. We
performed the same linear plus Coulomb fit, as discussed
above, to the scalar potential after correction for quark
vacuum-polarization effects. The result, illustrated in
Fig. 6, gives a strong coupling constant u, =0.351. We
see that the net effect of the quark polarization effects on
the scalar potential at short distances is to rescale, by a
factor very close to 2, the effective strong coupling con-
stant (this agrees with the notion that the quarks screen
the color charge: screening implies a reduction of the
running coupling constant at large distances and an in-
crease at short distances). Consistently with Gromes's
relation, we assume that a similar rescaling should apply
to the short-distance component of the spin-dependent
potentials as well. The splittings calculated with the re-
scaled values are reproduced in the third and fourth
columns of Table III. We see that the theoretical values
are now in much better agreement with the experimen-
tally observed ones, especially those in the third column
which correspond to a common value for the coupling
constant in the Coulombic part of all potentials. The
spin splittings of the 1P level of the J/P family only
turn out too small in comparison with the experimental
results, although the experimental and theoretical values
for the r ratios are in agreement. This discrepancy is not
peculiar to the present analysis, and could be due either
to relativistic effects or to the fact that the correspond-
ing wave function extends to a domain where critical
cancellations between the contributions of V~ and V2
take place, enhancing the consequences of any error in
the determination of the potentials.

The last column in Table III gives the splittings ob-
tained by reducing Vi by a factor of 2. Since V, V&, and
V2 enter in the determination of the splittings in the
combination —,

' V+ Vi+ V2, taking dVi /dr = —
—,'~ is tan-

tamount to assuming the absence of any long-range com-
ponent in the interaction determining the splittings. We
see that, as has been noticed earlier in the literature, this
worsens the agreement between theoretical and experi-
mental values for the ratios of the P-wave splittings.
Since in first-order perturbation theory the splittings are
linear functions of the potentials, the five columns with
the theoretical values in Table III are linearly dependent

and the splittings resulting from our unperturbed wave
functions for any choice of a„a2„and d Vi /dr can easi-
ly be reconstructed from the table.

V. CONCLUSIONS

Our analysis shows that it is possible to derive from
first principles, at least within the quenched approxima-
tion, the spin-dependent potentials which determine the
spin splittings within the heavy-quark families with an
accuracy which permits meaningful quantitative compar-
isons between theory and experiment. The pattern of
long- and short-range behavior of the various potentials
is unambiguously fixed by the lattice calculation. The
quenched approximation is seen to determine potentials
which are too small in their short-distance component to
account for the observed spin splittings, but, if one
corrects for quark vacuum-polarization effects, one ob-
tains results in good quantitative agreement with experi-
ment, with the exception of the 1P states of the J/g
family, where the predicted splittings are still too small.
The correction for quark vacuum-polarization effects ad-
mittedly depends on adopting a definite prescription and
does not follow directly from a simulation of the ap-
propriate quantum fluctuations; still, like the rest of the
computation and contrary to phenomenological ap-
proaches, it does not involve any adjustable parameter.

It would be clearly desirable to achieve a direct
verification of the effects of quark vacuum polarization
at short distances as well as a more accurate determina-
tion of the spin-dependent potentials at intermediate dis-
tances, one that could pinpoint any real deviation from
the short-distance perturbative behavior. This would be
only marginally possible with the computers available to-
day, but will be certainly feasible with the new super-
computers, soon to be introduced. Then the parameters
entering into the expansion of the Hamiltonian for large
quark masses will be completely under control and it
will be possible to evaluate the relevance of other effects,
such as relativistic corrections or correction for neigh-
boring open flavor channels, which, at some level, also
affect the dynamics of heavy-quark bound states.
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