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Bander, Silverman, Klima, and Maor recently developed a relativistic formalism for quark-
antiquark bound states. It was used to calculate the spectra and leptonic decay widths of char-
monium, b-quarkonium, D mesons, F mesons, 8 mesons, and mesons composed of light quarks.
The form of the interactions between quark and antiquark was highly motivated by QCD. We ex-
tend this relativistic treatment to a relativistic formulation of radiative decays that automatically
takes into account the effects of recoil, uses boosted final-state meson wave functions, includes rel-
ativistic bound-state wave functions involving relativistic mixtures of terms, and treats the valence
quarks as four-component spinors. We then calculate radiative transition rates of the charmonium
and b-quarkonium systems in this formalism and find that transitions which can be compared with
experiment are in good agreement. Predictions are also made for decays that are not yet mea-
sured.

I. INTRODUCTION

In this paper, we extend a relativistic formalism'
with QCD interactions for quark-antiquark systems pre-
viously used for spectra' to calculate relativistically the
radiative decay rate of such systems. By carrying out
the calculation relativistically, we automatically include
full recoil effects with boosted final states, relativistic
wave functions that treat both the quark and antiquark
as four-component spinors to give relativistic currents,
and a natural mixing of L-S terms for a given J and pari-
ty. We then apply this formalism to calculate the radia-
tive decay rates of charmonium and b-quarkonium and
find them in agreement with experiment.

It has been known that the relativistic effects are im-
portant in finding the radiative decay rates of the char-
monium system. ' The various relativistic approxima-
tions of the order U /c were found inadequate, especial-
ly in calculating the magnetic dipole and hindered mag-
netic transitions. The relativistic treatment by a Dirac-
type equation gives results that go beyond the U /c ex-
pansion and avoids some of the difficulties of the singu-
larities of the perturbative terms.

The relativistic treatment of the bound-state equation
for the quark-antiquark bound state that was used in
Ref. 1 was based on taking the wave function or matrix
element of the quark field equation between the bound
state and the antiquark state and expanding in inter-
mediate states with the quantum numbers of the anti-
quark. The sum over all intermediate states is approxi-
mated with only one on-mass-shell antiquark. The re-
sulting equation, after partial-wave analysis, is a single-
variable integral equation in the one off-shell quark
momentum. It is simpler than the Bethe-Salpeter equa-
tion, which is a double-variable integral equation in both
off-mass-shell momenta. This type of equation was for-
mulated by Cxreenberg in the N-quantum approximation

and applied to the deuteron problem by Gross. It has
been applied to the problem of deeply bound composites
by Bander, Chiu, Shaw, and Silverman. It was applied
to higher-order calculations in QED by Lepage.

This bound-state equation reduces to the Breit-Fermi
equation to first order in v /c; it is gauge invariant for
the on-mass-shell antiquark and, in the limit that the an-
tiquark is much heavier than the quark, it reduces to the
Dirac equation for the quark field.

The quark-antiquark interaction that was used in this
equation and the range of parameters considered were
highly motivated by QCD. At short distances it has the
form of an asymptotically free vector-gluon exchange
and its only parameter is a«D or the effective A~ for
the bound state. At large distances the interaction is an
effective scalar exchange which is the linear confining
potential, and its slope is found by the fit to the char-
monium energy levels. The effect of multiquark states in
decreasing the valence-quark —antiquark channel at high
momentum is taken into account with a cutoff. In the
nonrelativistic limit the interactions reduce to the
Richardson" potential.

Starting with the electromagnetic-current matrix ele-
ment of the quark current, we formulate the radiative
decay rate in terms of the eigenfunctions of the relativis-
tic bound-state equation. This includes the effect of the
recoil of the final mesonic state, and to calculate this we
boosted the rest-frame eigenfunctions of the final meson.
This boost also rotates the spin states of the antiquark in
the final state. We do the calculations numerically
without resorting to a long-wavelength limit as in the di-
pole approximation.

The relativistic formulation automatically includes
recoil or, equivalently, a sum over all multipoles, which
is important in the strongly coupled QCD quarkonium.

ip .r
The e ~ photon wave function, when evaluated for
quarkonium transitions, gives a phase p r=rp /(pr), e
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where (p ) is the average quark momentum. For the
larger energy transitions, where p~ =600 MeV, and for
charmonium (p ) —500 MeV or b-quarkonium

(p~ ) —1000 MeV, the phase cannot be ignored, which is
to say the multipole expansion is not useful (the dipole
approximation, of course, even drops the exponential).
Keeping the entire exponential leads to a momentum 6
function with pf+pz ——p; and shows up as evaluating
the final state with a boosted momentum (pf ———pr if

p; =0) and is called the recoil effect. This is in contrast
with atomic spectra where p /(p, ) =a or for nuclear
spectra where prR =(few MeV)/(200 MeV) and the di-
pole or lowest-order multipole is appropriate.

To study the effect of the inclusion of asymptotic free-
dom in the interaction on the decay rates, we calculated
the decay rates with a single vector-gluon exchange that
did not include the asymptotic-freedom effects. This in-
teraction in the nonrelativistic limit reduces to the Cor-
nell potential. '

We have applied this formalism to the charmonium
and b-quarkonium systems and found good agreement
with experimental decay rates. Our calculations both
with the asymptotic freedom included or left out of the
vector interaction agree with the measured decay rates
of the b-quarkonium system within the experimental er-
rors. For the charmonium system, our calculated values
for the electric-dipole-moment transitions are generally
in good agreement with experiment. For the allowed
and hindered magnetic dipole transitions, our calcula-
tions also agree with experiment. We observe that the
decay rates calculated with the interaction that includes
the effects of asymptotic freedom are, in general, closer
to the experimental values than those calculated without
it. Comparison with a nonrelativistic calculation of the
decay rates with the potentials that arise from the nonre-
lativistic limit of the relativistic interactions clearly
shows that the relativistic effects are very important in
the radiative decay rates, especially for the case of char-
monium.

We also include calculations of radiative transitions to
and from the 'P, level and from the D2 and 'Dz levels
in charmonium. While the D-wave levels are above
the DD threshold, the DD system has J
=0++,1,2++,3, . . . , while charmonium D
waves have J: D3 (3 ), D& (2 ), D& (1 ), 'D2
(2 +). This leaves the D2 and 'Dz unable to decay to
DD and possibly narrow enough to see their electromag-
netic decays, especially if created as resonances in pre-
cision low-energy pp colliders.

In Sec. II the bound-state equation and the interac-
tions and cutoffs are brieAy described. In Sec. III, the
relativistic formalism for the radiative decay rate is
developed; and in Sec. IV we present the results of our
calculation of the radiative decay rates of the charmoni-
um and b-quarkonium systems. In Appendix A we show
that the quark and antiquark currents give the same
contributions. In Appendix B we find the formula to
Lorentz transform the moving final-state meson wave
function to one at rest. In Appendix C we show that the
electromagnetic current is conserved for the valence-
quark formulation. In Appendix D we take the nonrela-

tivistic limit of our formalism to establish the connection
with the electric and magnetic dipoles and the hindered
magnetic nonrelativistic results. In Appendix E, we re-
late the matrix form of our equations to the spin wave-
function form.

II. FORMULATION OF RELATIVISTIC EQUATIONS
FOR QUARK-ANTIQUARK SYSTEMS

In this section we are going to give a brief summary of
the bound-state equation and interactions. They were
reported and explained in detail in Ref. 1.

A. Derivation of the bound-state equation

The relativistic bound-state equation that is used is
based on the equation for a quark field 1f(x) of mass m,
coupled to a gauge potential A„and an effective QCD
scalar potential S(x):

(i8 m, —)tf(x) = [gA (x)+S(x)]Q(x) . (2.1)

= g (p, o
(
gA (x)+S(x)

)
n ) && (n

)
@(x)

)

B ) .

(2.2)

A complete set of states has been inserted into the
right-hand side of Eq. (2.2). Up to this point, the equa-
tions are exact. The approximation that is going to be
used is to take only the lowest order or single antiquark
states in the sum. The justification for this valence-
quark approximation is that, at least at large distances,
the valence-quark model appears to work quite well; in
this model the mesons are made up of only a quark and
an antiquark. The effect of the inclusion of multiquark
states or states composed of quarks and gluons will be
discussed at the end of this section. In this approxima-
tion, Eq. (2.2) becomes an integral equation for the ma-
trix elements of the quark field between the bound state
and an antiquark state, with eigenvalues being the
bound-state mass. By definition,

' 1/2

0 (p, o)=(2~)' (p, o
~ P (0) IB ), (2.3)

m2

where cg(B)=(B +M )'~, co=(p +m2 )', mz is the
antiquark mass and M is the unknown bound-state mass.
The interactions for this problem are obtained from the
matrix element of the fields or their source currents in
the antiquark states. The bound-state equation becomes'

The bound-state equation is obtained from the matrix
element of Eq. (2. 1) between the meson bound state of
four-momentum B and an antiquark state of mass mz,
momentum p, and spin o. :

(iP m, )(p,—o.
~

tf(x)
~

B )
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P Ul2
(8 —p' —m, )p(p, o)= g f, [ Vv((p —p')'}y„'p(p', o')v(p', o. ')y"v (p, o )

(22r) cu'

+ V, ((p' —p) }%'(p',o. ')v(p', o. ')v(p, o. )],
where co'=(p' +m2 )' . The details of the interactions V1 ((p —p') ) and Vs((p —p') ) will be discussed later.

(2.4)

B. Angular-momentum decomposition

Equation (2.4) is solved by first performing an angular-momentum decomposition. A 4X4-component wave func-
tion N(p) arises naturally from the above equation:

C &(p)= g 1P (p, o)v&(p, o) . (2.5)

The wave equation for 4 is
3 I

(g —p —m, )& (p) =f, [V1 ((p —p')'}y„4(p')y" + Vs((p —p')'}+(p')](p —m, ) . (2.6)
(22r) 2''

As in the case of the Dirac equation, the large and small components are introduced; in this situation we have four
2 & 2 submatrices:

G„(p) Gd (p )

F„(p) Fd(p)
(2.7)

G and F denote the upper and lower components for the quark, and u and d the upper and lower components for the
antiquark. In the nonrelativistic limit, Gd is the large component, G„and Fd are of order v/c, and F„ is of order
(v/c) . Since the antiquark is on the mass shell, its wave function satisfies the free Dirac equation, as can be seen
from Eq. (2.5):

4(p)(gf +m 2 ) =0 .

This results in the following relations, leaving Gd and Fd as independent:

(2.8)

Gg(p) = —Gd(p), F„(p)= —Fd(p)
Ct) +Ul 2 CO +I 2

(2.9)

The equations for the two independent components are
'(M —~—m, )G d(p)+o" pF, (p)

(M —co+ m, )Fd (p)+ o"pGd (p)

(~'+m2)(Gd+o. F„o) G„o p op—Fd+ip (—o XFd. o)
V1 ((p —p') }

(2n. ) 2'' (~'+ m, )(Fd +o"G„o ) F„o p o—pG„.+—1p.(o X Gd o )

—(co+m2)Gd —G„cr p
+ Vs((p —p')')

(co+m2)Fd+F„o p
(2. 10)

where the components of 4 on the right-hand side are evaluated at p'. It is easier to perform the angular-momentum
decomposition by going to the direct-product state-vector representation for the quark and antiquark spins instead of
the present matrix form where rows are the quark 2 represents and columns are the antiquark 2 representation. We
do this by performing a o. rotation on the antiquark 2 representation, taking it to the 2 representation. We then
define

I G„&,
I

Gd &,
I
F„&, and

I Fd & to be the direct-product state-vector representations which are isomorphic to
G cTy Gd 0 y F cTy and Fd o. , respectively. A11 Pauli matrices on the left act on the quark spin and are now cal led
o. &. Using o.„urer = —a. z- for Pauli matrices on the right brings them to the left where they are called oz and act on
the antiquark spin. We now obtain

(M —co —m1)
I Gd &+rr1 p I

F
(M —~+m1} I Fd &+o1 p I Gd &

d p
(2m. ) 2''

+m2)( I Gd & o 1 o21F. &)+o2 p I
G. &

—[p o1+ip.(o1Xo2)]
I
Fd &

Vv((p —p')'} (~ +m2)( I Fd &
—o1 o2

I
G. &)+o2'P

I
F„&—[P.cr, +ip (o1Xo2)].

I
Gd &

cT2 pI G„&—.(co+m2)
I Gd &

(2.11)
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It can be shown that the nonrelativistic limit of these equations gives an equation for
I

Gd &, which to order U /c
coincides with the Darwin-Breit Hamiltonian. Also, in the limit m2 »m„ it reduces to the Dirac equation for the
quark in the potential of a static antiquark. In order to do the angular-momentum decomposition, the states

I
Gd &

and
I
Fd &, of total angular momentum j and z-component m. , are expanded in terms of the allowed L and S, which

are not good quantum numbers relativistically:

I
Gd(p)&=g —(p)

I J mJ L j 1 S 1&+g+(p)
I j mj L j+1 S 1&

IFd(p)&=fo(p) I j mj L='j $=0&+fi(p)
I J m& L =j $=1&

for the natural-parity states [P =( —1) ]; and for the unnatural-parity states [P =( —1)J+'] we have

I Gd(p) & =go(p) I j m L =j S =O&+gi(p)
Ij mj'L =j,S =1&,

I
Fd(p)&=f (p) I j,m;L =j —1,S=1&+f+(p)

I j,m;L =j+1,S=1& .

(2.12)

(2.13)

The angular-momentum decomposition of the interac-
tions are

g+ (p) g+ (p)
T(p) f ( ):Idp E(pip )

f)(p) f )(p)

(2.15)

and the matrices T(p) and K (p,p') are given in Ref. 1.

C. Relativistic interactions and the cutofF

The QCD interaction between quark and antiquark
used in the integral equation consists of a vector-gluon
exchange with asymptotic-freedom effects included that
dominate at short distances and an effective scalar ex-
change which is the linear confining potential that dom-
inates at large distances. This form of the interaction is
motivated by QCD and the requirements of a relativistic
equation.

The asymptotic-freedom-corrected vector-gluon ex-
change is taken for three flavors as

2 = 16m
Vv(q )= —4m.

27 —q ln(1 —q /AR ) (q 2)2

(2.16)

Vvs((p —p')')= X Pi(p. p')Vvs(p p'»
I =0 4~

(2.14)

&2

&v s(p p')=, , Vv s(p»p') .
(2~) 2''

Substituting these in Eq. (2.11), and using the space and
spin properties of Eqs. (2.12) and (2.13), the integral
equation for the angular-momentum components of the
wave functions reduces to the form of a single integral
over the magnitude of the momentum

In the nonrelativistic limit, i.e., q ~—q, it reduces
to the Richardson potential with its linear in r part sub-
tracted out. The linear potential is restored as a scalar
potential. The relativistic form of the linear part is not
known. However, since it is important only at smaller

q, where the retardation in converting to —q is only a
v /c correction, the difference does not have a
significant effect on the calculation. We take the non-
relativistic form of the scalar exchange to be a linear po-
tential with the slope K&, which for numerical purposes
levels off at a distance bo or at a height ~ho.

Vs(r) =irsr8(bo r)+lesbo~(r bo) . — (2.17)

bo is chosen large enough so that there are no numerical
differences between this potential and an infinitely rising
one. We take the Fourier transform of this and then
change

I q I
~

I

—q I, and include co/m with the 5
function for Lorentz invariance to obtain our relativis-
tic scalar interaction

Vs(x, q =( —q )'~ )=(2') lesbo 5 (q)
m

4m.
+ 4 Ks[boq sin(boq)4

+2 cos(boq) 2] . —

(2.18)

In practice we chose the value of this ramp height to be
3 GeV, so that the results are insensitive to it.

In the sum over states in Eq. (2.2), only the antiquark
states were considered. To include the effect of other
quantum states in damping out the two-particle inter-
mediate states at high momentum, we introduce a large-
momentum cutoff function, S,(Ao,p'), which multiplies
the kernel in the integral equation. This function ap-
proaches zero for p »A, and approaches 1 for A,~ ~.
The form of the cutoff function that we use is

where the pole in the logarithmic term has been dis-
placed to the unphysical point q =A~, following
Richardson, " and the 1/(q ) linear part has been re-
moved from the vector part since it would lead to a
Klein paradox.

$,(Ao,p) = A,
with A, =Ao&1+e .

2+p 2

Expanding in p /A, , this becomes
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—1

S,(A, ,p) = 1+(1+e)
A,

' —1

l+ P
Ao

d3
M„=2eQ g J (82m'

~

P(0)
~ p, cr )

(2m )

1/2
so that the predominant corrections to the wave function
at low momentum is independent of e.

For e=O we find that the leptonic decay width is
slowly divergent, but is regulated for e & 0. In our calcu-
lations, we have used both e=O.OI, which is essentially
the S, (A,p) case in Ref. 1, and e=0.25. We saw very
little change between these two cases in the spectra and
radiative decay widths.

III. DERIVATION OF THE RADIATIVE DECAY RATE

Having found the eigenvalues and eigenfunctions of
the bound-state equation [Eq. (2.15)], such as fo(p),
f&(p), g+(p), and g (p) for the natural-parity states, we
can now find an expression for the radiative decay rate
in terms of these functions. The decay rate is defined as

(2~)4
~

5 (82 8, +k)—r=
2j+1 2k

Xy„+s (p, cr ) (3.4)

A82=8~=(M2, 0) . (3.5)

We then define U(A) to be the corresponding transfor-
mation on the Hilbert space of the mesonic states'

(82,m'
~

U '(A) = (82,m
'~, (3.6)

co(82 )

where the factor of 2 arises from equal contributions of
both quark and antiquark electromagnetic currents due
to the correlated motion in the two-body bound state
(see Appendix A).

Now we want to take into consideration the e6'ect of
the recoil of the final meson state. We take the direction
of the photon momentum k to be the z direction, and
the final meson momentum is B2———k. Let A be the
Lorentz transformation that brings the moving final
meson to rest, i.e.,

X g ~M„e"(k,A. )
~

d kd 82 (3.1)

where j is the total angular momentum of the initial
meson, m and m ' are the z components of the angular
momentum of the initial and final mesons, A, is the pho-
ton polarization, and k and 82 are the decay photon and
the final meson momenta, respectively.

The electromagnetic-current matrix element M„ is

M„=eg(82m, ' ~:$(0)y„1((0):
~
B,m ), (3.2)

where k =(M& —M2 )/2M& is the energy of the pho-
ton, with M, and M2 the masses of the initial and final
mesons, respectively. To evaluate the current we insert
a complete set of antiquark states in Eq. (3.2) and use
the definition (2.3) to obtain

where eg is the electric charge of the constituent quark
and (82, m,

'
~

and
~
B, , m ) are the final and initial

bound states. To find the decay rate we have to in-
tegrate over the photon momentum. Instead, we use the
physical argument that after we have summed over the
initial and final polarizations of the mesons, the decay
probability does not depend on the direction of the pho-
ton, and, hence, the integration over the direction of the
photon momentum gives 4m. The decay rate becomes

4~k 2~ ' M '+M '

g D ~

~
Ap, o'),

o

(3.7)

where Ap is the antiquark momentum boosted by the
Lorentz transformation A, which is a boost with the ve-
locity of the final meson in the negative z direction. The
Lorentz transformations S(A) for the spinor fields

U(A)g(x)U '(A)=1((Ax)S(A) (3.8)

is given by'

S(A)=
a orb

(3.9)

where
1/2

co(82 )+M2
2M2

Mi+M2

2+M, M2
(3.10)

a82b=, = —bz, b =
co(8~ )+M~

Mi —M2

2+M, M~

Inserting U '(A)U(A) on both sides of f(0) in Eq.
(3.4) and using Eqs. (3.6)—(3.8), we obtain

where m
' does not change since the boost is along the z

axis.
We use the Lorentz transformation of the antiquark

states'
1/2

mM2co(Ap)
M„=2eg g fd p 82, m' P(0)S(A)y„+D .(A) Ap, cr' %s (p, o )

(2m. ) 2M, coco(82)

1/2

(3.11)

D (A) is found (Appendix B) to be

D (A) = —v(p, o )S '(A)v (Ap, o') . (3.12)



3406 FARHAD DAGHIGHIAN AND DENNIS SILVERMAN 36

By using Eq. (3.12) in Eq. (3.11), we find

d3M„=, g j [qi, (AP, cr')S(A)y„+ e (P, cr)]v(P, cr )S '(A)v (AP, a. ') .
(2') [M,cv(B2)]', 2' 2, ' " ' i

Performing the cr, o sums using the definition of (@s ) &
in Eq. (2.5), we find

1 j
d3M„=, J Tr[yo&'~, (Ap)yP'(A)y„&s (p)S '(A)] .

(27r) [M, cv(B2 )]' P Bl mj

(3.13)

(3.14)

The matrix 4s (p) is the eigenfunction matrix of the
1 j

bound-state equation for the initial meson state, and
, (Ap) is the eigenfunction for the final meson state

2 1
with the boosted momentum.

Three points should be mentioned.
(a) It can be shown that the above current (3.14) is

conserved (Appendix C).
(b) The decay rate is more general than the lowest-

order multipole (i.e. , electric dipole or magnetic dipole)
or static limit approximation. Equation (3.14) also takes
into account the effect of the recoil of the final meson
and the relativistic mixing of terms.

(c) It can be shown that in the nonrelativistic limit
(3.14) coincides exactly with the nonrelativistic formula
for radiative decay (Appendix D).

To find the decay rate we substitute the relation for
the current, Eq. (3.14), into the formula for the decay
rate, Eq. (3.3). It can be shown that the decay rate for
emitting a positive-helicity photon is equal to that for
emitting a negative-helicity photon when summed over
spins; therefore, the total decay rate would be twice that
for a negative-helicity photon:

where C and D are defined as

C =aK K'+b K' —K.b —a,
D=aKXK''+b XK' —KXb,

—p, —Ap
) K )

co+ m 2
'

cv( Ap ) +m 2

(3.18)

(3.19)

and

0 + =0 )+1CT2

Fd(p) and Gd(p) refer to the initial meson, and F d (Ap)
and G d (Ap) refer to the final meson.It

We then transform the 2 X 2 matrices G and F to their
direct-product state representation, see Appendix E, and
take the simplified notation

I

G ):— Gd(p) ) and

I

F )—:Fd(p) ) for the initial states and
I

G') and F')
for the final states. This gives, for the trace

Tr[J].e+ ——&((F'
I W+ I

G )+(G'
I

W+
I
F) )

b( ( G'
I

W+—I
G ) + ( F'

I
W+ F ) ),

(3.20)

16ag k

2j+1
j' j

d3
'2

Tr J .e*, 3.15
(2vr) 2cvM,

where

1
W+ —— —(C —iD.o.2)cr, + .v'2 (3.21)

where J is defined as

J=yo@',(Ap)yP'(A)yC&~ (p)S '(A)

and (3.16)

Noting that the vector b is in the negative z direction
and bXrc, bX+', and a'Xa are in the P direction (that of
the azimuthal angle P of the antiquark momentum), we
obtain

e+ —— —(e +ie~), e = —(e„ie ) . —
+

D= —(e e'~+e+e '~), (3.22)

Before taking the trace we substitute for 4s (p) and
1 j

, (Ap) using Eq. (2.7), and we use Eq. (2.9) to substi-
B2m.

tute for F„and G„ in terms of Fd and Gd. Noting that
e* = —e+, we have

Tr[J].e+ —— —Tr[(C+iD. cr )(F ~ cr+Gd+G d cr+F„)]v'2

b—Tr[(C+iD.o )V'2

S+ ———,'(a, ++a2+ r)» T+ ———,'(a, + a2+ ), —

S = —,'(cr, +o.
2 ), T = —,'(cr, —o.

~ ),
(3.23)

W+ can be written in terms of S+, S, T+, and T

W = — C +—[(S —T )e'~1 D
v'2 2

where D is the magnitude of D. Defining spin-related
operators as

X(G d cr+Gg+F d cr+Fd )], —(S+ —T+ )e '~] (S+ + T+ ) .

(3.24)
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In Eq. (3.20) we substitute for the eigenstates
~

F ),
~

G ), ( G' ~, and (F'
~

their angular-momentum forms,
Eqs. (2.12) or Eqs. (2.13), depending on whether it is a
natural- or unnatural-parity eigenstate.

We begin with the case of a radiative decay from a
natural-parity meson state to another natural-parity

meson, and later we will show how this can be general-
ized. Each total angular-momentum eigenstate in Eq.
(3.20) is expanded in terms of spin and orbital-angular-
momentum basis states. Then Eq. (2.12) becomes (see
Appendix E)

~

G)=g (p)
m, +m =m.

S J

C,.',' . , Y, ', (0,$)
~

S = 1,m, )+g (p)
m&+m =m.

S

C '+& .
&

Y +&(0,$)
~

S = l, m, ) (3.25)

~F)=f0(p)Y, '(0, $) ~S=0,0)+f)(p)
m&+m =m.

S J

C, ,'m';i, m Y, '(0 0) lS=1 m. & (3.26)

where the C's are Clebsch-Gordan coefficients. For the angular-momentum decomposition of the final states, we have

(G'] =
I I I

mi +m =m.
S

I IQ I I Q

[g'+(Ap)C. , ',', Y +, (0~,$)(S'= l, m,
'

~

+g' (Ap)C. , ',', Y'', (0~,$)(S'= l, m,
'

~
],j +1,mi, 1, m 1,m, l, m&

(3.27)

where the spherical harmonics are complex conjugated
and depend on the direction of the boosted antiquark
momentum Ap, and f' and g' are the eigenfunctions of
the final-state meson evaluated at the magnitude of the
boosted antiquark momentum

~
Ap

~

. There is a similar
equation for ( F'

~

.
Substituting Eqs. (3.25) —(3.27) and Eqs. (3.24) into Eq.

(3.20), we have operators (S's and ? s) acting on the spin
basis states. The eA'ect of these operators are

We find that the angle to the z axis of Ap as a func-
tion of 0 and p is

0~ =arctan p sinO

yp cosO+ y 13aI
(3.30)

where P is the magnitude of the velocity of the boost
along the negative z direction. The magnitude of the
boosted antiquark momentum, in terms of 0 and p, is

S+
~
l, m, ) =&2

~

l, m, +1),
S

~

l, m, )=/2
~
l, m, —1),

T ~00&= —&2~1, 1&,

T )0,0&=&2)1,—1&,

T+ )
l, m, ) =&2

(
0,0)6

T
~

1 m, &= —&2100&5 „i.

(3.28)

~
Ap

~

=[p sin 0+y (p cosO+Pco) ]' (3.31)

C =aKK cos(OA —0)+bK cos(OA) —bK cosO —a,
D =aKK'sin(0~ — )0+b Kins0+bKsi (nO)A.

(3.32)

where P=k/(M22+k )'I—:V/c, and V is the velocity
of the recoil and boost.

In terms of the magnitudes of K and K', Eq. (3.19), and
angles 0 and OA, we have for C and D in Eq. (3.18), and
Eq. (3.22),

Using Eq. (3.28) and the orthogonality of the spin states,
we find relationships between m, and m,

' of the initial
and final mesons. When integrating over P we obtain
another relationship between m

&
and m I', but since

mI+m, =m and m&'+m, '=m', we finally obtain a rela-
tion between m~- and m~', which is

m'=m +1. (3.29)

This is clear physically, since we are considering a
negative-helicity photon being emitted in the z direction.

Since the boost is along the negative z direction, the
azimuthal angle of Ap is equal to P, the azimuthal angle
of p. But the angle 0, which is the angle between p and
the z axis, is not equal to the angle OA between Ap and
the z axis, and, therefore, we cannot simply perform the
integration over the angle 0 by using the orthogonality
relations of the spherical harmonics, as is done in the
nonrelativistic formalism.

0&—arctan
sinO

cos0+ V/U
(3.33)

After the above operations are carried out in Eq.
(3.20), the 0 and p =

~ p ~

integrations in Eq. (3.15) are
carried out numerically.

From the expanded equations for the case of the radi-
ative decay of a natural-parity meson to another
natural-parity meson, we find that the relation for the
decay of a natural-parity meson to an unnatural-parity
meson, or vice versa, is obtained by the interchange of a
and b, and, also, for the meson that is the unnatural-
parity state, by the interchange g+ ~f+, g ~f
fo ~go, and f & ~g&, as can be seen from Eq. (3.20).

In order to illustrate the importance of the recoil in
quarkonia decays we expand Eqs. (3.30) and (3.31) to
lowest order in V/c and in quark velocity U/c =p/co
and find
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~
Ap

~

-p ( 1+2 cosOV/v + V /v )'

In large-energy decays we find for the velocity ratio

k
V/U =

2m

(3.34)

For typical quark momentum p =500 MeV and transi-
tions where k =600 MeV (as in the g'~i), +y hindered
magnetic transition), we find we cannot neglect the recoil
since the recoil momentum is of the same order as the
internal momentum. This e6ect is of order 1, even
though V/c =0.2. The non-normality of the angularly

shifted spherical harmonics with the unshifted ones from
(3.33) and the momentum shift in (3.34), separates the
wave functions in momentum space and decreases the
overlap and the transition rates.

As an illustration of the importance of the recoil, we
give here the analytic result for the electric dipole mo-
ment for a 1P~1S transition to a circularly polarized
photon in a three-dimensional harmonic oscillator with
V(r)= —,'kr . In terms of the average velocity squared of
the particle in the oscillator, (v ) = —,'(k/m )'~, and the
recoil velocity V depending on the total mass, the elec-
tric dipole matrix element is

TABLE I. (a) Experimental and theoretical transition rates of charmonium (in keV). (b) Photon energies of charmonium radia-
tive transitions (in MeV).

(a)

No.
Decay
mode Experiment

Relati vistic
asymptotic
freedom +

linear

Relati vistic
Coulomb +

linear

Nonrelativistic
adjusted
by k„l

(1)
(2)
(3)
(4)
(5)
(6)

0'-»+r
0'~&i+)'

&o+)
&2 0+r

0+ l'
&o 0+r

Electric dipole transitions
17+4 24
19+4 23
20+4 12

429+ 266 210
(390 100
97+38 56

29
25
10

221
134
66

66
94
73

463
296
160

(1)
(2)

(1)
(2)

0'~rl, +r
n', 0+r

Magnetic dipole transitions
2. 3 ~0.43 0.60*
0.92+0.45 0.91

Hindered magnetic transitions
0.6 +0.2 1.0

8.3

0.53*
1.06

1.3
10.0

1.44
2.98

1.8
1.3

No.
Decay
mode Experiment

(b)

Relativistic
asymptotic
freedom +

linear
k„„

Relativistic
Coulomb +

linear Nonrelativistic

(1)
(2)
(3)
(4)
(5)
(6)

128
172
261
429
389
303

Electric dipole transitions
153
206
275
402
353
286

160
197
272
399
364
291

161
161
161
397
397
397

(1)
(2)

94
114

Magnetic dipole transitions
39
99

50
107

(1)
(2)

638
459

Hindered magnetic transitions

622
505

633
498

544
544
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' 1/2
(U')M= —i

3

3 V

This shows the rapid falloff in the overlap of the wave
functions depending on the ratio of the recoil velocity to
the average velocity in the wave function.

IV. RESULTS AND CONCLUSIONS

The decay rates of different charmonium and &-

quarkonium radiative decays have been calculated by us-

ing the formalism that was developed in previous sec-
tions. Parameters of the potentials and cutoffs for the
calculation of the wave functions for the decays were
taken from previous spectral fits. ' These parameters in-

clude the slope of the linearly rising scalar potential,
which was found to be ~& ——0.15 GeV, and Az ——0.4
GeV. The large momentum cutoffs Ao for each system
were also previously found by fitting to spectra and to
the leptonic decay widths. It was found that the best
value of Ao for the charmonium system is Ao ——4 GeV
and for 6-quarkonium is AD=7 GeV. No attempt was

made to vary any of these parameters to obtain a better
fit for the radiative decay rates.

For the linear potential we use the purely scalar form
since the previous calculation' gave the best fits for spec-
tra and leptonic widths with this form. With the new

S,(A,p) cutoffs the fit to the spectra with a=0.25 are
essentially the same as the Sl fit (e=O) of Ref. 1. We

used @=0.01 in the calculation of the decay rates.
The results of our relativistic calculation of the radia-

tive decay rates of the charmonium system are presented
in Table I(a) for measured electric dipole, magnetic di-

pole, and hindered magnetic dipole transitions, under
the column labeled "relativistic asymptotic freedom
+ linear" and called I „,i". We label the transitions by

their corresponding dominant nonrelativistic designation
although in our relativistic calculation the exact in-
clusion of recoil includes all higher-order terms in the
equivalent position space kr expansion as well as the
mixing of I,S terms. The corresponding energies of the
transitions with the same interactions are shown in
Table I(b) and called k„,&. The experimental values for
the decay rates and the photon energies are taken from
the 1986 Particle Data Group compilation. ' For the
charmonium system we can see that our relativistic re-
sults with the asymptotic-freedom coupling are in good
agreement with the experimental values of the E1 and
M1 transitions. In the spectrum calculations we obtain a
low value for the g' —7t,

' mass splitting, which gives a

k„i of 37 MeV instead of the experimental value of 95
MeV. We correct the relativistic decay rate by the ratio
of the experimental value to calculated value of k as is
exact in the nonrelativistic limit for magnetic dipole
transitions. This gives the value of 0.60 keV for the rate
of P'~g,'+ y, in agreement with the experimental
range.

The hindered magnetic transition P'~rI, +y is of
particular importance for the study of relativistic effects.
If the system is treated nonrelativistically, since the wave
functions of P' and g, are orthogonal, the magnetic di-

TABLE II. Predictions of 'P„'D2, and 'D, related decay rates (in keV) and photon energies (in

MeV) of charmonium.

(1)
(2)
(3)
(4)
(5)

D2~+, +y
3D2 g, ~y
ID 1P

'Pl+r
'p, g, +y

I AF

Electric dipole
31
82

108
31

220

I AF

transitions
239
292
277
155
456

I cs

21
46
56
26

248

246
281
275
135
475

(1)
(2)

D2 rl, +y
D2 rl,'+

Electric quadrupole transitions
2.5 606
0.02 125

6.2
0.06

708
138

(1)
(2)

+o+Z
+Z 'Pl+ X

Magnetic dipole transitions
0.1 94
0.06 39

0.1

0.01
93
24

(1)
(2)

Hindered magnetic dipole transitions
0.006 91
1.5 616

0.007
7.7

97
625

'D2 ~&o+7
Magnetic quadrupole transitions

0.04 362 0.002 356
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pole moment transition rate would be zero. The effect of
recoil is also important in this transition since the emit-
ted photon momentum is 620 MeV, giving a significant
correction when quark momentum are less than or of
the order of this momentum. Our relativistic calculation
results in I „&"——1.0 keV compared to the experimental
value of I,„„,=0.6+0.2 keV.

For the charmonium system we have calculated
theoretical predictions for the radiative transition rates
involving the possibly newly found' 'P, state, and the
yet unobserved D2 and D, states, which, although

above charmed threshold, cannot decay to D-D states.
These predictions are tabulated in Table II.

Our relativistic results for the electric dipole tran-
sitions for the 6-quarkonium system are presented in
the columns labeled "relativistic asymptotic
freedom + linear" in Table III(a) with the corresponding
transition energies in Table III(b). In the cases of the
five transitions with experimentally known rates, our cal-
culations agree with all of them within the one-sigma ex-
perimental errors. In Table IV we give predictions for
significant transitions involving the yet-to-be-discovered

TABLE III. (a) Experimental and theoretical electric dipole transition rates in b-quarkonium (in keV). (b) Experimental and
theoretical photon energies in electric dipole transitions of b-quarkonium (in MeV).

(a)

No.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

Decay
mode

+ ~Xb2+V
+ ~Xbl+7
&'~Xbo+7
Xb2~&+7
Xbl ++ V

Xbo~ f+Y
Y ~Xb2+ P

~Xbl +7
~Xbo+ 3

X'b2~ &'+ P
Xb 1

~+ + V

Xbo~& +P
Xb2~&+ 'V

Xb1 ~&+y
Xbp~+ + V

~Xb2+ V

~Xb 1 + 'V

~ ~bO+ 7

Experiment

1.98+0.5

2.01+0.55
1.29+0.42

1.52+1 ~ 3
1.89+ 1.6

Relatsvistsc
asymptotic
freedom +

linear

1.81
1.64
0.87

28.3
22.5
19.0
2.54
2.17
1.06

13.0
1 F 1
9.7
7.7
4.13
1.8
0.13

0.042

Relativistic
Coulomb +

linear

0.91
1.05
0.67

33.6
27.5
21.1

1.46
1.65
1.04

15.2
13.5
10.7
13.0
7.25
2.3
0.65
0.10
0.016

Nonrelat1vistic
adjusted
by k„,l'

2.74
2.88
1.8

37.0
31.6
24.7

2 ~ 87
2.83
1.61

17.3
13.6
10.1

10.5
9.8
9.1

0.03
0.02
0.008

No.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

Decay
mode

+ ~Xb2+P
Xb2, + V

Xbo+ V

Xb2~++ )~

~b1 ++ 3

Xbo~++ j
Xb2+1
Xb 1 +7
Xbo+ 7

Xb2 + +V
Xbl ~& + V

Xbo + +X
Xb2~&+X
Xb I ++7
Xbo ++7
& ~Xb2+'V

Xbl+ V

~Xbo+ 'V

Experiment

109
131
162
443
422
392

84
101

245
228

777
763

432
452
484

(b)
Relativistic
asymptotic
freedom +

linear

118
142
175
431
408
376

86
101
121
230
215
195
762
747
728
427
452
483

Relativistic
Coulomb +

linear

95
120
161
476
452
412

72
91

119
250
234
206
805
788
761
415
439
479

Nonrelativistic

120
120
120
430
430
430

95
95
95

233
233
233
766
766
766
443
443
443
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TABLE IV. Predictions of 1 'Pl, 2 'P„2'D, , 1'D„and 1 'D, related decays and largest magnetic
decays of b-quarkonium. Decays rates in keV and photon energies in MeV.

Decay mode I AF kAF I Cs kcs I NR
adj

kNR

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(»)
(12)
(13)
(14)
(15)
(16)

1'D
1 + y

+&~1 Dl+y
+o 1'D

1 +y
1 Pl ~gb+y
nb 1'Pl+ y
gb 1'P, +y
2 Pl ~gb+y
2 'P, -~gb+y

1 D2 g2+y
1 D, g, +y
1 D, ~g2+y
1'D, ~g, +y
1'D, ~go+y

1'D, +y
1'D, 1'P, +y

Electric
0.03
0.48
1.09

31.6
2.5
0.44

14.0
9.6
3.7
4.5

17.6
0.46
8.5

14.7
0.3

22.5

dipole transitions
124 0.03
107 0.41

85 0 59
477 38.1

111 0.69
421 2.11
242 15.7
811 16.8

73 1.6
235 4 7
261 16.9
223 0.50
250 8.7
284 15.4
113 0.3
254 21.3

122
101
68

567
72

396
278
896
49

235
260
226
252
297
113
250

0.08
0.68
0.48

75.6
4. 1

0.41
29.0
18.6
4.6
6.0

24.5
0.34
7.2

14.0
0.86

28.9

104
104
104
430
120
413
233
766

95
250
250
250
250
250
104
250

(1)
(2)
(3)

lb ++y
9b ~&+y
1 'D2~ Y+y

Hindered magnetic dipole transitions
0.12 525 0.3
0.18 823 0.29
0.05 662 0.007

533
847
708

0.02
0.03

545
854

0

2 P~ 3 PI 3 D] 3 D2 and 3 'Dz states of b-
quarkonium.

In order to test whether or not the asymptotic-
freedom modification of the gluon-exchange vector in-
teraction by the logarithmic term in Eq. (2.16) shows up
significantly in the electromagnetic transitions, we have
also calculated the transition rates with a vector interac-
tion that is a single perturbative exchange propagator:
4~+,z/q . The nonrelativistic limit of this is the Cornell
potential, i.e., a Coulomb plus linear potential
V(r) = a,&lr +Ksr—. For this we use the same parame-
ters that were used in Ref. 12, namely, Kz ——0.183 GeV
and a,~=0.52. The decay rates and the photon energies
for this case are given in the "relativistic
Coulomb+ linear" columns of the Tables and denoted
by

For the b-quarkonium system, after correcting for
differences in rates due to energy differences appearing
in k factors, our calculated values for the asymptotic

freedom and Coulomb cases both agree with the known
experimental rates. Thus, even for the heaviest system
with the presently known decays, we cannot verify the
presence of the asymptotic-freedom q -dependent cou-2

pling. We have made predictions for decay rates that
are not yet experimentally measured. In one of these
cases, Y"~7»+y, we obtain a large difference, namely,
I „~"——0.00013 keV, while I „,~ ——0.10 keV. We tested
the sensitivity of this rate to variations in ~z and e and
found that it is very sensitive to these changes. For this
reason we do not provide a prediction for this transition.
The Y"~X&o+y and Y"~1'&, +y decay rates are not
sensitive, and still give large differences. Unfortunately,
the cases with large differences may be unmeasurably
small.

A nonrelativistic Schrodinger equation calculation for
the bound states and radiative transitions was used to
compare the decay rates with the results of our relativis-
tic calculations. In this Schrodinger equation the poten-

TABLE V. Total widths of 7 and gb levels from measured branching ratios and calculated widths
of radiative decays.

Decay

&o 0+ )'
&i ~4+)'
X, P+y
+bO~++ y
+b 1 ++y
+b2 ++y

Expt. branching
ratio

(0.7+0.2)%
( 25. 8+2.5 )%
(14.8+1.7)%

&6%
(35+8)%
{22+4)%

Calc. I ~

56 keV
100 keV
210 keV

19 keV
23 keV
28 keV

Total
width

r=r, , ya

8+, MeV
0.38 MeV

1.4 MeV
& 320 keV

66 keV
130 keV

Expt. total
width

13.5+5 MeV'
& 1.3 MeV"

2.6+,' MeV

'Crystal Ball Collaboration.
R704 Collaboration, CERN ISR.
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tial that we have used was the nonrelativistic limit of the
interactions that were used in our relativistic calculation,
which becomes the Richardson potential, with the same
Kg and A~ parameters, but with a cutoff no longer re-
quired. This gives the zeroth-order wave functions to
use for calculating electric and magnetic dipole matrix
elements. In zeroth order the spin-spin and the spin-
orbit interaction terms are left out and the electric di-
pole moment is independent of the total J or spin-orbit
and spin-spin energy splittings. The electric and mag-
netic dipole decay rates are proportional to k . The
next step in perturbation theory is to use the first-order
or perturbed energies with the zeroth-order wave func-
tions. We do this by using the relativistic energies in the
photon energy cubed terms with the lowest-order wave

g~ —++ +y
+y

gp ~+ +y
X2 ~+ +y
Il ~Y'+y
1p —+Y +y
X2 ~++y
Xl ~&+y
Ip —+Y+y

2 D2+y
2 D2. +y
2 Dl+y

g'1'~2 D, +y
&o'~2 'D l+ y

I AF
rel

1 1.4
9.4
7.8
4.4
2.4
1.0
4.6
1.7
0.33
0.52
1.7
0.05
0.74
1.8

kAF
rel

159
146
131
460
447
433
982
970
956

69
56
79
66
51

I CS

13.9
11.5
8.5
6.5
3.5
1.0
8.7
3 ' 1

0.29
0.54
1.4
0.05
0.63
1.0

178
160
137
487
470
448

1031
1014
993

63
45
73
55
32

(b)

TABLE VI. (a) Predictions for 3'PJ (PJ ) related decays of
b-quarkonium. (b) Predictions for 3 'P, , 1 'F„and 2 'DJ. De-
cay rates in keV and photon energies (in MeV).

(a)

functions in order to give the best comparison with the
relativistic decay rates. The nonrelativistic decay rates
so corrected are shown in Tables I(a), III(a), and IV and
are labeled with "nonrelativistic adjusted. "" The non-
relativistic energies shown are the zeroth-order ones.
After scaling by (k„&/k„,„„,&) factors, we are then actu-
ally comparing the "effective" relativistic matrix element
with the nonrelativistic electric dipole moment. For the
hindered magnetic transitions the decay rate is propor-
tional to k and the nonrelativistic rates are scaled up by
the factor (k„&/k„,„„,~) in Tables I(a) and IV.

In the charmonium transitions, Table I(a), we see that
the relativistic rates are reduced from the nonrelativistic
ones by factors of from 2 to 6, in agreement with the ex-
perimental rates, where available. In b-quarkonium,
Table III(a), the relativistic rates are reduced up to a fac-
tor of 2 from the nonrelativistic ones. The exceptions
are the highly suppressed electric dipole ones numbered
16—18 in Table III(a), which depend on large wave-
function interferences for transitions between more wide-
ly separated principal quantum numbers. Similar
suppressions are found in the hydrogen-atom transition
rates for the same decays. '

Since the formation of X states from P~X+y is
detected from the associated y production, the latter
X~tt+y decay allows the experiments to determine the
+ radiative decay branching ratio rather than the total
width. We can use our calculated rate of this width I,,
to find the total widths of the 7's by I =I,, /B. These
are shown for the 7 and 7b states in Table V. The total
widths for g states are in agreement with the larger go
width measured in the crystal ball and with the smaller
I'z width measured from formation in p-p colliding rings
at the CERN ISR.

In Table VI we present predictions for decays from
the higher levels of b-quarkonium. We have omitted de-
cays with very small branding ratios.

2'Dl ~1'F2+y
2 D2 1 F2+y
1 F2 1 D, +y
1 F2~1 D2+y

no+y
Ib+y
tb +y

2 Dl ~+2+y
2 D, ~g'1+y
2 D, —+gp+y
2 D, ~g2+y
2 'D

l ~&i+y
2 Dl ~gp+y
2 D2~+2+y
2 D2 —+gl+y
2'D, ~g, +y
2'D, ~g, +y
3 'P

l 2 'D2+ y
2'D 2'P, +y
2'Pl 1 'D2. +y
3 'P, ~1 'D2+y
2 'D2 1 'Pl +y

I AF
rel

1.2
0.17

16.7
2.7
4.9
4.4

10.9
0.35
6.1

10.1

0.38
1.4
3.9
3.4

12.5
0.59
3.9
2.5

16.1
1.7
0.03
4.7

kAF
rel

86
96

193
182

1028
472
163
154
172
194
494
520
554
165
182
504
529

58
178
99

332
523

I cs

1.5
0.19

16.3
2.7

10.6
6.9

13.3
0.41
6.8

11.9
0.05
1.7
5.7
3.8

13.7
0.71
4.5
2.4

17.3
1.7
0.09
5.0

PCS

94
104
192
183

1113
509
189
164
185
217
504
529
573
173
194
514
538

51
187
100
335
529

APPENDIX A

Here we show that quark and antiquark currents of
the same Aavor give identical contributions to radiative
decay.

In the valence approximation, the quarkonium states
are just superpositions of b d 0) states. From the nor-
mal ordering,

M„= (B2m,
'

~:P(x )y„P(x ):
~
B,m, )

=(B2m,'
~

Q' '(x)y„tttI+'(x)
~
B,m, )

—(B m'[2y„1(' I(x)] f'+'(x)
~
B,m ) . (A 1)

We insert appropriate complete sets of single-quark
(labeled by subscript q) or antiquark states, and add in
the innocuous remaining parts of the fields:
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M„=f d p g (Bzm'] @(x) [ po )(pcr j y„P(x) (
B,m ) —f d p g (Bzm'

)
(y„g(x)) ) per ) (po [ ~P(x) (Btm )

d p B 2P77~ x po pcT p~ x B1m~

—fd p g (Bzmi'
i
C 'C[y„g(x)) C 'C

i
po ) (pcr

i
C 'Cg(x) C 'C

i
B,m ), (A2)

where C is the charge-conjugation operator.
Its effects on different states are

(Bzm'
~

C '=g'(Bzm' ~, C
~

B&m ) =r),
~

B&m ), (pa
~

C '=(pcr ~, C
~
po ) =

~

pcr ) . (A3)

Since the charge-conjugation quantum number of the photon is —1, in any radiative decay we must have g, g,
' = —1.

For the current we now have

M„= d'p Bz~,
' x p~ p~ y& ~ B

+ f d p g (Bzm'
~
Cg&(x)C '

~
po )(y„) &(po CP (x)C '

~
B,m ) . (A4)

For a fermion field we have

Cgp(x)C '=Cp, g,(x) and CP (x)C '= g~(x)C—~
and the current becomes

M„= d p B2m
' x po. po. y„x B1m~.

(A5)

—fd p g (Bzm'
~ P,(x)

~ per)C&, (y„) &C& '(po
~
g&(x)

~
B,mj ) . (A6)

Since C &
———(C ')

~ and

Cp, (y„) pC~
'

C~ (y„) pC——p,
' ———(y„),~

Now we use the formula for U(A)
~ p, o ):

(A7) (0
~
g(x)

~ p, o. ) = &0
~

P(Ax)S(A) g ~
Ap, cr'&

in the equation for the current, we find that both terms
now give the same contribution; hence,

M„=2fd'p g(Bzm, '
[ g(x)

i
po )y„(po i

g(x)
i B&m, ).

' 1/2
co(Ap)

co(p )

(84)

(A8) From the free field expansion, the left-hand side becomes
1/2

U(A)g„(x)U '(A)=S„, '(A)g, (Ax), (81)

APPENDIX 8

In this appendix we carry out the Lorentz boost of the
antiquark state and derive a formula for the matrix
D . From

(0
~
P(x)

~ p, o ) =u(p, o )e
cu(p)(2m. )

Evaluating the right-hand side of Eq. (84),

(0
i
P(Ax)S(A)

i Ap, o') =
co(Ap)(2m )

1/2

(85)

one finds

U(A)g(x)U '(A)=f(Ax)S(A) . (82)

&& u (Ap, o')e ' ~' S (A) .

We then take an antifermion matrix element and use the
above Lorentz-transformation formula on the field P(x): Substituting Eq. (85) and Eq. (86) in Eq. (84) gives

(86)

(0
~
g(x)

~
p, o ) = (0

~

U '(A)g(Ax)S(A)U(A)
~ p, cr ) .

(83)

cu(Ap)

cu(p)

1/2

u(p, o )= gD, u(Ap, cr')S(A) . (87)
o
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U(Ap, cr')U (Ap, o ")= —5

we find the desired relation for D

D .(A)= v—(p, cr)S '(A)u(Ap, cr') . (BS)

Multiplying both sides by S '(A) and then by u (Ap, o")
and using the relation

APPENDIX C

In this appendix we show that the electromagnetic
current of the quarkonium bound state is conserved in
the valence-quark treatment that was used in the
bound-state equations. From Appendix A and Eq. (2.3),
the electromagnetic current of a same-flavor quark-
antiquark state for a transition allowed by charge conju-
gation is

M"=g (82 .Q(0)y"g(0):
~
8, ) =2g f d p g (82

~

g(0)
~

pcr )y" ( pcr
~

g(0)
~
8, )

d3=2 , (p, o )y"%~ (p, o ) .
(2~) [4 (8' )cv(8 ))'

(C 1)

Taking the divergence of the current, q„M", and adding and subtracting 8 t
—p' —m gives

d3q„M"=, f g [4, (p, cr)(f+gf —g, +m)+s (p, cr)+4, (p, cr }(g,—P —m)+s (p, o )].
(2~) [4cv(B, )cv(B~ )]' B2

(C2)

In the first term we use Bz 8& —q t—o—obtain (q +p 8& +m) = ——(Bz —p —m).
To find the efFect of (8 &

—P —m) on 4, (p, o ) we use the bound-state equation (2.4), and, by a few algebraic steps,
2

we find the following equation for 4, (p, o ):
2

3 r

, (p, o ) (8 —P —m ) = g f [ V~ ( (p —p
'

) )u (p, o. )y" u(p ', cr
'

)4', (p ', cr
'

)y(2~)'cv'

+ Vs((p —p') )u(p, cr }v (p', cr')4', (p', cr')] .
2

Using Eq. (C3) in the first term of Eq. (C2) and the bound-state equation (2.4) in the second term gives

2
Qm

(2') [cv(82 )cv(B, )]'
d3 d3 '

X g f, [ —Vr((P —P')')[v(P, o) y" u(P', o') q~, (P', cr')y„'Irs (P, o-)]
COCO

CT, 0'

—V, ((p p)') [ —(U,po) (up', o) q, , (p', o')+, (p, ~)]
2

+ Vv((P P') )['Pz, (P, o —)'y„l's (P', cr')u(P', o. ')y"v (P, o )]

+ Vs((p —p') )[ ll (p, o )qls (p', o. ')u(p', o')u(p, o )]] . (C4)

We note now that upon interchanging p~p' and o.~o.'

in the third and fourth terms of the above equations they
cancel the first and second terms, respectively. Thus,
the current is conserved.

potential terms are of order of the kinetic energy or of
order U/c of the terms on the left-hand side and can be
dropped. The left-hand side now gives

APPENDIX D [F)=— ' [G).
2f7l

(D 1)

In order to see how the relativistic formalism reduces
to the nonrelativistic results for radiative transition ma-
trix elements, we begin with the second of the integral
equations in Eq. (2.11). In this limit, the right-hand side

We use the result of the trace of the current for a gen-
eralized final-state photon with W=(C —i D oz)o, and.
b= —bz:



36 RELATIVISTIC FORMULATION OF THE RADIATIVE. . . 3415

Tr[J e]=a(G'
[
W e*

/

F)+a(F'
f

W e'
[
G )

+i (G'
[
(W)&b).e

f

G )

+[&F'/(WXb). e* F) .

In the nonrelativistic limit,

a =1, C= —1, D=O(U /c ),
akz k k

&P =P+~(g2)+~2 4m
'

2

(D2)

(D3)

analysis analogous to that done in position space to ob-
tain the result in momentum space:

T

l' j' s
I =—36ag k(2j'+1)

(D7)

The reduced matrix element is found from the
m I

——mI ——0 matrix element

Using Eqs. (D3) and (Dl) in Eq. (D2) yields l', 0 1,0 =i ( —1)™xl'
m m

l' 1

l
Q Q Q

~

(D8)

G' a, - o'e* G

The connection to the position-space dipole moment is

l =ik l'r l (D9)

+i G' o) G (D4) Upon replacing Eq. (D9) in Eq. (D7) we find the
position-space formula for electric dipole decays. '

Using the nonrelativistic recoil limit Ap=p+k/2 and
k e=O, we obtain the nonrelativistic result where the
first term is the electric dipole and the second is the
magnetic dipole contribution of the valence quark:

CT )Tr[J E" j=(G' E yi .
(. k"Xe*) G) .

m 2m
(D5)

At this point, the final state
~

G') is still evaluated at
the recoil momentum Ap=p+k/2. This allows us to
calculate the decay rate for hindered magnetic transi-
tions such as g'~ri, +y, where the momentum wave
functions would be orthogonal if we neglected recoil. To
obtain the lowest-order multipole contribution to the
hindered magnetic transitions we expand in

~

k
~

/
~ p ~

(analogous to the kr expansion in position space) and
perform an angular integration, obtaining, for S-wave
states,

APPENDIX E

=Tr[o o. (C+iD o) r[c.r G ' crG]

=Tr[(C —i D o )(Gcr ) o (Go )]

=Tr[(C iD cr )G' a—'G],
where we have used o.ycToy o. T

We partial wave expand

(E1)

Here we convert the 2)&2 form of the G and F ma-
trices, take the trace, and end up with matrix elements
in the direct-product form of two spin- —,

' particles. In
the trace we insert o. 's to convert to G =Go. and the
2 &(2 representation. A typical term becomes

T =Tr[( C +i D cr )G
' a. G ]

d pgf p+ g; p
G(p)= ggls(p) g CL~' s YL '(p)Ps

LS mL m&

(E2)

2

=4' f p dp gf(p)+ —,', gf (p) + —,', gf'(p)k

Here Pz is a 2&(2 projection operator for total spin S
S

and component mz,

xg;(p) . (D6)
Ps —— y C ~m, )(m~

~

m&m&

(E3)

For the electric dipole rate from Eq. (D5) in the no-
recoil limit Ap=p, we can follow a rotational-group

I

constructed from spin- —,
' basis vectors m, ) and

~

m z ).
The spin structure of T is then

T'=Tr[(C —iD o)(
)
mI. )(mz

)
) o

(
m[)(m~

[
]=(mz (C —iD cr ) mz)(m'[

[

.o
[
m[)

=(mz f(C —iD o)fmz)(mI (.o fm, ) .

We move the order of the spin vectors by defining o. , as
those that act on the vectors

~

m [ ) and o z as those that
act on

~
m2):

T'=(m,
~
(m~ ~(C —iD o2)o[ m[). ~m2) . (E4)

~Sms)= g C ~m[) ~m~)
m &m&

(E5)

This recombines with the Clebsch-Gordan coefficients to
give direct-product state vectors:



3416 FARHAD DAGHIGHIAN AND DENNIS SILVERMAN 36

and The result for the trace then becomes

G ) = XgLs(p) X CP', ,s YL (p)
l
Sms ~ .

LS mlm

(E6)
T = ( G'

~

(C i—D o.2)o,
~

G ) . (Ej)
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