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We formulate a relativistic bound-state calculation of the decay of q (0 +) mesons into two
gluons or two photons. The decays of q„q,', qj„and q& are calculated and a value of a, deduced
from the total width of g, . The calculated value for g, ~2y is in agreement with experiment.
The decays of g~2y and g'~2y are calculated and by comparison with experiment and the
bound on ~~2@, restrictions are placed on the X„, Y„,X„,and Y„mixing coefficients of Rosner.
The comparison with the Schrodinger-equation calculations shows that the inclusion of relativistic
propagators spreads out the annihilations so that they do not occur at r =0. This suppresses the
2S and higher-level decays, with the greatest suppression for the lightest quarks.

I. INTRODUCTION

In order to evaluate the relativistic corrections to
bound-state mesonic spectra in QCD, and to establish
the relativistic nature of the parts of the QCD potential,
a relativistic expansion of the quark field equation was
formulated' using a valence-quark —antiquark pair in
the lowest order for the meson states. This type of equa-
tion has a long history, including successful QED calcu-
lations of positronium. In this paper we extend this rel-
ativistic formalism to the two-gluon and two-photon an-
nihilations of the 0 meson states. We then apply this
and compare with data for the g, ~2 gluon rate and
predict the gb~2 gluon rate. In this we find that the
value of a, that fits the two-gluon rate is o., =0. 15. We
also calculate the decay g, ~yy and find this in agree-
ment with experiment. We finally apply the decay for-
malism to g and g'~2 photon states and illustrate how
the differences in the wave functions between ss and
(uu +dd ) components as well as higher-order QCD
corrections can be important in the comparison with ex-
periment. With a parameter for higher-order QCD
corrections and the bound on ~~2@ we find the restric-
tions that our calculations place on the X„, Y„,L„,and
Y„mixing parameters of Rosner in a standard mixing
models to account for the g, g', and ~ mixing. We com-
pare the relativistic rates to those obtained from the
Schrodinger equation using the nonrelativistic limit of
the relativistic interactions.

We also compare the g decay rates computed with an
asymptotic-freedom-corrected gluon exchange with those
computed from a vector Coulomb interaction' (both
with a linear scalar part) in order to determine if the re-
sults are sensitive to the asymptotic-freedom
modification of single-gluon exchange.

In the relativistic valence-quark bound-state equation
we used a relativistic vector-gluon exchange corrected by
an asymptotically free coupling strength, along with a
linear confining potential which was established to have
a scalar nature. ' The resulting equation, after partial-
wave projection, is a single-variable integral equation for

the radial wave functions in momentum space with the
mass of the state as the eigenvalue. It reduces to the
Breit-Fermi interaction in the Schrodinger-equation lim-
it, and to the Dirac equation in the limit where one
quark mass is much heavier than the other. In the first
papers, ' the studies were concerned mainly with the
spectra, emphasizing the relativistic spin-spin and spin-
orbit effects. The spectra and wave functions were cal-
culated for all mes ons except the chiral-symmetry-
dominated ~ and E mesons.

The relativistic nature is most important in short-
distance or high-momentum phenomena and in cases in-
volving light-mass quarks where the Schrodinger equa-
tion is a poor approximation since the momenta are typ-
ically larger than the light-quark (u, d, or s) constituent
masses. In this paper we treat both types of cases, cal-
culating them with relativistic amplitudes and using rela-
tivistic wave functions obtained from the previous fits to
the spectra.

In Sec. II we summarize the relativistic wave func-
tions and bound-state equation that was previously for-
mulated and used in calculations of the mesonic spec-
tra. ' In Sec. III we formulate relativistically the decay
of g mesons into two gluons and two photons in terms of
the relativistic q wave functions. In Sec. IV we apply
this to the g„g,', qb, and gb decay to two gluons and
two photons. In Sec. V we examine the q and g' decays
to two photons and illustrate the wave-function effects in
a simple standard model which includes mixtures of g8
and g, with a glueball to form the q, g', and ~ states.
Using the bounds on c, ~2y and a parameter for higher-
order QCD corrections, we show the restrictions placed
on the mixing parameters of this model.

II. FORMULATION OF THE RELATIVISTIC
BOUND-STATE EQUATION

The equation we use is based on the equation for the
quark field P(x) with mass m „coupled to a vector
gauge potential A„(x), and an effective scalar potential
S(x):

36 3392 1987 The American Physical Society



36 FORMULATION OF TWO-PHOTON AND TWO-GLUON DECAYS. . . 3393

(i7 —m, )P(x) =[A(x)+S(x)]g(x) . (2.1)

The bound-state equation is obtained from the matrix
element of Eq. (2.1) between the bound state of four-
momentum B and an antiquark state of mass m, momen-
tum p, and spin A, :

(i7 m—, )(p, A,
~
P(x)

~

B )

=g(p, A,
~

A (x)+S(x)
~

n ) (n
~
P(x)

~

B ), (2.2)

where a complete set of states has been inserted. The
lowest-mass state is the single on-shell antiquark state
which we will use and consider it as the valence-quark
approximation. This then leads to a linear integral equa-
tion for the matrix elements ( p, k

~ g (0) B ) . With en-

ergies co& ——(B +M )', co=(p +m )', and with M
the bound-state mass we define the 4 & 4 matrix

and G and F stand for upper and lower quark com-
ponents. We note the restrictions arising from Eq. (2.3)
that

Gu = Gd, Fu = —Fdco+ m co+ m
(2.6)

In order to do the spin and angular momentum decom-
position we convert the 2 representation for the anti-
quarks to a 2 representation by defining Gd ——Gd ~y and
Fd ——Fdo. so we can use conventional Clebsch-Gordan
coupling. We then have

(p, &
~
g(0)

~

B)

(2.5)

which means that Gu, F„can be taken as dependent on
Gd, Fd by

2'~ cc)
4& p(B,p)=(2m)

m

1/2

y(p, x~q (o) ~B)U,(p, x).

~

( 1 )x —1/2

XA. ~

(2~) [2co~cu(co+m)]'~ Fd
(2.7)

(2.3)

F F„
(2.4)

where u and d stand for upper and lower q components

We introduce the analogs of Dirac equation components
in 2X2 submatrices

G„ Gd

In the integral equations the matrix N occurs naturally,
and we will use it in much of the formulation.

For the wave-function decomposition we expand
Gd(p) and Fd(p) in terms of YL (p) and 2X2 projec-
tion operators for S =0 and S =1 states, coupling them
to the total J and MJ. The g states, J =0, are
unnatural-parity states and since J =0 they only involve
two instead of the four wave functions used' when
J&0. In the general formalism this becomes

Gd(p)=go(p)
l

J =o.M. =o L =O,S =0) (1=0,M, =O, L =O,S =0
~

Fd(p)=f+(p) l

J=0 MJ=O'L =1 S =1(J =0 MJ=O, L = 1 S =1
~

(2.8)

Working out the projection operator gives (dropping an
inessential overall i factor) @=), a(p)+b(p)

M 2m
(2. 1 1)

Ro go
Gd —— o. or Gd ——

&8m. &8m.
(2.9)

Reducing this to the form of Eq. (2.4) yields

+ +
cr per~ or Fd ——— —o'.p .

&8~ ' &8~ Gd —— ( —a +b), Fz ———(a +b)
2m 2m

(2.12)

S,(Ao,p) =

For the details of the bound-state equation for go(p)
and f+(p) we refer the reader in Refs. 1 and 2. We are
using a modified form of the cutoff with a variable power
e & 0 representing the effect of inelastic channels:

A,
2+ p2

1 2m
4v'2~ co+m

co+m
go+ — f

(2.13)

Comparison with Eq. (2.9) then gives a (p), b (p) in terms
of the solutions to the bound-state integral equation
f (p), go(p):

with A, =Ao&1+E. Expanding this for small p /Ao
shows that the cutoff in the predominant region of p is
independent of e.

We can most conveniently take traces using a pseu-
doscalar form for N defined in terms of Dirac matrices
that also satisfies the on-shell antiquark condition, Eq.
(2.5). The form has two invariant functions a (p), b (p):

1 2m co+m
4&2vr ~+m go+

p

The normalization condition becomes

d p z z m
a +b —2—ab =1.

M (2~)' CO

(2.14)
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III. DECAY OF AN g MESON INTO TWO GLUONS
OR TWO PHOTONS

We formulate the decay of a 0 qq meson (g) with
quark masses m&

——m2 ——m into two gluons or two pho-

tons using a relativistic amplitude and the valence-quark
approximation. We begin with two photons and later
add the color factors for the gluons. For an g of
momentum B decaying into photons of momenta q, :—q
and q2 we have, by reduction,

1 « „,~" (q i ~i )~' (q2~2)
(2~)'(4q', q o, )

'"
X d x[ d x2e ' 'e ' ' 0 T J„x]J, x2 B (3.1)

with J„(x)=egg(x)y„f(x). At this stage we have electively used two orders of the J"A„Hamiltonian to create the
final-state photons or gluons, and in the valence-quark approximation can now treat the g fields in J„as in fields.

We want to evaluate the matrix element with a field annihilating the quark in the meson state on the right, so we
use Wick's theorem to convert the time-ordered product to normal-order products, and using the fact that the g state
is a superposition of b d

I
0) leads to two nonzero terms:

&O
I
T(J„(»,)J„(»,»18 & = &O

I
T(q(», ).[q(x, ))', 1~) O& &O I:[0(x,))'„]A(x,),:18&

+ &0 T(Q(x, ),l q(x, )1'„].)
I

o& &o I:[q(x, )1',],4(x, ).: I

8 & (3.2)

In the matrix elements of the normal-ordered terms only the product of the db or positive-frequency parts contributes,
and we evaluate these by inserting a complete set of antiquark states between them and restoring the negative-
frequency parts of the fields (which give zero) in the matrix elements:

&o I:@(x,)~4(x, ).: IB &=2 f d'p&0
I
P(»2)~

I
ps) &ps

I
f(x, ).

I
8)

3 i [p (xi —x2) —B xi ]d p e
m

(27r) co

1/2

+&ps I
g(0)

I
8 )Pr3(ps)

d p m i [p.(x
1
—x& ) —B.x

1 ]
3

[(2~) 2'~]'r (27r)' ~ (3.3)

Replacing the vacuum matrix elements in Eq. (3.2) by propagators and converting to momentum space yields the am-
plitude with terms corresponding to direct and exchanged final-state photons (see Fig. 1):

e Q (2') 6 (8 —
q&

—qz)
&q~k„q2A~ 8 )=, e" (q~A, , )e' (q~k~)T,„(B,q),

(2~) (gq, q co )' (2~)
(3.4)

T = Tld p 8 —gf —g —m
y „N(B,p) +Tr y„y,&P(B,p),g —P+m

C0 (8 —p —q) —m "(q —p)' —m' (3.5)

We work in the center-of-mass frame with cosO=p q
and use the on-shell conditions q =0, (8 —q) =0, and

p =m . The propagators become

1 d p a(p)p
2
——HBB +Hqq

m 2' (8 p —q) —m
(3.7)

(8 —p —q) —m = —M (cu+p cosO),

(q —p) —m = —q(co —p cosO) .2 2= (3.6)

The amplitude contains integrals over the radial wave
functions in @(B,pi, a (p), and b (p), Eq. (2.13), which
are

1 d p a(p)p =JBB +J qm 2~ —2p. q

C =Id +re HB Hq JB (3.8)

Multiplying by q or B we can find HB, etc. Taking
the traces leads to the combination

1 d p b p
m 2' (8 p —q) —m

and the result

T„=4ie &„Q q~C' (3.9)
1 d p b(p)

m 267 —2p q

and by Lorentz invariance

which is seen to be current conserving in q& ——q and
q2 8 —q. Evaluating the inte——grals in C' using Eq. (3.6)
and defining C =M mC'/[2(2m ) ] gives
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Comparison with the experimental value of the total q,
width

I ( rI, ) = 11.5+4.3 MeV (4.2)

B-p
(a)

shows this is consistent with a, =0.185 to lowest order.
It is also seen that the result is mostly independent of e.

The wave functions give

C =0.10 GeV' at @=1.0,
C =0. 11 GeV' at e =0.25 .

(4.3)

qp

The first-order QCD radiative correction to 0 + to 2
gluons is given by Barbieri et al. ' as

ql=q

~s
I (0 + 2g)= 1+10.6 I (0 + 2g) . (4 4)

z I

C= ap —bp lnM' ' o (2~)' 2~ 2p
N+p
co —p

(3.10)

Including a color factor of 3 and denoting the Q
weighting in a superposition state as (Q ) we find the
decay rate of an g-type meson to two photons to be

r„„=4g~a'(Q') 'C' . (3.1 1)

In the nonrelativistic limit C~g(0)/M.
For g decay to two gluons the color factor is —', instead

of 3, and with a, the QCD coupling strength, we have

a C (3.12)

B-p
(b)

FIG. 1. Bound-state decay to two gluons or photons via
valence-quark annihilation.

Fitting this to the experimental value for the total g,
width, Eq. (4.2), determines a range of a, for the rj, ~2g
process

a, (rl, )=0.15+oo3 for @=1.0 . (4.5)

For this value of a„ the first-order correction is 50% of
the zeroth order, and higher orders may be important.
From this a, (rI, ) we can find a, (gb ), in order to predict
the gb width, by applying the running-coupling-constant
formula which includes two-loop effects:"

4~ P, ln[ln(x ) ]
a, = 1— (4.6)

poln(x) po ln(x )

where Po= 1 1 —', nf, P, =10—2 —", nf, an—d x =Q /AMs,
where MS stands for the modified minimal-subtraction
scheme. For g, we use three fIavors and for qb four
flavors, and assume that the eff'ective Q's scale up with
the quark masses. For a, (il, ) in Eq. (4.5) we have
lnx (g, ) =7.2+,', and taking

IV. HADRONIC AND RADIATIVE DECAYS
OF rlc & 'gc & '9b ~ AND r]b

A. Comparison of the calculated and experimental
rates of g, ~2g and g, ~2y

lnx ( gb ) = lnx ( g, ) + 2 ln( m b /m, )

we get lnx(rIb ) =9.5+i'i. For these values we get

a. (rjb )=0 13+o.oz .

(4.7)

(4.&)

Using the formula for the decay rate of g mesons to 2
gluons and 2 photons, Eqs. (3.11) and (3.12), we now cal-
culate the rate for g, ~2 gluons. The rate is undeter-
mined because of the a, coupling to the "free" gluons,
so we can use the experimental rate to give information
on a, at the g, mass. Our calculated decay rates for
rj, ~2g before the higher-order QCD corrections are

2

For charmonium, if we take Q =3 GeV the limits in Eq.
(4.5) are consistent with AMs between 30 MeV and 140
MeV centered about 80 meV and therefore not incon-
sistent with other determinations.

We now compare our calculated I (r), ~2y) with the
experimental data. ' ' Our calculated decay rate for
rI, ~2y before the QCD correction is, for an e = 1.0
cutoff,

I o(il, ~2g)= +s

0. 185

2

11.5 MeV

for the e = 1.0 cutoff,
(4.1)

I o(r), 2y)=15.6 keV .

The QCD-corrected decay rate' is given by

r(~, -2y)= 1 —33g ' r(&, 2y).

(4.9)

(4.10)
I o(i1, ~2g ) = 12.7 MeV

0. 185

for the e =0.25 cutoff .
Using u, =0.15+(jo3 which gives a 16% decrease for a
QCD correction, we get



3396 DENNIS SILVERMAN AND HERNG YAO 36

I (r), 2y) =13.1+0.4 keV .

The yy ~g, measurement gives'

I (g, yy)=15. 0+6.3 keV

while the pp ~g, ~2y gives'

I (rj, yy)=5. 7+4 keV .

The weighted average'

I (q, yy ) =9.2+3.9 keV

is in agreement with our calculation, Eq. (4.11).

(4. 1 1)

(4.12)

(4.13)

(4.14)

I o(rib 2g)

2

3. 18 MeV,
0. 13

I (rjb ~2g) = 4. 58 MeV,
0. 13

I o(gb ~2y ) =0.56 keV,

I (gb 2y) =0.48 keV;

values for the a= 1.0 case and for a(gb ) =0. 13:

C =0.075 GeV'i

(4.16)

B. Predictions for g,', gb, and gb decays
to two gluons and two photons

Using a, (g,
'

) =a, (rI, ) =0. 15 we can predict g,
' ~2g

and 2y from Eqs. (3.11) and (3.12) and QCD corrections
Eqs. (4.4) and (4.10). These values are listed in Table I
for the @=1.0 and @=0.25 cases. We give the values for
the @=1.0 cutoff only, where I o is without QCD correc-
tions and I has QCD corrections:

C, =0.043 GeV'
Ib

CX

I o(rib ~2g)
0. 13

&s
I (r)'b 2g) =

0. 13

2

1.04 MeV,

1.50 MeV,

I o(qb 2y ) =0.18 keV,

I (gb ~2y) =0.15 keV .

(4.17)

C, =0.050 GeV'
~C

2

For the other cases the predicted values are listed in
Table I.

I o(g,'~2g) =

I (g,'~2g) =

1.82 MeV,0. 15
2

2.74 MeV,
0. 15

(4.15)

C. The decay rates of g„g,', g» and gb to 2g and 2y
calculated by the Schrodinger equation

or with relativistic Coulomb interactions

I o(r),
'

2y ) =3.83 keV,

I (g,
'

2y ) =3.21 keV .

Similarly, for g~ and gb~2g and 2y, we have the

For comparison, the decay rates of g„g,', gb, and

gb ~2g and 2y are also calculated by using the
Schrodinger equation with a potential which is the same
as the nonrelativistic limit of the interaction used in the
relativistic calculation, i.e., the Richardson potential

TABLE I. Decay rates of q, , g,', r)b, r)'„~2g and 2y and g, , gI g, g,'~2y with QCD corrections
for g„q,', rib, rjb. The quark masses are m, =1.57, mb =4.9, m, =0.35, m, =0.55 GeV. The QCD
potential scale A~ =0.40 GeV. The parameters for the QCD interaction are Ir, =0. 15,
a, (g, ) =a, (g,') =0.15, a, (gb ) =a, (gb ) =0.13. The parameters of the Coulomb interaction are
v, =0.18, a,z——0.52.

gb ~2g (MeV)
~2y (keV)

b ~2g (MeV)
~2y (keV)

g,'~2g (MeV)
~2y (keV)

g, ~2g (MeV)
~2y (keV)

QCD
@=0.25

1.6
0.17
5.0
0.52
3.1

3.6
13.1
14.8

QCD
t =1.0

With QCD
1.5
0.16
4.6
0.48
2.7
3.2

1 1.5
13~ 1

Coulomb
@=1.0

correction
1.6
0.17
6.2
0.65
3.0
3.4

1 1.8
13.2

Schrodinger

2.4
0,25
5.6
0.59
4.2
4.9
9.5

1 1.1

Experimental

(8

11~ 5+4.3
9.2+3.8

g,'~2y (keV)

g, ~2y (keV)

gl ~2y (keV)
pl~2y {keV)

0.11
2.96
0.62

25.4

Without QCD correction
0.10 0.16
2.37 1.84
0.62 1.10

20.7 15.5

0.36
1.45
3,2

16.6
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16m

27

q ln(1+q /Aa )
(4.18)

We use the same Az parameter and compute without
any cutoff.

In the comparison of the relativistic results with the
Schrodinger results for the Richardson potential in
Table I we find the following.

(a) For the 1S states the relativistic results start out
smaller than the nonrelativistic in the b system, but, as
the quark mass scale decreases, end up larger.

(b) For the 2S states the relativistic results are smaller
than the Schrodinger results, dropping from 63 ja at the

to 19% for the q&. This effect we find is due to the
delocalization of the annihilation away from zero separa-
tion, which increases as the exchanged constituent quark
gets lighter.

The above effect arises from the inclusion of the full
relativistic propagators in Eq. (3.6) instead of replacing
them by —Mm or —qm in the nonrelativistic (NR) lim-
it. In Eq. (3.10) the logarithm term arises from angular
integration over the relativistic propagators. The NR
limit gives the integrand

model, the g, g', and ~ state are considered as mixtures
of6

iN)= —(iuu)+ idd)), iS)= iss),v'2

i
G ) =gluon bound state,

with coefticients

i q&=x„ i N &+ Y„ i
s&+z„

i
G &,

iq'&=x, . iN&+Y, is. &+z„.
i
G&,

x, IN&+ Y, is&+z, IG)

(5.1)

(5.2)

& g'c & = (-', +,')xc„+-,' Yc, ,

where the C~ and Cs in Eq. (3.10) arise from solutions
to separate bound-state equations for the unmixed

i
N )

and
i
S) states. The values we find are

For the two-photon decay, g, g', or ~ resulting from the
charged

i

N ) or
i
S ) parts we have for Eq. (3.11) with

the appropriate X and Y:

&g'c) =x(o
i

g'c iN&+ Y&o
i

g'c
i
s&,

(5.3)

~+(a b)= g—o .m2 2m C& ——0. 129 CxeV', Cs =0.155 GeV' (5.4)

The momentum integral then gives g(0). The relativistic
form alters the larger p ~ m momentum region. For 2S
waves where the momentum-space wave function has a
node and changes sign, the decrease due to the loga-
rithm in Eq. (3.10) leads to further cancellation and a de-
creased amplitude.

As a test of whether the asymptotic-freedom
modification of the gluon exchange is relevant at these
energies, we also calculate the decay rates using a rela-
tivistic Coulombic plus linear interaction, which is a rel-
ativistic generalization of the Cornell potential. The
relativistic vector interaction is 4m', ff/q and the scalar
part is the linear potential. We use the same parameters
as those used in the Cornell calculations: namely,
cx,~=0.52, ~, =0. 1826. These results are listed in Table
I under the column labeled Coulomb. The closeness of
the results of the asymptotic freedom and Coulombic
vector interactions show that these annihilation results,
although occurring at short distance, are not evidence
for the asymptotic-freedom form of the interactions.

V. TWO-PHONON DECAYS OF g, g',
AND c AND MIXING MODELS

Although we have treated g and g' relativistically in
terms of their valence qq structure, we have not included
many important features such as the annihilation multi-
gluon intermediate states, ' more than three state mixing
or dynamical multichannel mixing. ' We will, however,
show the restrictions on mixing that our treatment with
the simple model of g&, gz, and a gluebaH receive from
the two-y decay rates of the g and g' (Ref. 18) and the
bound on the two-y decay rate of the c. ' In the simple

with corresponding masses

Mz ——0.76 GeV, Ms ——0.96 GeV .

It is important to note the relativistic result that the nor-
malization conditions for the

i
N ) and

i
S ) states in-

volves the eigenvalue masses Mz and Ms in Eq. (2.14) in
a/&M, b /&M, and these masses must be used for each
basis state separately in forming C& and Cs in Eq.
(3.10). This is difFerent from the nonrelativistic form

0 2

I NR=48~a (g )
m„

(5.5)

(5.6)

with similar equations for g' and ~ decay, where

&2Cs/(5C~)—=q =0.34 . (5.7)

Using the experimental rates' ' on g and g' and the
bound on ~,

where the mixed-state mass occurs. The component
rates for g&

——
i
N ) and g, —:

i
s ) decays separately are

listed in Table I.
We include in the decay rate in Eq. (3.11) a higher-

order QCD-correction factor r which we consider un-
known at these low energies but assume it is the same
for all of these decays in order to complete the analysis.

This gives
2 '2

1 5 &2 Cs
I (g 2y)=r48na ——C~ X + Y

&2 9 " 5 C~
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I (i)~2y)=0. 56 keV,

I (i)'~2y)=4. 4 keV,

I (i~2y) &2.2 keV,

we have the conditions from Eq. (5.6)

X„+qY„=O.165/r' =C&,

X„.+q Y„.=0.46/r ' =C&,

X, +q Y, =—C3 &0.33/r'

(5.8)

(5.9a)

(5.9b)

(5.9c)

gives the bounds

0.21 &r &0.31 . (5.12)

For the range of values of C3 or I (i.~yy) which is
allowed by the bound, Eq. (5.8), we now find the restric-
tions on the mixing parameters. There are six indepen-
dent variables, X's and Y's, and five independent condi-
tions, Eqs. (5.9) and (5.10) related by Eq. (5.11). For
each choice of C3 or I (i~yy) we have a range of solu-
tions as a function of one independent variable, say X„.

By squaring and summing the equations in (5.9) and us-

ing the orthonormality conditions

X„'+X„.'+X, ' = 1,

X„Y„+X„.Y„.+X,Y, =0,
we get

1+q'=C, '+, +C, '

(0. 165) (0.46) 2+C,'.
r r

(5.10)

(5.11)

Yq'

1.0—

0.5—

(a)

This equation relates r to C3.
Using 0 & C3 & (0.33) /r of Eq. (5.9) in Eq. (5.11)

0.0
0.0

I

0.5

I.O—

Yg'

I .0

0.5 0.5—

0.0 0 X&
0.0

80
1 00

—
I 20

.-I40
I.O

-0.5 -0.5—

4

-I.O - I,O—

FIG. 2. Solutions for mixing parameters —Y„as a function
of X„ for the cases I (~~2y ) =2.2 keV (solid line) and
I (~~2@)=0 (dashed line). The corresponding 0& mixing angle
is also shown.

FIG. 3. Solutions for mixing parameters Y„and X„ for the
cases I (~~2y)=2. 2 keV, 1.1 keV, and 0 as solid line, dot-
dashed, and dashed lines, respectively. (a) corresponds to the
(+ ) branch in Eq. (5.13) and (b) to the ( —) branch.
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Solving the set of equations for X„as a function of X„,
gives

I.O

(5.13) 0.5

The boundaries on X„occur when the square root in Eq.
(5.13) vanishes:

+q ( 1 + tI
2 C 2

)
1 /2

X—= 1

1+q
(5.14) O.O

O.O
I

0.5

The curves for X„versus Y„arise directly from Eq.
(5.9a) with r depending on the assumed value of C3.
These are shown in Fig. 2. The curves for X„versus
Y„ from Eq. (5.9b) are shown in Figs. 3(a) and 3(b).
Points in Fig. 3 are connected to those in Fig. 2 by Eq.
(5.13) as shown in Fig. 4. For I (t~2y)=2. 2 keV, 1.1

keV, or 0, the r values are 0.31, 0.24, and 0.21, respec-
tively.

The standard mixing angle analogous to the Cabibbo
angle for the mixing of g8, g&, and 6 to g, g', c in a 3)&3
Kobayashi-Maskawa (KM) matrix analog can be ob-
tained from

FIG. 4. Connection of values of X~ to those of X„as given

by Eq. (5.13). The dashed curve is for I (~~2@)=0. The
upper and lower solid curves are for the (+ ) and ( —)

branches of Eq. (5.13) with I (~~2y) =2.2 keV.

We see from Figs. 2 and 3(a) that for small 1 (t~2y)
there are solutions near the circles where there is little
glueball mixing into g and g and with mixing angles in
the range —5' to —20 .

cosl9, = & ri
~

7J s & = & ri
~

1V &
—( —,

'
)
'"

& 7J
~

5 &,
(5.15)

I9, = —arccos —X —( —') ' Y
3

where the minus sign arises because of opposite signs in
the definition of the mixing angle from the Cabibbo an-
gle.
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