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Energy loss in general relativity
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Implicit assumptions regarding continuity in energy-loss calculations in general relativity are exam-
ined. The Arnowitt-Deser-Misner energy integral is treated in a new manner as a universal vehicle
for energy loss. Two explicit examples are given: the electric dipole radiation flux is computed using
general relatiuity as well as the gravitational-radiation flux from a linear mass quadrupole oscillator.
In this approach, the latter is seen as a nonlinear problem in the sense that the lower-order metric
serves as a source for the required order metric as computed within the wave front. Logarithmic
terms which threaten to induce divergences, as has been found in other works, are averted by func-
tions of integration which are required to sustain the gauge conditions and finally yield the usual
fluxes.

I. INTRODUCTION

The role of energy has been one of the central issues in
general relativity. Much effort has been devoted to the
study of its positivity, its localizability, and the measure of
its Aux in radiative systems. In the early years, the analo-

gy with electromagnetism was used by Einstein' and oth-
ers to express the gravitational energy Aux in terms of a
pseudotensor. A variety of such complexes were subse-
quently developed but many researchers regarded these
with suspicion because of their noncovariant nature. Ein-
stein defended his pseudotensor on the basis of the
Lorentz covariance of the total four-momentum derived
from it, and Eddington added further support by demon-
strating agreement between the pseudotensorial energy
Aux and the radiation damping of a radiating source.

Gravitational energy loss was generally regarded as be-

ing on a more secure footing after Bondi associated mass
loss with a news function using a well-adapted system of
coordinates with retarded time. The work of Bondi can
also be regarded as support for the pseudotensor because
Madore (and one of the present authors later indepen-
dently for a particular case) showed the equivalence of the
news function to the pseudotensor.

In more recent investigations, interest has focused upon
the relationship between the Bondi mass which diminishes
in the presence of "news" and the Arnowitt-Deser-Misner
(ADM) mass which is a constant for a system when cal-
culated with certain specific asymptotic properties. ' In
this paper we develop the connections between the
different quantities associated with energy in general rela-

tivity in a new manner. We will see the limitations of the
pseudotensor and by identification, the news function, as a
vehicle to express loss. We will see how the ADM mass
can be treated in a different manner to compute energy
loss.

This treatment is used to calculate the energy loss from
two well-known prototypical systems: an electromagnetic
radiation energy loss from a linear charge dipole oscillator
and a gravitational-radiation energy loss from a linear
mass quadrupole oscillator. These examples are highly
instructive both for their similarities and differences which

will be developed in detail. In both cases, the method en-
tails the determination of the metric to the required order
within the expanding wave front. In the electric dipole
example, it is a linearized gravitational problem in that
the source is the electromagnetic Maxwell stress-energy
tensor of the electromagnetic radiation which is the source
of energy loss. However, in the mass quadrupole example
where it is gravitational radiation which is carrying the
energy, the problem is nonlinear for this method with
gravitational stress energy as the source of the metric to
the required order.

In spite of these differences, there is a strong analogy,
indeed similarity, between the two calculations. Both in-
volve logarithmic terms which threaten to induce diver-
gences and both are saved by functions of integration
which are required to sustain the gauge conditions and
finally determine the correct cruxes.

In Sec. II we develop the energy-loss expression, ac-
counting for the potential contributions from discontinui-
ties in the derivatives of the metric. We then show how it
is connected to the ADM energy expression. The ADM
energy-loss expression with harmonic coordinates is used
in Sec. III to calculate electromagnetic radiation Aux from
an electric charge dipole oscillator. In Sec. IV the more
complicated problem of the mass quadrupole oscillator is
addressed, also in harmonic coordinates. In both exarn-
ples, the usual answer results. This might suggest that
harmonic and admissible coordinates can generally be
connected by transformations which merge with the iden-
tity transformation as r~ ~. This is because the energy-
momentum complex is invariant under such a transforma-
tion and the admissible coordinate condition assures that
discontinuity terms will not contribute in the energy ex-
pression.

We end with a summary and concluding remarks in
Sec. V.

II. EXPRESSIONS FOR ENERGY LOSS

A straightforward approach to the energy-momentum
complex and associated conservation laws is given by
Weinberg. The metric tensor g;k is decomposed into a
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Minkowskian part g;k and a remainder h, k (latin indices
range from 0 to 3, greek indices from 1 to 3),

gik —
haik + hik (2.1)

~ik" 2nik—&
' ~j=8~G(Tik+&ik) . (2.2)

The composite source is labeled ~;k and its indices, as well
as those of other nontensorial quantities, are raised (and
lowered) with the Minkowski metric q (g;k ). It is noted
that since the left side of (2.2) has a vanishing ordinary
divergence, the right-hand side does as well,

and is substituted into the Einstein field equations. The
part of the Einstein tensor which is 1inear in h;k is re-
tained on the left-hand side and the nonlinear part is
grouped into a "pseudotensor" t;k. This is brought to the
right-hand side where, in conjunction with the nongravita-
tiona1 energy-momentum tensor T;k, it serves as part of
the source of h;k in a nonlinear manner:

—f r 'd V = —I|Is r'"dS„—fD (r'" —v "r' )dS„(2.9)

g'"k =0, haik =hik ——', rlik hj'—. (2.10)

as a general restatement of (2.4). At this point, it is easy
to see that there will be discontinuity terms for which
their casual neglect as in (2.4) ultimately has no effect.
For example, in the T' parts of ~' for nonrelativistic situ-
ations, the integrand of the D term vanishes because ener-

gy and linear momentum fiux densities are, respectively,
equal to velocity times energy and linear momentum den-
sities. However, there is no apparent basis for ignoring
the D term in general.

Let us now focus upon the i =0 energy expression and
develop an expression for the time rate of change of ener-

gy in a volume which approaches infinity while we allow
for some loss due to radiation which crosses the sphere S
at infinity. It is simplest to work in harmonic coordinates
expressed through the gauge conditions

~'k =0,
and hence there is a conservation law of the form

(2.3)
The Einstein equations then simplify to inhomogeneous
wave equations

O,

dt v
(2.4)

a'g'"= 16mGr', . —=V—
at2

(2.1 1)

for a total energy-momentum four-"vector" I" (which is
ultimately a Lorentz four-vector):

S"= f r'd V
v

(2.5)

—f fdV= f dV+ fDdS vf,
dt v v Bt

f V FdV= psdS F+. fD dS.F,
v

—fD dS F= )D dS.F p.+ fD dS v(V. F) .
d
dt

(2.6)

(2.7)

(2.8)

In (2.6)—(2.8), fD denotes the discontinuity in the in-

tegral in the sense of inner minus outer over the surface D
in which f and F are discontinuous.

Equations (2.3), (2.6), and (2.7) yield

for all matter and fields including gravitation. From (2.4),
z'" is interpreted as the corresponding energy-momentum
Aux density. Various other useful properties are cited by
Weinberg as well to support the identification.

All of this appears to be reasonable as it stands but
what has been overlooked in the derivation is an implicit
assumption of overall continuity. Indeed, let us assume
that over some closed surface D (within V), which has ve-
locity v, that r'" is discontinuous. It is simple to envisage
such a situation. If there is matter with sharp boundaries
within V, then T will be discontinuous. For other situa-
tions, it is still commonplace for the second derivatives of
the metric to harbor discontinuities and since the gravita-
tional part of ~' has second-derivative terms, it is only
reasonable to allow for discontinuities in z' .

The present authors' have developed the required
machinery for this in theorems for time derivatives and an
extended Gauss theorem relating to retarded integrals
with discontinuities. Here we require only their simple
forms over constant t slices:

With Eqs. (2.6)—(2.11) we find after a moderately lengthy
calculation, that the energy loss can be expressed as

E=—f r dV
dt v

ps dS„(4',h'+ f,„)

+ ItI D dS„(p g +g „) (2.12)

From this expression we are in a position to invoke a sim-
ple sufficient condition which casts the energy-loss expres-
sion into the form of a surface integral over the bounding
infinite sphere. If the first partials tti g and g„are always
continuous over D, then the fD term in (2.12) vanishes
and we are left with a simple time derivative of an S in-
tegral. It is interesting to note that through the gauge
conditions (2.10), this integral reduces to

E= fs (h p
—hp )dSp

16~G
(2.13)

ik ~ jik
8m.G

gjik g ijk (2.14)

Then, using (2.8), the D term of (2.9) which we now call
A is

which is precisely the ADM energy expression. The
ADM energy expression also arises more generally,
without the assumption of harmonic coordinates, but the
implicit continuity conditions are more complicated.

The efficacy of choosing continuity conditions on first
derivatives suggests another approach. We first note that
the ~' complex can be expressed as an ordinary diver-
gence of a third-rank quantity Q~'" which involves first
partials of h':
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A = —ft) dS Q " + fg)dS Q "
8~G dt

(2.15)

Q "'=—'(&XF)", (2.16)

where

F'=h —h p, F =h i —h'
7

F3 I lp p2p (2.17)

and hence the second integral in (2.15) vanishes by
Stokes's theorem. Moreover, since Q~'" is constructed
from first derivatives of the metric, it follows that in
Cartesian coordinates which are also admissible in the
sense of Lichnerowicz, " namely, that the metric and its
first derivatives are continuous in these coordinates, the
first term in A vanishes as well and hence A is zero. In
this case, the traditional (2.4) describes the energy loss.
Now we note that asymptotically, ~' is invariant to first
order in e under the transformati»

From the antisymmetry property in (2.14), it follows
that Q " has a vanishing divergence, Q "~ ——0, and
hence Q " can be expressed as a curl. Explicitly,

d=kcz cosset . (3.1)

T = (F. +H ) T "= (ExH)",1 1

8m. 4n
(3.2)

Interestingly, we can compute the electromagnetic energy
loss from this system using general relativity. Since the
system radiates electromagnetic energy, it loses mass and
hence this loss must show up in the change in the ADM
expression. This is a very difficult method to apply to
such a simple problem but it is very useful for the impart-
ed insight and confidence in the methods described ear-
lier. It is most convenient to use harmonic coordinates
for the calculation and E in this system is then given by
(2.12). Let us assume that they are also admissible or, at
least more weakly, that on a time average, the rate of
change of the D term in (2.12) vanishes. Then, if the
resultant answer is correct, we have justified the assump-
tion of the neglect of the D term.

On this basis, the Einstein equations are in the con-
venient form of (2.11) where the dominant parts of the
source for g'" within the expanding wave front are the ap-
propriate components of the electromagnetic field energy-
momentum tensor g"q T,b formed from the oscillating
electric and magnetic field vectors orthogonal to the flux:

X ~X =X +E (X) (2.18)
where

where e'(x)~0 as r~ oo. This follows from Weinberg:
the change induced in Q"" is H= dXn, E=H&(n

Rp
(3.3)

g~jik D j1ik
, I (2.19)

where D'' is totally antisymmetric in its first three in-
dices. Hence, under (2.18),

Itk tk tk+ g tk (2.20)

where

(2.21)

where the last equality follows from the antisymmetry in l
and j of D'J' .

Hence it follows that (2.4) can indeed by used to com-
pute the energy loss in any system which can be
transformed into admissible Cartesian coordinates by
(2.18). At this point, we are in a position to see what has
been implicitly assumed in various calculations in the
past. It is often most convenient to use harmonic coordi-
nates and this has been the standard practical method.
When these are used with (2.4) to compute an energy flux,
the correct answer will be obtained if these harmonic
coordinates are transformable into admissible Cartesian
coordinates by (2.18). This is a sufficient condition, and
has been implicitly assumed to hold. The discontinuity
term might vanish for some other reason but at any rate,
the question of its presence of absence clearly must be ad-
dressed.

g= t —R, g =—t + r; B,C are functions of integration.
The functions of integration are determined by the

demand that g " satisfy the gauge conditions (2.10) which
are the basis for (2.11). This gives

B=- sin2mg (1+ ln2Ro), C=O2' (3.6)

in the neighborhood of the sphere R =Rp~~. It is in-
teresting to note that the logarithmic term which the
gauge conditions require for the function of integration
combines with the logarithmic term in the solution (3.5)
for P

" to avert a divergence.
If we assume that the D term can be neglected, then E

should be given by the rate of change of the ADM mass,
the first integral of (2.12). This assumption gives

and n is a unit radial vector. From Eqs. (3.1)—(3.3) and
(2.11), the required components of P'" satisfy

4'
Qg "= g "(8,$) cos co(t —R),

R
(3.4)

g = sin 8(1, sing cosg, sin8sing, cosg) .

The asymptotic solution of (3.4) can be expressed as

g" g+ InrI+B(g)+ C(ri), (3.5)
R 2'

III. LINEAR CHARGE DIPOLE OSCILLATOR E— (3.7)

%'e first consider a system with which we are complete-
ly familiar from Maxwell theory, an electric dipole oscil-
lating with frequency co along the z (polar) axis:

which is precisely the well-known dipole energy flux rate
calculated by traditional methods of Maxwell theory.
Thus, at least for this problem, the neglect of the D in-
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tegral has been justified. Electromagnetic energy loss has
been calculated using general relativity. It is to be noted
that it is a linear problem in the sense that the lowest-
order time-varying part of the metric determines the ener-

gy fiux. The source of |tj" in the wave front is the
"matter" part T of the total complex ~, constructed
from the electromagnetic wave fields. The nonlinear t "
part would contribute only higher-order corrections to the
dominant dipole loss (3.7). This is to be compared with
the gravitational-radiation energy loss described by a sim-

ple example in the next section.

IV. LINEAR MASS QUADRUPOLE OSCILLATOR

We now consider the closest physical mass analogue to
the charge dipole: two masses in oscillation along the z
axis. ' ' As in the electromagnetic example, we wish to
describe the gravitational radiation energy loss from this
system by (2.12) rather than by (2.9). This is a much
more involved calculation and it is instructive to trace it
through.

The nature of the energy which is carried on the wave
front is now gravitational rather than electromagnetic as
in the charge dipole example. The fields which play a role
analogous to that formerly played by E and H are the
lowest-order time-dependent parts of the metric which
have as source, the energy-momentum tensor T' of the

I

mass quadrupole oscillator. In harmonic coordinates, this
is described by (2.11) with r'" equal to T'" since the pseu-
dotensor vanishes to this order. The solution is well
known' '

= A cosa'(t R—), P =n3$
F00 2y33

2' 2GI

R

(4.1)

(4.2)

It is important to note that it is not this P'" which gives
the energy loss via (2.12). Clearly, (4.1) in (2.12) would
vanish on a time average. In traditional calculations, (4.1)
is used to construct the pseudotensor and the energy loss
is then calculated via (2.9). This is in fact the direct
analogue of the Poynting vector calculation in elec-
tromagnetism. The pseudotensor has terms which are bi-
linear in the g'" components and these have a nonvanish-
ing time average. Clearly, to match this with (2.12), we
require the second order -dynamic solution of 1''" and this
is what distinguishes this problem as being nonlinear in
contrast with the former problem of the charge dipole.

The second-order P'" is found using (2.11) but now the
source within the wave front is the t'" formed from (4.1).
(Note that the T'" part of the r' vanishes in this region in
contrast with the former problem. ) The form of tk in
terms of g'" is given in Eq. (4.3) of Ref. 15:

g irGtik 2 P (@ik Im +@lm, ik @li mk gmk li )+ g (@Im,k glk m + gmk i )(@i +4,i 4i™

g 'haik ( itlm, n gin, m +Pmn, i )(0 '" 0 "' +g

,' [haik (4™0—im—A',i' ,' 0—,(4'+ 2—&—™Aim,n '")+40,ik + ,' 0 i 4,k-
+ ttifik, i + haik itj I + 24ik I 0 4i O, lk 4k Qli gli, ,kg 4lk i 0 ]+0(0

(4.3)

—8vrGt00

2g 2

(1 n3 )—
8

[3 cos t0(t —R)—1]

(4.4)

{a=1,2, 3). From this point, the calculation proceeds in a
very similar manner to that of Sec. III. Equations (2.11)
and (4.4) yield the analogue of (3.4):

qok

2

GIco
R j"[3cos co(t —R) —1],

j"= sin 8(1, sin& cosp, sinosinp, cos8),
(4.5)

and the solution in the neighborhood of R =Rp —+ m
which satisfies the gauge conditions (2.10) is

r

Ok «~~')'
4R g+ sin 2cog ln

3
2' 0

(4.6)

After a rather lengthy but straightforward calculation,
Eqs. (4.3) with (4.1) yield

—8~G 2 2n~ 2

2g2 to =(1—n3 ) [3 cos co(t R) 1]

This solution is the analogue of (3.5) and (3.6) but unlike
the dipole solution, it is the iterated first nonlinear dy-
namic part of the metric.

Finally, if we neglect the D term, (2.12) with (4.6) yield
the time-averaged energy-loss rate

E
&5

GI co (4.7)

which is the energy-loss rate found from (2.4), or even
more simply, by the quadrupole formula.

V. SUMMARY AND CONCLUDING REMARKS

In this paper we have illustrated that the standard
energy-loss picture balanced by a Aux over the asymptotic
sphere implicitly assumes the vanishing of certain discon-
tinuity integrals. The Aux in that case is seen to be the
time rate of change of the ADM integral. Although the
traditional approach is to treat the ADM integral as the
invariant mass, this presupposes that one evaluate it
beyond any wave front. However, if we allow the wave
front to cross the ADM surface, then the ADM expres-
sion can be treated like a universal Poynting vector.

From Weinberg's equations, we showed that the ~'
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complex is invariant under coordinate shifts (2.18) which
merge asymptotically with the identity. This led to the
conclusion that the asymptotic flux integral does measure
the energy loss in any system which can be so related to
admissible coordinates for it is in the latter that the first
partials of the metric are continuous.

We then used the ADM integral to compute the elec-
tromagnetic radiation energy loss from an electric dipole
oscillator. Since the radiative flux implies an energy loss
and hence a diminution in mass, the flux in the ADM in-
tegral, evaluated with the metric within the radiative wave
front, must measure this mass loss. Harmonic coordi-
nates were used to find the metric and logarithmic terms
which threatened to induce divergences were seen to be el-
iminated by corresponding functions of integration re-
quired to sustain the gauge conditions. The ADM mass
loss was seen to be precisely the standard dipole formula
(3.7) calculated very simply in Maxwell theory.

The corresponding gravitational-radiation energy flux
was then computed with the ADM integral. This was
seen to be a considerably more involved problem in that
the source of the required order field in the ADM integral
was the gravitational stress-energy pseudotensor in the
wave front, which is quadratic in the lowest-order dynam-
ic metric. This is in contrast with the electric dipole prob-
lem where the source is the much simpler energy-
momentum tensor of the radiative electromagnetic field
within the wave front. In this sense, the electromagnetic
problem is seen to be linear in contrast with the gravita-
tional problem which is nonlinear. Apart from this, the
two calculations, including the logarithmic aspects, are to-
tally analogous and in the gravitational problem, the usual
quadrupole answer results.

It is tempting to conclude that these results vindicate
the neglect in general of the surface discontinuity terms
discussed earlier. This would be overly simplistic. In the
electromagnetic problem, although the actual dipole
source could have a discontinuous charge-electrovacuum
boundary, the flux for such a system must be virtually
identical to that generated by the same source with the
charge at the interface smoothed by a continuous charge
density over a thin layer. Hence there really could not
have been any expectation of a difI'erence in the flux from
that of (3.7).

In the mass quadrupole problem, the corresponding
smoothing of the mass distribution might not necessarily
lead to the smoothing of the more complicated r' source
complex. The fact that the answer coincides with the usu-
al one derived by other methods is an inadequate
justification because those other methods themselves rely
upon the very same implicit smoothness. While the likeli-
hood is that these discontinuity terms ultimately do not
contribute in the energy balance equations, a rigorous
demonstration would be useful. This could be achieved,
for example, if it could be demonstrated that harmonic
coordinates can be found which are simultaneously ad-
missible or linking a harmonic system to an admissible
one by (2.18) which asymptotically merges with the iden-
tity.
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