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The energy density of the chromoelectric field generated by the static qq pair is computed in the
SU(2) lattice gauge theory. The energy density in the central region of the Wilson loop shows
significant deviations from the Coulomb behavior and approaches a constant value at
R =0.8 —1.1 fm.

5 (x ) = ( WP, —WP„), (2)

where the position of the reference plaquette P
„

is
chosen such that the correlation function already factor-
izes ( WP„)=( W)(P ). In practice this happens well
within the volume available with present lattices. The
reason this gives an improvement is simple: while giving
the same average, the diff'erence in Eq. (2) fluctuates less,
since the main fluctuations of the product 8'P come
from the S' itself. This extremely simple modification
reduces fluctuations due to the projector, and hence
more closely approximates the ideal algorithm.

The above trick reduced statistical errors by a factor
of 10. Together with the multihit measurements, we di-
minished fluctuations by a factor of 15, which allowed us
to measure 5~ for W's up to 6X6 at p=2. 5. For the
first time one can study the energy distribution in the
"central region" of the Wilson loop, where confining
strings should be direct1y seen.

We have simulated pure SU(2) Yang-Mills theory on a
14X 15 lattice, in the p( =4/g ) range 2. 3 (p (2. 5.
Correlations of the MXM Wilson loop and elementary

Monte Carlo studies of the space structure of the
non-Abelian strings are customarily done by measuring
the energy density in the presence of a static qq pair. On
the lattice it is approximated by the correlation func-
tion'

& WP„)—& W&&P&
Pw(x)

( W)

This technique, however, is limited by the rapid falloff of
the expectation value of the Wilson loop 8' as we move
toward larger separations of the static qq pair. The
source of this difhculty is well understood, and, unfor-
tunately, no satisfactory solution of this problem has
been proposed yet. The ultimate algorithm should gen-
erate field configurations corresponding to a source and
sink at the qq locations. This is not available in non-
Abelian lattice gauge theories. Hence we must use the
Wilson loop in Eq. (1) to project the required field
configurations out of all possible ones generated by the
standard lattice Monte Carlo.

We have pushed up the attainable qq separations by
modifying the brute-force method in the direction re-
quired by the ideal algorithm. To this end we propose
to measure, instead of the numerator in Eq. (1), the
difference
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where A, =&det(X) and where X, is the neighborhood of
Ut, i.e., UtXt ——gt ~t Ut„and the summation extends
over all plaquettes containing the link l. It is well
known that this prescription gives the same ( W) if the
one link adjacent to each corner of & is left
unmodified. ' In the case of the correlation ( WP), the
same idea applies: ( WP ) = ( WP ) provided P does not
have links common with R. One could modify the re-
placement, Eq. (3) such that it applies also when W and
P overlap. However since the continuum energy density
is not well defined along the qq world line anyway, we
have measured ( WP ) and used only nonoverlapping
configurations for further analysis.

Depending on p and the size of W, the multihit tech-
nique reduces errors by a factor 2 —5. Together with our
choice, Eq. (2) for the measured object, we reduced fluc-
tuations by a factor of 15 while increasing the CPU time
only by 60%. Overall efficiency of our algorithm is
therefore 140. This substantiaI reduction of the noise al-

plaquettes were measured for 3(M (6. Some data on
the 7&(7 loop were also taken; however, they serve only
as an illustration of the string instabilities caused by the
finite size of the lattice (see below).

Field configurations were generated using the SU(N)
program of Creutz which was kindly made available to
us by the author. Creutz's recent modification of the
Metropolis algorithm was implemented. It reduces
significantly sweep-to-sweep correlations by exploiting
the freedom in the choice of the Metropolis proposition
U' (Ref. 4).

To decrease statistical errors further, we have used the
analytic version of the multihit measurement technique
proposed by Parisi et al. In the case of the measurement
of the Wilson loop one replaces

W=g U, ~W=ff'U, (3)
1E I-

in the measured quantity, where

36 3297 1987 The American Physical Society



3298 J. %'OSIEK AND RICHARD W. HAYMAKER 36

e(R) =P

as the function of the qq separation R. Contributions
from other components of the E and B fields were
neglected in accordance with the findings of other au-
thors. ' ) Figure 2 shows our results for e plotted versus
R in physical units. We have used AL /&o. =0.013,
&o.=0.42 GeV in order to fix a scale of the lattice con-
stant a (Ref. 1). Not surprisingly, data from the 3X3
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lowed us to perform all the computations on the FPS-
264 vector computer which is approximately ten times
slower than the Cyber 205 in our application.

Figure 1 shows our raw data for the correlations
5~(x ) as a function of a position of a plaquette P, for
various sizes of O'. Only E~~ was measured; hence, P
was always kept parallel to the 8 plane. Transverse dis-
tances are set to zero and the time slice is taken to lie in
the middle of 8 .

The existence of the non-Abelian Aux is well estab-
lished inside all measured loops. Note however the
change of the vertical scale as we move to larger loops.
Bearing in mind the bias introduced by the multihit
measurement, we will use only the data from the middle
bins of Fig. 1 for the subsequent analysis.

It is apparent, from Fig. 1, that the short-distance
Coulomb-type contributions dominate. (Unbiased, by
the multihit procedure, data show yet larger peaks
around the qq positions. ) Only for larger loops
(M =5, 6) they become separated sufficiently to reveal
the central region. To check the scaling we have plotted
the energy density in the central region
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loops do not scale, especially for smaller P. On the other
hand, 4~4 points, together with the correlations with
the bigger loops, seem to cluster around the common
line. To achieve this agreement however, we had to in-
clude the "geometrical correction factor" for the
(evenXeven) loops which was the same for all three p
values, and agrees with the one introduced for 4)&4 loop
by Fukugita and Nyuia (5=1.44) in their analysis of the
transverse distributions. ' We have found that the
correction needed for the 6X6 loop is smaller (5=1.05)
confirming their finite-size nature. Geometrical interpre-
tation of these factors was discussed in Refs. 1 and 7.

Given the approximate scaling, the universal function
e(R) allows to distinguish between the Coulomb versus
linear nature of the energy density in the central region.
Even at small qq separation it falls slower (-R ) than
the canonical ( —R ) Coulomb contribution. Slow
( -R ) dependence, at these separations, emerges natu-
rally if strings expand linearly in the transverse direc-
tions while maintaining constant o. Such a behavior
was indeed found earlier, ' and is consistent with our
analysis of the transverse directions (see below). For
larger R, e(R ) seems to Batten at R =0.8 —l. 1 fm

qq
(Ref. 8). Finally, the total energy contained in the one
unit of the transverse slice of the string is compatible
with the string tension measured independently by other
authors. ' '

The energy density falls rapidly in the directions
transverse to the W plane. In our /3 range, correlations,
Eq. (2), practically vanish for transverse separations
larger than four lattice units, with large statistical errors
at x~=3. Consequently, the mean-square thickness of
the string'

R [fm]

FIG. 2. The energy density Eq. (5) as a function of the qq
separation R in physical units. Solid line represents arbitrarily
normalized Coulomb prediction.

FIG. 1. Correlation function, Eq. (2) as the function of the
position of the plaquette x, in lattice units, for the qq separa-
tion varying from 3 (top) to 6 (bottom). One quark is always
located at x, =4.

f X1 E(X )d Xg'
a (X, ,X~)=2

C(X )d X~
(6)

is not well determined, since it is sensitive to the poorly
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known values of e at larger x~. In the limited range of
x~, where our data are available, the energy distribution
is exponential rather than Gaussian. Therefore, instead

fof Eq. (6), we have measured the discretized version o
the logarithmic derivative at the origin

M M

bo
' =In

M M
, e~2'2''

(7)

which is more stable and also provides some, though
necessarily limited, information about the x ~ depen-
dence. Figure 3 shows bo plotted versus R in physical
units. Again data from the small (3X3) loops do not
scale, while larger loops seem to follow a common line.
Similarly to the previous case, e(M/2, M/2, 0t) for the
4X4 and 6)&6 loops required multiplicative correction
which turned out to be the same as before.

The precise relation between bo and a is unknown and
reflects our ignorance of the large-x~ region. If the ex-
ponential falloff continues, for the intermediate xz, our
value of bo would give a —1 fm. In this case the direct
use of the definition Eq. (6) coupled with the lattice limi-
tations severely underestimates mean thickness. For ex-
ample, only 10%—50% of the second moment is obtained
from the typically accessible xi range of (I —3)bo. This
explains very small values of a quoted in Ref. 1. Only if
we can reach the x~ range, where the Gaussian profile
shows up, "' one could use definition (6) with more
confidence. Exponentially diffused, at intermediate x~,
flux tubes may offer a simple reconciliation of the two
rather different scales appearing in this context. While
giving typically hadronic, mean thickness (I fm), they
also account for the thin (0.2 —0.4 fm), in the sense of the
total energy deposition, strings seen in the present lattice
calculations. The zeroth and the second moments of the
exponential distribution acquire contribution from vari-
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FIG. 3. The inverse slope of the exponential x~ distribution
plotted versus R in physical units.

FICx. 4. Color maps of the energy distribution at P=2.5.
Wilson loop size varies from 4X4 [top row (I)] to 7X7 [bot-
tom row (4)]. First column: the Wilson loop is in the
displayed plane. Second column: the displayed plane is
separated from 8' (of size 4)&4 and 5&5, respectively) by one
lattice unit in the transverse direction; "static view, " and the
"transverse section" of the qq string for the qq distance equal
to 6.
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ous x J regions explaining above difference.
Finally we would like to mention the usefulness of the

"color maps, " when presenting results of the lattice
simulations. It is often emphasized that one of the prob-
lems of the large-scale simulations is the huge amount of
the data which is difficult to present concisely. While
nothing can beat the regular statistical analysis of a par-
ticu1ar relation, clear qualitative representation of the
multidimensional function is also important. Figure 4
shows a series of the two-dimensional sections through
our hypercubic lattice with the value of the correlation
function, Eq. (2) represented by a color chosen accord-
ingly to the enclosed linear scale. The color scale at the
top runs from —1.5&10 to 4. 1X10 " for row 1,
—5.6)&10 to 1.1X10 for row 2, and —1.8)&10
to 2.6&10 for row 3. The color scale at the bottom is
for row 4 running from —1.9 & 10 to 5. 5 & 10
Typical errors for rows 1 through 4 are, respectively,
5 )& 10, 3)& 10, 7 &( 10, and 7 &( 10 . We have
found such maps very useful in the initial stage of the
analysis. For example, the dramatic effect of the finite
size of the lattice is immediately seen when comparing

energy distributions for 6&&6 and 7&&7 loops (rows 3 and
4). (The change of colors was chosen to correspond to
the variation of 5~ by one standard deviation. This ex-
plains fewer colors in row 4.) Emergence of the central
region inside the Wilson loop is clear and helps in choos-
ing data for further more precise analysis. Symmetry
under rotations in the 8' plane is also more readily seen
from Fig. 4 than from appropriate histograms. Yet
another example, is the clear effect of the multihit pro-
cedure on the short-distance part of 6~. Plaquettes at-
tached to the four links unaffected by the substitution (3)
are easy to recognize. Study of the more subtle effects
such as the string fluctuations might be possible in the
not so distant future.
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