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I discuss an order parameter for the chiral-symmetry restoration phase transition which may be
useful in computations of big-bang nucleosynthesis, a phenomenon which requires a finite
baryon-number density. This parameter is, strictly speaking, an order parameter in the large-N
limit, and distinguishes between a parity-doubled and a massless-fermion realization of chiral-
symmetry restoration. This order parameter may be evaluated at a zero net baryon-number den-

sity at 6nite temperature, and is useful as long as the baryon chemical potential p is much less
than the temperature T.

Recent work on the hadronization phase transition in
cosmology has shown that if there is a first-order chiral
transition then it may be possible that this transition'can
affect nucleosynthesis. ' A proper treatment of this
problem sho~s that it may be possible to quantitatively
explain the abundances of H, He, and He for a variety
of values of 0, unlike the case for a conventional compu-
tation of element abundances. Here 0 is the fraction of
matter compared to the amount needed for closure. These
element abundances may therefore be quantitatively ex-
plained, and the value of 0 may be chosen to be one
without recourse to schemes which involve nonbaryonic,
weakly interacting dark matter. This new description of
nucleosynthesis as yet fails, however, to explain the ob-
served abundance of Li.

The basic physics of this description involves the forma-
tion of a mixed phase of chiral-symmetric quark-gluon
plasma and hadron matter in a first-order chiral-
symmetry-breaking phase transition. As pointed out by
Witten, if the eII'ective mass of baryons in the quark-
gluon plasma is small compared to what it is in the hadron
gas, then the baryon number concentrates in the region of
quark-gluon plasma. Originally it was thought that these
regions of quark-gluon plasma might make strange-
quark-matter nuggets, 5 but detailed computations have
since shown that such nuggets are likely to diffuse away in
the subsequent evolution of the Universe. Nevertheless,
large-scale density fluctuations may survive until the time
of nucleosynthesis, ' and may affect the computation of
element abundances.

The degree of generation of density fluctuations in big-
bang cosmology depends crucially on the relative abun-
dance of baryon number in the quark-gluon plasma com-
pared to that in the hadron gas at baryon-number chemi-
cal potential p small compared to temperature T,

p/T —10 . If we define the net baryon-number density
to be p~ in the chiral-symmetric phase, p~ in the
symmetry-broken phase, then the quantity of interest is

p CS/p CB

Although the numerator and denominator of this expres-
sion both depend upon p, the ratio r is finite in the limit p
approaches zero.

We can understand the physics of the parameter r using
the example of an ideal gas of hadrons and of quark-gluon
plasma for one liavor of quark. In an ideal quark-gluon
plasma, ~here the fermions have effective masses which
are small compared to the temperature,

pcs T2

(We should be careful to note that even in the chiral-
symmetric phase of a quark-gluon plasma at high temper-
atures, in perturbation theory quarks acquire a mass
m-gT. This can occur and be consistent with the van-
ishing of 0 + because at finite T the fermion propagator
does not have a Lorentz-invariant form. ) In the hadron
gas phase, we have

p - (2mT) ' '~e1

21t'" T

For example, if we take T—150 MeV, and m —1 GeV,
then r —102.

This example shows that r may be a useful parameter
for distinguishing between the chiral-restored and -broken
phases. We can see this most simply in the limit of large
number of colors, N, . In this limit, baryons acquire a
mass proportional to N, since baryons contain N, quarks.
In an asymptotically free gas of quarks and gluons, the
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quarks have small masses. Therefore in the large-N, lim-
it, we might expect that

This large-N, example shows that the order parameter
r is most properly thought of as an order parameter for
the confinement-deconfinement phase transition present in
large N, . The difference between this order parameter
and the Wilson line or Polyakov loop order parameter is
essentially that this order parameter exists for light-mass
quarks avoiding the artifact of introducing heavy static
test quarks. Of course the Wilson or Polyakov loop may
be introduced into theories with or without dynamical
low-mass quarks, but the order parameter r is nice since
its physics is that arising from the reaction of light-mass
quarks. It also has obvious implications for probing the
nature of chiral-symmetry restoration, and has a simple
physical interpretation when chiral symmetry is restored
at finite N, .

The result of the previous equation can be evaded by
several obvious mechanisms. The first such mechanism
requires a second-order transition in the large-N, limit.
In this mechanism, the nucleon masses vanish at the
second-order transition in the hadron gas phase. In this
case, r 1, but if we considered the ratio of baryon-
number density just above the transition temperature to
the baryon-number density some finite temperature below,
then the ratio would go as e '. The ratio of these baryon-
number densities would be very rapidly varying near the
transition temperature. The physical application we have
in mind for this order parameter exists only for first-order
phase transitions. In finite-N, QCD for small-mass
quarks it is believed that this transition is first order, as
also seems to be the case in the large-N, limit. We shall
therefore not consider this possibility.

Another possibility is that there is a chiral transition at
a temperature below the deconfinement transition temper-
ature. In this case, the chiral-symmetric phase may be
composed of a gas of parity-doubled nucleons, each nu-
cleon with N, quarks in them, and of possibly some mass-
less non-parity-doubled nucleons. In this case r-1 if
there are no zero-mass baryons in the chirally symmetric
phase, since we expect that the parity-doubled nucleon
masses are of order N„ if the mass shift of the nucleons is
continuous across the phase transition. If the nucleons, in
fact, suA'er a finite mass shift and the masses decrease in
the chirally symmetric phase, or if there are massless
baryons in the chir ally symmetric phase, then
r —exp(N, ). For large N„we, however, expect that the
chiral-symmetry and confinement phase transitions should
occur at the same temperature. '

It is also possible that the deconfinement temperature
could occur below the chiral transition temperature, in
which case we would expect that there would be a transi-
tion between a phase of massless quarks and massive ones.
If the chiral transition were first order, we would expect
r —1 since the order parameter involves only unconfined
quarks, and should roughly be given by an expression of
order like that in Eq. (2). Put another way, in the chiral
transition within a deconfined phase, there is no require-
ment that the quarks be lumped together in baryons and

therefore no need for a singular order parameter.
The example of large N, shows that the parameter r

may be useful to disentangle the two possible realizations
of chiral-symmetry breaking, either massive parity-
doubled states, or massless fermions. It also appears that
the most likely possibility for r to be large across the phase
transition is when the confinement-deconfinement phase
transition is at the same temperature as that of the chiral
transition, or if the chiral-symmetry restoration tempera-
ture is below that of deconfinement. In this case if the
transition is first order, then r —e '. For the example of
the nucleon gas compared to a quark-gluon plasma, this
result seems quite quantitatively plausible. At finite N„
the concept of a confinemen-deconfinement phase transi-
tion in the presence of fermions becomes a bit cloudy.
Here what we presumably mean is that there is a good
deal of delocalization or lack of clustering of quarks into
localized color-singlet states across a first-order chiral-
symmetry restoration phase transition.

The difficulty about quantitatively estimating r is that it
seems necessary to compute in a region where perturba-
tion theory has broken down, and naive estimates are ob-
viously invalid. We might try to compute the baryon
number on the lattice, but at first sight this seems difficult
since there is as yet no fully consistent scheme for includ-
ing finite baryon-number density in lattice Monte Carlo
simulations.

We should notice, however, that we only need compute
the baryon-number density in the limit of p((T. In this
limit, we expect analyticity of the baryon-number density
for small p, and if so, together with the fact that the
baryon-number density is an odd function of p, these con-
ditions require that

where F(T) is some arbitrary function of T. If this is true
then

Trpb exp( PH+ Pp N)—
Tr exp( PH+PpN)—

Therefore, we obtain

(7)

x.g =Pg d'x&ps(x) pg(0)&,

where the expectation of the baryon-number density
correlation function is to be evaluated at zero baryon-
number chemical potential. The baryon charge operators
are to be evaluated at equal time. This quantity is a fer-
mion four-point function evaluated at finite temperature,
and can be computed by standard Monte Carlo methods.
Notice that the value of r is computed as the ratio of x's.

A representation for v~ which is useful for studying its

pg p pg =p peg
Bp

We shall return to the issue of analyticity in the following
paragraphs, which is essentially the issue of the finiteness
of the above expression.

To obtain an expression for (8/Bp) p~ ( „-0,we use
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analyticity properties is

xa P lim +II~(ko, k) .
k~0 ~p

(9)

H"' gives the correct result to one loop in perturbation
theory. To verify this to one loop, we write

glI (k', k)
In this expression, H"" is the baryonic current polarization
tensor. Using the transversality properties of H"", we see
that the zero-temperature contribution to xg vanishes as it
must, since, at zero temperature,

d l trly (m I y)—ly [m —(k —I). y1

0,0" (2m') (l'+m') l(k —l)'+m']

II""(k) (k g""—k "k")II(k') (IO)

Taking the time-time components and k 0, we get zero.
At finite temperature, the tensor decomposition of II""

is more complicated. Nevertheless, perturbative studies
have shown that as k 0, II"'is finite for finite k, and as
k ~, H"' rapidly approaches its value in the vacuum.
At zero k, we might expect an infrared singularity. For
fermion loop insertions nevertheless, there is no such in-
frared singularity since the fermion propagators always
carry at least a timelike momentum of order T. In gen-
eral, we expect that there will be no infrared singularity in
the baryon-number correlation function integrated over
d x. At large distances, we expect that the equal-time
correlation function is damped since there are no long-
range forces which couple to baryon number. We there-
fore expect that xq is a well-defined function of tempera-
ture, and our analyticity conditions are satisfied.

Finally, I show how the expression for x~ in terms of

a't e~E
lim II (k,k) =4 I

(2~)' (es +I)' (12)

This is precisely the result one can derive for x~ by
directly writing out the expression for baryon-number
density and expanding to first order in p. The expression
for xq therefore adequately reproduces first-order pertur-
bation theory.
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Explicitly subtracting the vacuum contribution to H, and
replacing the summation over Matsubara frequencies by
Sommerfeld-Watson contour integrals, and taking the
limit k 0, shows that, after a good deal of algebra,
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