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A nonunitary dynamics for a macroscopic object arises as a natural consequence of a universally

valid Schrodinger equation and thus need not be postulated ad hoc. The density-matrix formalism

does not, however, allow one to deduce classical states (particle trajectories) without invoking ad-

ditional principles.

In a recent publication Ghirardi, Rimini, and Weber
proposed a "modification of standard quantum mechan-
ics, which leaves things unchanged for microscopic ob-
jects, while, for macroscopic objects, transforms quan-
tum mechanics into a stochastic mechanics in phase
space exhibiting the classical features. " Attempts of this
kind have a long history and are founded on various
motivations. For example, measurementlike processes
necessarily produce superpositions of macroscopically
diferent states, which are hard to interpret. The au-
thors propose to alter the quantum-mechanical law of
evolution so that localized states for macro-objects natu-
rally emerge. We would like to comment on this paper
as follows.

(1) Localized states obviously would be prepared by
position measurements. The authors therefore look for a
dynamics which describes macro-objects as if their posi-
tion were continuously measured. They arrive at (or
rather, postulate) a modified evolution equation for the
density matrix of a macroscopic mass point. The
Schrodinger equation, e.g. , for, the center-of-mass coor-
dinate of a free particle,

2

is then replaced by a density-matrix equation, which in
its simplest form reads A, =(Am )'

as well as a time scale

(3)

(3.5) of Ref. 1] automatically results from a global
Schrodinger equation if the interaction of a macroscopic
object with its natural environment is properly taken
into account, as was shown, for example, in Ref. 3 [see
Eq. (3.75)]. As a technical remark, there seems to be no
reason to invoke sophisticated formalisms as "eAect-
valued measures" to successfully describe incomplete
measurements in quantum mechanics. This, however, is
only a minor point. We want to stress here that a realis-
tic application of quantum theory already yields an ir-
reversible nonunitary dynamics for macroscopic objects.
Hence there is no freedom for a "possible numerical
choice of the parameters" in the suggested equation,
since these are fixed by the properties of matter (and in-
teractions) we find in nature. Admittedly, Crhirardi,
Rimini, and Weber intend to postulate a new fundamen
taI dynamics for the density matrix. However, as long
as their main objective —suppression of coherence over
macroscopic distances —can be achieved by applying
standard quantum mechanics to realistic situations, there
seems to be little motivation for this particular attempt.

(2) From a process acting like a position measurement
one intuitively expects the production of an ensemble of
small wave packets when starting with a broad one,
finally leading to something like "particle trajectories. "
Indeed, Eq. (2) contains a characteristic length scale
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The first term corresponds to Eq. (1) (unitary evolution),
while the second term leads to destruction of coherence
between different positions (nondiagonal elements in the
position representation of the density matrix). This
equation, however, at least in this simplified form [Eq.

and it is tempting to assume that after a "relaxation
time" ~ the initial wave packet is split into an ensemble
of wave packets of width k. For t ~)~ one would expect
a stochastic movement of such "particles. "' ' Howev-
er, by using a density matrix there is no unambiguous
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way to achieve such a goal since the decomposition of a
(nonpure) density matrix into an ensemble of states is
not unique. The reason behind that is of course that a
density matrix does not by itself describe a probability
distribution of states (as would a classical phase-space
distribution) but is only a calculational tool to evaluate
probabilities for the occurrence of certain states in a cer-
tain measurement. Therefore suppression of nondiago-
nal terms in the density matrix p(x, x') of the center-of-
mass coordinate of a mass point is not su%cient to ex-
tract particle trajectories. Quite generally, any division
of a nonpure density matrix into a certain ensemble of
quantum states is arbitrary and there seems to be no
way, neither theoretically nor experimentally, to distin-
guish between diff''erent representations of one and the
same density matrix. As an illustration consider a
Gaussian density matrix (we use the notation of Ref. 3)

1/2
C

p(x, x') =2 — exp[ —[A (x —x')

+iB (x —x')(x +x')

+C(x+x') ]I .

P~(x) =
1/4

4C
exp[ —[(2C+iB)x +ipx]I

with the probability distribution

If A, B,C are assumed time dependent, such a density
matrix is a solution of Eq. (2) with A, B,C obeying ordi-
nary differential equations [see Eq. (3.84) of Ref. 3].
This density matrix can be rewritten as an ensemble

p= jdp P(p)gp(x')P~(x) (6)

of wave packets

or as an ensemble

p= gp„P„*(x')lt„(x)

)& exp[ —x [2(AC)'~ +iB]) (10)

with

2g1/2 A 1/2 g1/2
Pn=

A 1/2+ C1/2 A 1/2+ ( 1/2

or in many other ways. The coherence length of the full
density matrix is 1 =(8A) ', whereas the fictitious en-
semble members have various widths, which need not be
small even if I is small. Despite this mathematical fact,
one may still hope to reconstruct some ensemble of
"classical states, " but this seems only possible by invok-
ing additional principles which go beyond the density-
matrix formalism. For example, it has been suggested
that in Everett-type interpretations of quantum mechan-
ics the eigenstates of the density matrices of certain sub-
systems (connected with observers) define the "branch-
ing" of the wave function (corresponding to the usual
collapse). Then the difference between the eigenstates in
the continuous case, which do not correspond to classi-
cal states [the states (10) are generally broad wave pack-
ets], and those for discrete variables (e.g. , information
storage in the brain) is of importance. 3'

In view of the fact that such attempts so far seem un-
convincing, it may well turn out necessary to find a new
description for a physical "state" encompassing classical
(local) as well as quantum (nonlocal) state concepts.

of diagonalizing orthogonal states (oscillator wave func-
tions)

( AC)'g„(x)= „,, H„(2(AC)' x )2" 'n t~'

2

P(p)=[4~( A —C)] ' exp
4( A —C)

(8)
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