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Absence of spontaneous parity violations
in three-dimensional QED induced by infrared effects
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The possibility of dynamical parity violations in three-dimensional QED (QED3) by infrared
effects is examined using a previously defined infrared approximation. (tip) and the photon prop-
agator D„(p) are calculated in this approximation for the mass of the fermion, m&0. Then, as
m ~0, (Pt(j) is found to be zero and D„,(p) to have a pole corresponding to zero mass. These re-

sults imply that there are no dynamical violations of parity induced by infrared effects in QED3.

I. INTRODUCTION

In (2+ 1)-dimensional gauge theories, a parity-
violating but gauge-invariant mass term can be given to
the vector boson. ' In fact, the fermion mass term is also
parity violating. The theories with these mass terms are
superrenormalizable and infrared (IR) finite.

It has been shown that even when the vector-boson-
mass term is absent from the Lagrangian, it can be in-
duced by 1-loop radiative corrections. In addition,
higher-loop corrections will not contribute. However,
the form of the induced mass term depends on the
choice of the regularization one uses to remove the ul-
traviolet (UV) divergences in the Feynman-diagram cal-
culations. This term may or may not vanish as the mass
of the fermion goes to zero depending on the regulariza-
tion. Therefore, there is an ambiguity as to whether
there are dynamical generations of mass by radiative
corrections, which in turn violate parity spontaneously.

In the case of QED, this problem of spontaneous pari-
ty violation has been studied nonperturbatively in the
large-N expansion (where N is the number of fermion
flavors), using the Schwinger-Dyson equations and the
effective-potential approach. For odd 2V, dynamical gen-
eration of mass does not occur. For even N, this may
occur, but it happens in such a way that parity is not
violated. This case is actually equivalent to the spon-
taneous breaking of chiral symmetry when one uses the
4)&4 Dirac matrices instead of the 2&2 ones.

In the following we are concerned with another aspect
of three-dimensional (QED3): Without mass terms this
theory is IR divergent perturbatively. Although these
divergences may just be artifacts of the perturbation
series, they may still lead to dynamical generation of
fermion mass and spontaneous parity violation. ' Here
we shall investigate this possibility by explicitly extract-
ing the IR structure of QED3 for N =1. We shall use
2X2 Dirac matrices, and thus dynamical generation of
mass will imply spontaneous violation of parity.

Two quantities will be calculated: the order parameter
(p(x)lt(x) ) and the photon propagator D„(p). If the
vacuum is invariant under parity transformation, i.e.,
P

~

0) =
~

& ), then the order parameter is

(q( )l(( ))=(P-'l(( )q( )~)
=(P 'g (x)Py~P 'P(x)P)

= —(g(x')P(x') )

= —(tP(x)P(x) ),
where the parity transformation is defined as

P 'g(x)P=y, ttt(x'), (1.2)

with x =(x, , xz, x3) and x'=( —x, , x2, x3). Therefore, a
nonzero value of (g(x)P(x)) will indicate parity viola-
tion by the vacuum. Another way to investigate this in-
variance is by examining directly the structure of the
photon propagator D„(p), to see whether a pole corre-
sponding to a nonzero mass occurs.

To extract the most IR part of the two quantities
mentioned above, we adopt the nonperturbative IR
method developed by Fried, "' in which virtual photons
are separated into their low-momentum (soft) and high-
momentum (hard) parts with respect to some intrinsic
mass scale in the theory. The number of hard photons
can then be taken as the appropriate expansion parame-
ter in a strong-coupling limit. Of course, this expansion
is only good for phenomena dominated by IR effects.
Nevertheless, when this approach was first applied to the
calculation of the renormalization-group P functions of

theory" and QED' in four dimensions, it was found
to be of relevance to the strong-coupling regime of these
theories. This IR approach has also been found useful in
the investigation of the spontaneous chiral-symmetry
breaking in two-dimensional gauge theories, ' ' which is
supposed to be an IR and strong-coupling phenomenon;
there the coupling constant has the dimension of mass,
and hence the chiral limit is also the strong-coupling
limit.

For QED3, the coupling is also dimensional, and the
limit for the fermion mass m ~0 is then a strong-
coupling limit. In addition, we are interested in the IR
properties of the theory, and thus we choose to follow
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the IR approach mentioned above. Here, we shall con-
sider only the first term of the IR expansion, that is, we
shall ignore all the hard photons. In principle, the
correction terms can be calculated by including some
hard-photon contributions, even though these calcula-
tions may be quite tedious. Since we are concerned only
with the leading IR behavior, we shall assume that the
first term of this IR expansion is already enough for our
purpose. To further simplify our calculation we also use
the quenched (1-fermion-loop) approximation. Then
&P(x)it(x) ) and D„,(p) are calculated in these approxi-
mations for the fermion mass m&0. Finally, the limit
m ~0 is taken to see if parity is violated spontaneously
in the IR region of the theory.

In the next section we describe briefly the IR approxi-
mation we adopt. In Sec. III, &P(x)itj(x)) is calculated
in the quenched IR approximation, and its behavior as
m ~0 examined. In Sec. IV the vacuum polarization
II„(p) of the photon propagator is calculated in the

same approximation. Using that, the photon propagator

is constructed and analyzed. Section V contains con-
clusions and discussions. An appendix is used to derive
(2.8) in Sec. II.

II. THE INFRARED APPROXIMATION SCHEME

In this section we describe briefly the IR approxima-
tion scheme which is used in the subsequent calculations
(for details see Refs. 11—13).

The Lagrangian (in Euclidean space) we are dealing
with is

,'F„F„—+g(P+ieA+m )P+ (B„A„), (2. 1)
2A,

where the last term is the gauge-fixing term, and y„=—o.„
(Pauli matrices). We leave A. arbitrary so that we can
keep track of the gauge-choice dependence of the quanti-
ties we calculate.

The generating functional can be written as

Z [j,ri, ri] =N f [d p ][d it ][d A ] exp —fX + f (jA + pi) +q p )

=IV f [dA] exp ——,
' fF„F„— f (B„A„)+ fj„A„+f g(8+ieA +m ) 't)+L

2X
(2.2)

where

L =Tr in[I +ieg (8+m) ]

and Z[j, i), g] is normalized in such a way that Z[0]= 1.
The IR approximation will be implemented in 1.. Using the proper-time method, ' one can write

L =Tr ln[1+ieg (8+m ) ']

=( —l)Tr de'(ig )( el+ie'3 ) f dre ' e's+" "' +( —l)Tr f de'(i& )( —m) f dre ™e'+" "'
0 0 0 0

= f d x ——,'tr e ' '&x
~

e' +"'""—e' s
~

x )+(m)tr f dre ™f '
de[id( )x]& x~e' +"'" '

~

x )
0 7 0 0

(2.3)

where in the last lines the trace is only over y matrices.
Note that the second term is a trace over odd number of
y matrices. It is nonzero in the 2& 2 representation of y
matrices we are using. This term will nevertheless van-
ish for even-dimensional cases.

Now we split A„(x) into its soft and hard parts, e.g. ,

17(
m

(2.6)

2
In (2.3), because of the presence of e ™,the magnitude
of ~ is restricted to be of the order of

dp ix- 2g 2 2y 2(x)= e'~ A (p)[e ~ " +(1—e ~ " )]
(2~)'

Combining (2.5) and (2.6) we see that A „(x) is highly
damped for momenta

(2.4) p )m (2.7)

1 1p) —:r)
T p

(2.5)

where p= I/&r. Therefore, A„(x) is highly damped
for momenta

Here, m is the only dimensional parameter in X and it is
therefore used to define the IR approximation.

Retaining only A„(x) in A„(x) as the first approxi-
mation, and performing a related "multipole expansion"
(see the Appendix), we find
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&x
(

e'~+""'
(
x ) ~&x

(

e' ""'
(
x )&R

—— f d a 5(a —er*F (x))IR sinha

1/2

(a cotha —y.a), (2.8)

where

'F„(x)=—,'e„„~ (x), *F„(x)=—,'e„, [8 A (x) —0 A, (x)] .

Using (2.8), L can be written under this approximation as

L&R
——f d x ——,'tr f" e ' &x

~

e ' +"'" I —e'
~

x )z+(m)tr f dre ' f de'[id (x)]&x e +""
~

x )z
0 7 0 0

1/2

fd x f e ' fd a6(a er*F—(x))8~'" sinha

fd x f" e ' f'de'fd a5(a —er*F (x))
4~ 0 0 sinha

a cotha —1 .

1/2

a. A (x) . (2.9)

This expression is the main quantity to be used in the calculations under this IR approximation in the subsequent sec-
tions.

III. ORDER PARAMETER & P(x)Q(x) )

In this section we evaluate &t((x)g(x)) in the IR approximation set up in Sec. II. Then we take the fermion mass
m ~0, and examine whether & g(x)g~(x) ) vanishes.

By the conventional action principle, one can write

& Q(x)P(x) ) = lnZ
a

d3x Bm
(3.1)

where Z is the generating functional in (2.2).
In the quenched approximation, we retain only the first nontrivial term in the expansion of e, i.e.,

&P(x)tt(x)) N f [dA]L exp ——,
' fF„F„— f (B„A„)~

d3x Bm 4 " " 2k
(3.2)

where

N '= f [dA]exp ——,
' fF„F„— f (B„A„)

Here, we implement the IR approximation in L,

&g(x)l((x) ) &lt(x)P(x) )&z —— N f [dA]L&z exp —
—,
' fF„F„,— f (B„A„)

( —1) 1

d x m IR 4 )ILv pv (3.3)

in this quenched IR approximation, with L,~ given by (2.9).
The Gaussian functional integration in (3.3) can be carried out giving

& P(x)g(x) ),R=
—f11 1

oo d7 ~m 2

3/2 J 0 3/2
1 I
1/2 3 3~ 3/2 f "da

sinha

1/2

a cotha exp3 a
4(er)'K

where

K= 1

48+2 3/2 3/2

(3.4)

Note that the expression (3.4) is independent of k, the gauge-choice parameter.
Since & P(x)g(x) ) is proportional to m, it would not vanish as m ~0 only when the integral is diverging ( —I/m as

m ~0). Therefore, we concentrate on the integral to see whether it diverges as m ~0.
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Note, firstly that (3.4) contains no UV divergence (near &~0), but it will be convenient for computation to insert an
UV cutoff A, i.e.,

(3.5)

Any IR divergences will not be affected by this replacement.
Secondly, since the function

a
sinha

1/2
1, a~0,

a cotha
3/2&2a'~ e '~, a~ oo

(3.6)

is everywhere well behaved, the approximation
1/2

da
0 sinha

acotha ~ f da + f da&2a ~e
0 77

(3.7)

will not affect the singularities of the integral.
Under these replacements, one can calculate explicitly the integral in (3.4) as m ~0:

f

dic

0 3/2
1 1 a

da
o sinha

1/2
a

a cotha exp
4(e~) IC

dw 1 1

e zK f 2 a
da a exp

0 4(e ~)'K

2

+ da 2a e '
exp

77 4(er) K

e 1 ~ eI2&2~'" 2
'

2 4&2~'" ' (3.8)

where

I (v, x)= f dyy 'e

is the incomplete I function. Equation (3.8) is finite and independent of A, the UV cutoff.
Using this result in (3.4) we have

lim (P(x)tt(x) )&a ——lim
&~

Xfinite contribution=0 .
m~0 m 0 4~

(3.9)

Therefore, at least in this 1-fermion-loop level, there are no signs of spontaneous violation of parity by the vacuum
due to IR effects.

IV. THE PHOTON PROPAGATOR

A more direct way to see whether the photon develops a mass term dynamically is to examine the mass pole of the
photon propagator. In this section the photon propagator will be calculated explicitly in the quenched IR approxima-
tion. Then the m~0 limit of this propagator will be examined to see whether there is a pole corresponding to
nonzero mass. This will give further indication of whether parity is violated dynamically in this model.

Define

I„(x—y)—: N f [dA]( +L,I~) exp —,' fF„F„„— f—(B„A„)+ fj „3„IR 4 pv pv
j=0

(4.1)

and I„(p) its Fourier transform. Again, L&a is the expression (2.9) obtained in Sec. II. I„„(p) is effectively the pho-
ton propagator in the quenched IR approximation. If we take just the connected diagrams of I„„(p),they turn out to
be 1-particle irreducible (1PI) also.

In (4.1), the integration over A„(x) is just Gaussian and can be carried through giving

I„(p)~pt=k„&(p)+P„M(p)+e„, g(p),
P

where

(4.2)
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b.„(p)=, 5„,, —(1 —A, )
PPP V

PV PV

32~2 3 5/2 2 p 7/4 0 sinha

1/2
Q

a cotha exp
4~e 2~1/2

Q—1+
2 1/2

Q ( )
—rm —2~p

24 2 5/2 3 p 7/4 o e '4 o sinha

1/2
2

4 a
a exp

4ue' ~

(4.3)

(4.4)

1

48&2~

and I„,(p), &pis the 1-particle irreducible part of I„,, (p). Note that e„(p /p)Q(p) is the induced mass term for the
photon mentioned in Sec. l.

From I„(p)~p, one can obtain the vacuum polarization II„(p) of the photon in this quenched IR approximation:

H (p)=b, ' (p)[I (p) —& (p)]& (p)=p P .M(p)+& .. (4.5)

Note that H„(p) here is gauge invariant,

p„H„(p)=0,
and it is independent of A, , the gauge parameter.

Using H„,(p), we can construct the photon propagator, i.e.,

(4.6)

D„,, (p) = 1

'(p) —H(p)

1 —p M(p) PpPv P~ P~Q(p)
p'[1 —P'M(P)]'+[P'Q(P)]' " p' " p p'[1 —p'M(P)]'+[P'Q(P)]'

(4.7)

We shall analyze p M(p) and p Q (p) in the same way as in Sec. III by replacing (note again that they contain no UV
divergence)

~ ~ ~ d g ~ \ ~ (4.8)
0 1/A

1/2f"da

f "da

a
sinha

sinha

a cotha . . ~ da - - + da~'2a e
71

0 7T

' 1/2

~ ~ ~ da o ~ ~ da& 2a e
0 7r

(4.9)

(4.10)

Then as m ~0 and p ~0, we have

lim p M(p)~—
m ~p, p —~02

1 p d~
32~2 3 5/2 J

1 /P2 7/4 J 0
da Q exp

Q
2

4 2 1/2

a2—1+
2 1/2

+v'2 f daa e
Q—1+

2 1/2

1

12~ a (4. 11)

p Q(p) . 1 &t(&p')'~' dr e de'
lim da

24 2 5/2 0 '/4 o ' 4 op ~o
a

sinha
Q

a 4 exp
4 ~2 1/2lim

m 0 p -~02.

which is finite and independent of A.
And for p Q(p)/m, this quantity diverges as m ~0, p ~0. To examine this divergence, we write

1/2

1 oo a
lim da a

p 12m3/2a o sinha

' 1/2
2

41na +2C —4+ ln
(e a)

(4.12)

where C is the Euler constant. Equation (4.12) diverges as lnp as p ~0. To further analyze this quantity we use the
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replacements (4.8)—(4. 10):

lim ~ lim
p'Q(p)

m ~Op ~0 ,2 0 12~'"~ f da a+ f da&2a e ' 41na+2C —4+ ln
0 'i7 (e'a)'

lim 2C —4+ ln e4a'
7T' 5+8I
2 2'2

~2(in~2 1 )+4i/2 ln~2e —n/2(~3/2+ 3~1/2+ 3~—1/2)

3 1 1+ 32I —,—+48I —,—+ 8I2' 2 2' 2 2'2

(4. 13)

where the integral in the last term is finite because

f daa / (lna)e '
& f daa lna

(inn. +4) .

lim is finite - lim p Q(p)=0 .
p"' (p)

m~0 m m~0

Using this result in (4.7), we have

(4. 14)

lim D„„(p)= II„(p)+kp'[ I —p'M(p) )

where

(4.15)

M(p)= lim M(p) .
m~0

From (4.11) we have

(4.16)

lim M(p)is finite .
p ~02

Therefore, in (4.15) p =0 is a pole for Dz„(p), i.e., the
photon remains massless, and no spontaneous genera-
tions of mass occur.

V. CONCLUSION AND DISCUSSIONS

In Secs. III and IV we have calculated (itt(x)it/(x) )
and D„(p) in the quenched IR approximation. There
are no signs of spontaneous violations of parity due to
IR effects. As m~0, (P(x)g(x)) is zero and D„(p)
has a pole corresponding to mass zero. Since the IR ap-
proximation extracts the most IR part of these quanti-
ties, we can conclude that in the IR sector of QED3
there are no spontaneous generations of mass, and hence
no spontaneous violations of parity. It is interesting to
note that this result agrees with that of the large-N (fixed
e N) expansion, where for odd N spontaneous genera-
tion of fermion mass does not occur; here, we work with
a single fermion flavor, that is, N = 1.

Hence, the only divergent term in (4.13) is 1n+2p (as

p ~0). Therefore, if we keep p to be nonzero and let
m ~0 first, we have

Our result can be compared with those on spontane-
ous chiral-symmetry breaking (SCSB) of gauge theories
in 1+ 1 dimensions using the same IR approximation' '
where SCSB is found to occur for general SU(N) case.
Here, in 2+1 dimensions, chiral symmetry cannot be
defined because one cannot construct y5 in the 2 & 2 rep-
resentation of y matrices. Nevertheless, parity in 2+1
dimensions and chiral symmetry in 1+1 dimensions are
closely related, and that is why the ordered parameter
(g(x)g(x)) is used in both analyses. However, here we
have a negative result: parity seems not to be violated by
IR effects, in contrast with the positive result in 1+ 1 di-
mensions.

Nonquenched effects have been estimated' in investi-
gating the SCSB in QED2. The result in the quenched
approximation is found to be unchanged qualitatively.
Hence, we expect here also the result will be qualitative-
ly the same even when nonquenched corrections are in-
cluded.

Lastly the IR approximation we have been using is
not manifestly gauge invariance. Gauge transformation
is a local (in coordinate space) operation, while the IR
approximation is a nonlocal one. ' To remedy this, we
have deliberately kept A, , the gauge-choice parameter,
throughout the calculation. Since our final result is
dependent of A, , it is invariant under change of gauge.

ACKNOWLEDGMENTS

I would like to thank H. M. Fried for reading the
manuscript, giving useful comments, and, above all, for
constant encouragement throughout the course of this
work. This work was supported in part by the U.S.
Department of Energy under the Contract No. DE-
AC02-76ER03 130.A021-Task A.

APPENDIX

In this appendix we derive (2.8) in Sec. II. Consider
for D„=j8+ieA,

,' [rp, r.ID/-D. + ,'[r p r.MD/»-. )

=D„D„+ieo„g„



3266 H. T. CHO 36

where
1o'„~= , [—1').1'vl = p'~i va'Ya (A2)

in our 2&2 matrix representation.
Using the Fradkin representation, '

(&
~

~(d+ieA)~ i i i ~(D D +iea / )x e )x)=(x

=N(r) f [de)] exp ——,
' f 'dz'p~(z') g f 'dr'y(r')

0 0

I I

y, exp ie f ' dr' )))„(r')A„x—f ' dr"it)(r") +~r„g„, x —f ' dr"P(r")
0 0 0

(A3)

where

[N(r)] '= j[dP) exp ——,
' f dr'P (r')

in A (k) the momentum is restricted to be

k( 1

7-
(A5)

and the exponential is ordered with respect to ~.
In the first IR approximation, we simply replace

A„(x) by A„(x) given in (2.4), i.e. ,

A„I—f dr" (t)(r" )

I

x — J7 7

= f e'" exp —ik f dr"P(r") 3 (k) .
(2~) 0

(A4)

rP'(1 .

Combining (A5) and (A6), we have

(A6)

k f dr"it(r") ( &r= 1 .
0 v'g (A7)

Therefore, we can expand the exponential in (A4) and
retain only the first nontrivial term in the expansion.
Under this "multipole" approximation

Then, because of the presence of the Gaussian term in
(A3),

(& [e (8+ A) ~x) ( ~e (8 A)

3

=N(z) f ~ f [d)t)] exp ——,
' f 'dr'p (r')+ip f 'dr'p(r')

(2' )' 0 0

t

&& exp —' f dr'P„(r') f dr"it)„(r")F„„(x)+iercr&g„„(x)
2 0 0

(A8)

Note that the ordered exponential has become an ordinary one. Now, the functional integral over it is just Gaussian
and can be evaluated with the help of the following equation

3

f N(r) f [de)] exp ——,
' f dr' f dr"it)„(r')K„(r', r")P (r")+ip f dr'it)(r')

(2~) 0 0 0

d3
e " "(detC) ' = (detB) ' (detC)

(2vr)' (4rr)'" (A9)

where

K„(r',r" ) =5„5(r'—r" ) —X„[0(r'—r" ) —0(r" r') ], —

In (A8)

pv
C„=(cosh')„

X„=ieF„(x)=ice„*F (x), (A10)
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then we have

detB =
'2 3

1 r sinh[er'F (x)]
cosh[er*F (x)] er*Fs(x)

(A11)

detC= [cosh[er'Fs(x)]j~, (A12)

where F (x) is the magnitude of *F (x). In addition, using (A2) we can write

iev.o F (x j ie~y F (x) y *F (x)
e "" "' =e = cosh[er*F (x)]— sinh[er*F (x)],*F'(x)

because the y matrices are just Pauli matrices. Putting all these together (A8) becomes
—3/2

r sinh[er" F (x)]
[ „s ]

y.*F (x)
er*F (x) e~S

I /2

(A13)

3 /2 3 /2 d a 6 a —e r*F x
8~ sinha

(a cotha —y.a), (A14)

which is just (2.8) in Sec. II.
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