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A coupled-channel calculation of the variational eigenenergies of the SU(N) Hamiltonian on a
lattice is presented. A trial physical vacuum state and one and two 0++ glueball states are the
basis states of a Hamiltonian matrix whose lowest eigenenergies are the SU(N) ground-state ener-

gy to be minimized and the glueball mass. We show that the coupled-channel effects do not disap-
pear in the infinite-volume limit and can, in principle, have a significant effect on the glueball
mass. In practice, however, in the present context the effects turn out to be small.

I. INTRODUCTION

The Hamiltonian formulation of SU(X) gauge theory
on a three-dimensional lattice has been presented by
Chin, Long, and Robson. ' They calculate vacuum and
0++ glueball energies in a variational calculation using a
one-parameter Gaussian functional of the one-loop Wil-
son action as a trial ground state. Minimizing the vacu-
um energy fixes the variational parameter as an implicit
function of the running coupling strength g . A glueball
state orthogonal to the vacuum state is then constructed,
and a value derived for the glueball mass M. The test
for success of the lattice calculation is that, for some
range of the lattice scale a, the product Ma should scale
with the running coupling g (a) in the way predicted for
the continuum by two-loop renormalization-group-
improved perturbation theory with the induced charac-
teristic energy A, which is

Ma —Aa =
51/121

48m —24m
exp

11Ng 11Ng
(51/121)

X 1 + 51g
88m.

for SU(X) with X —I colored gluons. Chin, Long, and
Robson achieve scaling on a 6 lattice for N =5 and 6,
and more recently for 4 but not yet for 3 (Ref 2).

In an attempt to improve this situation, we have in-
vestigated the efect of coupling zero-, one-, and two-
glueball channels, diagonalizing the resulting 3)&3 ma-
trix Hamiltonian and then minimizing the ground-state
energy. The calculation uses only the original Monte
Carlo computer data for the Wilson action. " The result
of the coupled-channel calculation is the appearance of
glueball mass corrections which do not disappear in the
infinite-volume limit and can in principle be large. In
the present context, however, these corrections do not
improve scaling in SU(3).

For two channels, the original variational minimum of
the ground-state energy can become inverted to a local
maximum. The two-channel ground-state-energy
minimum occurs nearby at a slightly shifted value of the

II. CALCULATION

A. One-channel case

We refer to the original work of Chin, Long, and Rob-
son' for definitions and details of calculation. The basic
operator is the one-loop Wilson action S summed over
N =6 )&3 spacelike plaquettes

S= gtr(U +Ut),
2XN

(2)

variational parameter. At the same time, the two-
channel glueball mass can be substantially increased over
its one-channel value. The shift in the ground-state-
energy minimum is a form of spontaneous symmetry
breaking (SSB) related to the Jahn- Teller effect. It
occurs for all values of the variational parameter in
SU(3) and for weak-coupling values in SU(4, 5,6). A
careful inspection shows that these conclusions are in-
dependent of the number of plaquettes in the lattice, and
persist in the infinite-volume limit.

These conclusions do depend, however, on the number
of channels included in the calculation. A full three-
channel calculation is very complicated but one can ana-
lyze simple models which incorporate the main features
of the Monte Carlo data. In the simplest such model,
the criterion for SSB is not achieved. The three-channel
variational minimum seems to remain at the same place
as the one-channel minimum, which would result in a
miniscule shift of the three-channel glueball mass. A
more realistic model calculation using asymmetries
characteristic of the Monte Carlo data shows that shifts
in the location of the ground-state-energy minimum can
occur with resulting, but small, shifts in the glueball
mass. Similar results occur when the full smoothed and
interpolated Monte Carlo data are used.

The final result turns out to be a remarkable stability
of the ground-state energy and the glueball mass at very
near their one-channel values. The particular form of
the coupling terms of the matrix Hamiltonian responsi-
ble for this stability is discussed. The three-channel case
is conjectured to be indicative of exact results of an
infinite-channel calculation.
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where U = U, Uz U3U4 on the plaquette p and The trial ground-state energy is

U& ——exp ia AI (p)
2

E,=&q, ~a ~q, )= AP
2

+y (1 P—)
N (N —1)

ga

is the connection on the links around p. Also a is the
lattice size, A, the generator of SU(N), and AP(p) the

gauge field component l. The physical-vacuum trial
functional '

The one-channel glueball mass

Mi—=,=&qilH qi) —E,

~ Po) =Coexp(2N Nz AS/2)
~

0), (3)
P A P"

2

N (N 1)—
ga

normalized to unity through the constant Co, is used to
calculate an expectation value P ( A ) of S

P(A)=&q, ~S ~q, ) . (4)

~ 1(, ) =C, (S P)
~ g )—

orthogonal to
~
$0) and normalized to unity. In the cal-

culation of Chin, Long, and Robson the expectation
values of the Kogut-Susskind SU(N) lattice Hamiltoni-
an' '

0= g ,'EpEI + —g 1 — tr(U +U )
1a, ' g4 2N P P

p

The lattice calculation is characterized by the Monte
Carlo numerical data for P as a function of the varia-
tional parameter A, and its derivatives. The data for
SU(3) (Ref. 3) are reproduced in Fig. 1. The operator S
is used to generate a one-glueball state

determines the variational parameter A o for a given
value of y, the running coupling constant, or equivalent-
ly of the lattice scale a through Eq. (1).

B. Two-channel case

If one calculates the coupling between the zero- and
one-glueball channels, the off-diagonal matrix element of
the Hamiltonian

& Pi I

H
I Po& =~ =(f/P')'" A, P——y P'+—

2 2

where the lattice factor f = 1/2N N . Here

y =g 2N /(N 1), (=—1/Ng, and P'=dP/dA, etc.
These are to be evaluated at the minimum of Eo which
occurs at Ao where

A o(y) P( Ao(y))
2 2P'( A o(y) )

are required. The color-electric field E& is the general-
ized momentum canonically conjugate to the potential
A& on the link l.

N (N 1)—
(10)

turns out to be proportional to (dEo/dA ) which is zero
at Ao where Eo is a minimum. At first glance one
would conclude that there is no coupling between chan-
nels. Closer inspection shows that this conclusion is not
always correct. The two-channel Hamiltonian

00 =Eo+

P
has a ground-state energy

E2 Eo+ —,'[e —(e +46, )'—i—], (12)

and a glueba11 mass

( ~2+ 4g2 )
1/2 (13)

FIG. 1. The data P( 2), P'( 2), and P"(2) for SU(3) from
Ref. 3. The dashed line on P"( 3) shows the efT'ect of local cu-
bic smoothing of the data used in Sec. III.

These are to be evaluated at the minimum of Ez.
Surprisingly, the minimum of Eo is not necessarily the
minimum of E2 but can be, and for SU(3) is, a local
maximum. In this case, the minimum of Ez occurs
nearby where 6 is not zero and where the glueball mass
shift is significant. To see this result, expand around Ao
where Eo is a minimum:



36 COUPLED-CHANNEL EFFECTS IN THE VARIATIONAL. . . 3247

Eo(A)=ED(AQ)+ax +O(x ), (14)

with x = 2 —A0. The quadratic coefficient a is positive
and given by

0.5—

0,2—
1 d Ep 1 PPa —— p/
2 dg2 2 2P'

N (N —1)
(15) O, I—

evaluated at 30. Also, expanding 6 and e about
3 = Ap, one obtains -0, [—

and

b. =(f /P')' 2ax+0(x ) (16) -0.2—
I

-0,5 -0.24 0, 50 0.56

a=f 1+ P P I IP

2P'
N (N —1)

Expanding E2 to order x gives

+O(x) . (17)
FIG. 2. The parameter Z ( A ) defined in Eq. (19) for

SU(3,4,5,6) evaluated from the data of Ref. 3. Z(A) )0 corre-
sponds to a shift of the two-channel minimum of E, from the
minimum of Eo.

E -2E (oA )o+a x 1—, +O(x ) .P'e (18)

If the coefficient of x is positive, the minimum of E2 is
the minimum of Ep at 3 = Ap where 6=0. There is no
coupling and the glueball mass is e as before. However,
if

The volume, that is the N, dependence of the various
quantities involved is interesting. The criterion for SSB
is in fact independent of N as can be seen from Eq. (19),
so SSB will not go away as N ~ oo. The location of the
minimum of E2 is very close to that of E0, and

4(Yf 1 P/AP' P—P" /2P'—
1+P/AP' PP" /2P'—2

(19) 1
min ~min ~0 (23)

x;„=[(1+Z) —1]4a(1+Z (20)

In the harmonic approximation there are equal minima
at +x;„. The absolute minimum will depend on anhar-
monic terms in the Hamiltonian matrix. Anharmonic
terms have been calculated, and also exact calculations
using interpolated Monte Carlo data have been done
which substantiate these conclusions based on the har-
monic approximation. At the minimum of E2, the glue-
ball mass is

Mz ——e(1+Z)= N —1 2 PP"
2N' ga 2P' ' (21)

then the sign of the x term in E2 is opposite to that in

E0. The minimum of Ep becomes a local maximum of
E2. The minimum of E2 is nearby at x;„=(A
—Ao). This shift in the minimum is a form of spon-
taneous symmetry breaking reminiscent of the Jahn-
Teller effect in crystals where the off-diagonal matrix ele-
ment coupling the lattice to the electrons is linear in a
lattice deformation parameter analagous to the x of Eq.
(14).

For SU(3) and Ao =0.36, Chin's results give Z =0.25.
Actual calculation shows that SSB occurs in SU(3) for
all Ap as shown in Fig. 2 and can make corrections to
the glueball mass as large as 30%. The minimum in Ez
occurs for Z )0 at x;„given by

=0 at x=0
—(V'Np)(l/+N ) —1 at x

and is comparable to e.
The shift in the ground-state energy

E2 —Ep =ax 2

(24)

-N nominally

=0 at x=0
-N (1/QN ) —1 at x (25)

which is ignorable if we are just interested in the
ground-state energy, but important in the calculation of
the glueball mass. The shift in the glueball mass is

M2 —e- nominally

=Oatx=O

from the N dependence of a. A typical value is

x;n =0.00496 at Ap ——0.36, N =3&6, with

f =-1/11664 for SU(3). This is to be compared with the
interval AA =0.01 used in the Monte Carlo calcula-
tions. The coupling matrix element

b, —QN nominally

and the shift in the ground-state energy is —1 atx=x (26)

Z
E2( A;„)—Eo( A o ) = —,'e—

4 1+Z (22) Thus, there is a shift in the glueball mass which survives
in the N~~oo limit.
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One key question is whether or not SSB helps scaling
for SU(3). It does not. In our efforts to exploit the one-
loop Wilson action data to the fullest, we have explored
the two-channel calculation further, including terms
anharmonic in x in the expansion around Ap of E0, 6,
and e. We discuss these results later, together with the
results of the three-channel model.

In the next section we calculate the effect of a third
channel, with two glueballs, coupled to the above two
channels. The coupling of the third channel seems at
first sight to eliminate the possibility of SSB and render
the above discussion of pedagogic interest only. A closer
examination shows that the variational minimum in E3
is very flat and the location of the variational minimum
can shift and the glueball mass M3 will depend on the
detailed position of the minimum. Following a three-
channel model calculation we finally discuss the one-,
two-, and three-channel results for the actual Monte
Carlo data on P(A) (Ref. 10).

C. Three-channel case

The basis states for the three-channel calculation are
I

1(o& and
I g, & as before and also a two-glueball state

I
Pz&=Cz[(~' —&0o I

&'I go&) I qo&

E3-Eo(Ao)+ax + +—E11 —E22

&Wo IH
I fi&&li IH I fz&&lz IH

I 4o&+2
( —El i )( —Ezz )

(32)

The result is

E3 =Eo( Ao) — +ax 1—, 1—Eoz z 4af
2E P'e

&zE02

(33)

Comparison with the corresponding two-channel result
of Eq. (18) shows that the effect of coupling to the two-
glueball channel is to replace 4af /P'e by

ment E02 has an exact cancellation of the two leading
orders of N~ leaving the result Eq. (31). The cancella-
tions are exact for any ( A, y) not just at Ao(y) of Eq. (9).
Similar cancellations are required in E12 and E22 to have
the correct N dependence.

For a first understanding of the effect of three chan-
nels, we make a harmonic expansion of b, as in Eq. (16),
evaluate e and E02 at Ap, and keep terms of order x in
the perturbation expansion of E3 ..

(27) 4af
P'e

v'2Eoz

which is orthogonal to the other two and normalized to
unity. The Hamiltonian matrix

E01 E02

0+ 01 11 12

E02 E12 E22

(28)

has matrix elements E11 ——e, Eo, ——6 as before, and

E„=&ra,
E22 =2E,

(29)

(30)

N~ (N —1)
Eoz —— (1 P /AP' PP"—/2P' )—

v'2 ga

(31)

These expressions are valid for arbitrary values of the
variational parameter A, not just Ao(y) determined by
the minimum of Ep. The matrix elements E02 E12 and
E22 are leading terms in expansions in the lattice param-
eter f =1/(2N N ) and neglect terms of relative order

E02
Z =~2 (34)

in the criterion for SSB, Eq. (19). From Eqs. (31), (16),
and (19) one can show that this is just
(1+Z)(1—Z)=1 —Z and is always less than one, so no
SSB can occur for any value of the parameters, at least
in perturbation theory.

However, this result means that now the parabolic
minimum in the ground-state energy is flatter by a factor
Z which can be small. The next question is whether or
not the location of the minimum of this very flat func-
tion is sensitive to nonperturbative effects and can be
shifted from x =0 by some small amount of order &f
with a resulting significant change in the glueball mass.
To answer this question we solve the eigenvalue equation
directly for a model of the full matrix Hamiltonian in
which e and E02 are taken to be constant at their value
at Ap, 5 is a linear function of x = A —Ap, and Ep is
quadratic in x, as in the two-channel case of Eqs.
(11)—(13). The Hamiltonian can be best expressed in
terms of the two variables Z and m with

The matrix elements Eoz, E&z, and Ezz, of Eqs. (29),
(30), and (31) are deceptively simple but their calculation
is nontrivial and involves considerable cancellation. The
problem is that, without orthogonalization, the operator
S creates to leading order in N the same one-glueball
state as does S. Without orthogonalization to

I
t(, & and

to leading order in N, a two-channel calculation using

I Po& and
I 1(z & would have the Hamiltonian of Eq. (11).

Orthogonalization with respect to
I g, & reduces the

length of
I 1tz& by two orders of N~. The matrix ele-

as before, and m defined by

2

Eol /Ell =(1+Z) =(I+Z)&
E11

(35)

The eigenvalues in units of E» are the three roots e3 of

(e3 —1)—[Z /2+3(1-+Z)to +1](e3—1)

—(1+2Z)(1+Z)to =0 . (36)
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If e3(1,2, 3) are labeled in order of increasing energy,
then the three-channel model ground-state energy is

E3=w +@3(1),

and the three-channel model glueball mass is

M3=e3(2) —e3(1) .

(37)
Ei

These are plotted in Fig. 3 for Z =0. 1 and w =0—1.
For comparison, the one- and two-channel results E2

and

Ei ——Eo ——w, Mi ——1,

E2=w + —,'[1—+1+4(1+Z)w ),

(39)

(40) 0

M2 =+1+4(1+Z)w (41)

are also plotted. For Z =0.1, which is quite characteris-
tic of the SU(3) data, there is interesting structure in the
model calculation. The two-channel ground-state energy
Ez has its minimum shifted to w =0.23 away from the
minimum of E& at w =0. The Monte Carlo calculations
are made at intervals of AA =0.01 and the minimum in

E2 lies about halfway between neighboring data points.
The glueball mass M2 is increased —12%. Note the
split vertical scale so that the negative excursion of E2 is
magnified 100 times. The actual minimum is very shal-
low. For the three-channel case there is an absolute
minimum at w =0 with E3 ———0.2497)& 10 and a local
minimum at w =0.55 with E3= —0.2461&10 . The
three-channel glueball mass shifts by only two percent at
the local minimum. In all the model calculations for
Z &0.5 (which range includes all the Monte Carlo data)
there is an absolute minimum of E, at w =0 and a local
minimum at w (1.

Next we look in the Monte Carlo data of SU(3) for
any of the structure indicated in the model calculations.
The Monte Carlo sweeps have been made at intervals of
AA =0.01 for A =0.13—0.42. Strong coupling corre-
sponds to small A. Scaling was originally observed in
SU(5) and SU(6) near A =0.35. The coupled-channel
structure is on a scale somewhat smaller than the spac-
ing of the Monte Carlo data so we have manufactured
preliminary input by a linear interpolation of the data on
P, P', P".

There are two features of the data which seem to be
significant and which can be directly incorporated into
an improved model calculation. For a substantial por-
tion of the data including 30=0.30, 0.31, and 0.32 the
matrix elements E» and E02 have a linear dependence
on w. Returning to the model calculation, we write as a
better representation of the data

O. I

-O.OOI
-0,002

O, I

-O, OOI
-0,002

M~= I, I2 Mi

Ei

E5

c)

Ei ( i)=wE ](0i) 1—
15 -O.OI

Z w
Eoz( w) =E» (0) — 1+—

3

Eo& (w)=(l+Z)w E&| (0),
Eo ——w Ei|(0) .

(42)

FIG. 3. Ground-state energies E, 23 and glueball masses
)If 'j 2 3 as a function of w defined in Eq. (35 ) for (a) Z = —0. 1,
(b) Z =+0.1, (c) Z =+0.2 of Eq. (34) for the symmetric one-,
two-, and three-channel model of Eqs. (34)—(41). All energies
are in units of the one-channel glueball mass M, . Note the
vertical scale change for negative energies.
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E,

Ep

0.8

0.6

Ao=0, 25
& =0,52I
Z, =0.054
M I 761

Mp = I. I I Mi--

Mq = l. l2 M(

--0,05

0.5 I.O

Mp= I.OIM("
--0.0006

w=l

FIG. 4. As in Fig. 3{b),but for the asymmetric model of Eq.
(42) ~

M~= I,OI M

I

4 =0.24 A, =0,25
I

A=O, 26

The linear dependence on w of E&& and Eoz introduces
an asymmetry into the two- and three-channel model
calculations. For the two-channel case, the minimum at
w &0 becomes the absolute minimum of Ez. For the
three-channel case, the local minimum at m &0 becomes
an absolute minimum of E3. The results of the asym-
metric model are plotted in Fig. 4 for Z =0.1. For
Z =0.1, the glueball masses at the minima of Ez and E3
are only increased by —10% over the nominal one-
channel glueball mass. For Z =0.2, the increase is
-25%. Z =0. 1 is in the region of hoped for scaling
and Z =0.2 is probably into the weak-coupling region.

4. =0, &I

g =0,550

w=l

III. DISCUSSION OF DATA

The full interpolated data have been used in one-,
two-, and three-channel calculations of the ground-state
energy. Results are plotted in Figs. 5(a) and 5(b) for
SU(3) A o ——0.25 and 0.31 where Chin finds the transition
from strong to weak coupling.

Figure 5(a) shows an example where the data follow
the expectation of the model calculation quite closely.
The one-channel ground-state-energy shift in units of the
glueball mass M&,

Ei =~Eo(A, y(Ao)) Eo(Ao y(Ao))l/E&i(Ao y(Ao))

(43)

A =O. , 52

FIG. 5. Ground-state energies El & 3 for one-, two-, and
three-channel calculations using data of Ref. 3 smoothed and

interpolated with a cubic function of A, for (a) A o
——0.25 and

(b) Ao ——0.31. Two- and three-channel glueball masses are in-

dicated at the minima of E& and E, . The results are plotted
against A —Ao which is approximately linear in w. All ener-

gies are in units of the one-channel glueball mass M&. Note
the vertical scale change for negative energies.

is plotted against the variable A —Ao, and w is defined
as before as

(1+Z)w =Eo, (A,y(Ao))/E» (Ao,y(A„)),
where

Z =&2Eoz( Ao,y(Ao))/E»( Ao, y( Ao)) .

(44)

(45)

Z and m are the variables of our model calculation. The
variables A —A o and u are almost linearly related.
When w changes from —1 to 0 to + 1, the parameter A

typically changes by Ao —0.01S to Ao to Ao+0. 015. In
the model, the energy shift E, is just the unit parabola
LU

We have found it necessary, in order to stabilize the
calculations for neighboring values of Ao, to artificially
smooth the Monte Carlo data on a local scale. This has
been done by fitting a cubic function of A to P on seven
neighboring data points. The resulting fit to P is then
used to evaluate P, P', and P" on the interior four inter-
vals of A. The data of Chin, Long, and Robson have al-
ready been smoothed so there is little change in P and P'
( 50. 1% change in P, 5 2% change in P') but there can
be substantial changes in P" as indicated in Fig. 1. It is
not suKcient to smooth the second derivative only. Lo-
cal correlations of P, P', and P" must be retained in or-
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der to reduce and to stabilize the local asymmetry of E,
and to reduce the variability of the two- and three-
channel calculations.

The glueball masses for the two- and three-channel
calculations are stabilized at their one-channel values.
This is especially true in the stronger-coupling cases
(A~= 0.20 and 0.25) favored by Chin and Karliner for
the scaling region of SU(3). For the weaker-coupling
cases (2~=0.31, 0.32, 0.36) the two-channel prediction
Mz is increased by approximately 20% and the three-
channel prediction is increased by about 5%%uo.

IV. DISCUSSION AND CONCLUSIONS

Our conclusion is a reaffirmation of faith in the poten-
cy of the original variational calculation. The ability of
the one-channel variational calculation to predict the
ground-state energy was not in question. The question
was the validity of the glueball mass prediction. We in-
vestigated this problem within the context of the original
one-parameter variational calculation by doing a
coupled-channel calculation. The conclusion, after all is
said and done, is a remarkable stability of the glueball
mass prediction at very near its one-channel value.

The two-channel coupling vanishes at the minimum of
the vacuum energy but not necessarily at the minimum
of the two-channel ground-state energy, which can occur
at a different value of the variational parameter. A form
of spontaneous symmetry breaking can occur when a
critical parameter Z of Eq. (19) is greater than zero. A
model calculation predicts structure in the energy levels
on a scale small compared to the intervals of 3 for
which Monte Carlo data exist. The result is an increase
in the predicted glueball mass of as much as twenty-five
percent over the one-channel prediction. For positive Z,
the excited state is pushed up by order Z, and the
ground state is pushed down by order Z . Z is usually
quite small so the ground-state energy is remarkably
stable. Most of the two-channel shift of the glueball
mass is a result of the upward shift of the first excited
state. Positive Z and the resulting SSB in the two-
channel case occurs for all SU(1V). For SU(4, 5,6), Z is
greater than zero only near the onset of weak coupling
where the lattice calculation fails. For SU(3), Z is
greater than zero for all values of the variational param-
eter 3 so SSB occurs everywhere in the two-channel
problem. For most of the scaling region of Chin and
Karliner, Z is quite small and M2 is within 10%%uo of the
one-channel value.

The three-channel calculation in which a two-glueball
state is coupled to the vacuum and one-glueball states is
also instructive. A perturbation calculation and a model
calculation suggest as in Figs. 3(a) —3(c) that the SSB of
the two-channel case no longer occurs. A more detailed
model incorporating anharmonic terms characteristic of
the data restores a form of SSB in the three-channel case
as in Fig. 4. The full three-channel calculation using lo-

cally smoothed Monte Carlo data substantially restores
M3 to its single-channel value M&.

The energy curve E3(A) is remarkably fiat for the
three-channel case. If multiple 0++ glueball excitations
exhausted the spectrum of the Hamiltonian, the energy
curves would become independent of 2 in the limit of an
infinite number of channels. We would move from an
approximate variational calculation to an exact solution
in an arbitrary but complete basis. The three-channel
calculation hopefully reflects this limit. Certainly adding
more glueball channels is difticult and numerically im-
practical.

The coupled-channel calculation has returned essen-
tially to the original one-channel result. The reason lies
in the detailed structure of the Hamiltonian matrix. The
one-parameter variational calculation can do only one
thing and that is minimize the ground-state energy. It
tries to do this by forcing the two-channel coupling to
zero, so Ep, should be zero at Ap. It is a surprise that
Ep2 is not zero but that E,2 is. The fact that Ep2 is
small (like Z) means that the shift in the ground-state
energy is small (like Z ). Furthermore, the one-glueball
state decouples at 3 p from both the zero- and two-
glueball states so the glueball mass is shifted only by Z
at Ap. Since the three-channel energy curve is so flat we
can suppose that it has converged to its infinite-channel
value independent of 3 and equal for given y to the
value at Az, and thus differs only by O(Z ) from the
variational calculation result. The dynamical effect of
coupling could have been different. For example, Z is
small because P is a rather featureless function interpo-
lating known asymptotic values. If P were to have a
cusp and a large second derivative, then Z would be
large and a substantial shift in the glueball mass would
result. Alternatively, if Ep2 had been zero at A p and
E&2 nonzero, then the ground state would have decou-
pled at 2 p and the glueball mass would have been
significantly shifted.

Finally, one must acknowledge the power and the sta-
bility of the predictions of the original variational calcu-
lation. For significant improvements it is necessary to
look beyond the one-parameter Gaussian functional of
the one-loop Wilson action as a trial ground state,
perhaps to the t expansion method of Horn and %ein-
stein" which shows promise of scaling for SU(3) (Refs. 2
and 12). Alternatively, the analysis of Hatfield suggests
that nonlocal correlations patterned after the electro-
dynamic vacuum functional should be used. This would
require evaluating six- or eight-link loops rather than the
basic four-link plaquette used here.
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