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Monte Carlo study of the multicharged U(1) Higgs model with radial degrees of freedom
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In the lattice U(1) gauge-Higgs model with radial degrees of freedom, a phase-transition point
appears in the P=O axis for small A, , independent of the charge q of the Higgs fields. Then, with
relation to the model without radial degrees of freedom, new phases appear in the (P,J) phase dia-
gram, whose location and order of corresponding phase transitions are studied by a Monte Carlo
simulation. We also investigate the existence or nonexistence of free charge in all phases by using
analytical and numerical methods.

I. INTRODUCTION

The study of the gauge-Higgs models in the lattice is a
first step toward the establishment of the existence or
nonexistence of an appropriate continuum limit. '

The phase diagram of the U(1) gauge-Higgs model
with constant modulus is well known for different values
of the charge q of the Higgs fields. The effect of the in-
troduction of the radial degree of freedom for the Higgs
fields has been studied in the model with q =1, showing
that for A, sufficiently small (X being the 4 coupling and
J the gauge-Higgs coupling as defined in Sec. II), the
transition line between the confining and Higgs phases
does not end, but rather intersects the P=O axis. ' As
noted in Ref. 6 this transition point in the f3=0 axis is q
independent and therefore new phases must appear in
the phase diagram for any other q in relation to the
phases in the model without radial degrees of freedom,
which are plotted in Fig. 1 (q =2 and q =6 with X = ce ).
Here we study the phase diagram of the U(1) gauge-
Higgs model with radial degrees of freedom, for q=2
and q =6 and the order of its phase transitions.

It is also interesting to know in which phases one has
or does not have free charge. It is well known that the
asymptotic behavior of the Wilson loop expectation
value for Yang-Mills lattice gauge theories ceases to be a
good order parameter for confinement when the interac-
tion with matter fields is switched on. Indeed, for q =1,
the screening effects induced by the matter-field fluctua-
tions force the Wilson loop to follow the perimeter law,
which rules it out as a good order parameter and, for
q & 1, the Wilson loop behavior turns out to be a good
confinement criterion but for nondynamical charge, i.e.,
for the case of the external fractional charge. For the
dynamical charge (and then of charge q ) the
Fredenhagen and Marcu (FM) parameter is a clear cri-
terion of confinement sufficiently tested in several mod-
els: Z&-Higgs model, ' ' " the Schwinger model, ' the
SU(2)-Higgs model, ' and the U(1)-Higgs model with
q = 1 and 2 (Refs. 6 and 14).

The behavior of the Wilson loop and that of the FM
parameter for the Higgs (P and J large), confining (P and
J small), and Coulomb (P large, J small) phases of the
model studied in this work can be read directly from the

corresponding behavior in the study of the U(1) gauge-
Higgs model made in Ref. 6. Here we study (for q=2
and 6) the behavior of those two parameters in the new
phases which arise when one defrosts the radial degree of
freedom

This paper is organized as follows. In Sec. II we in-
troduce the model and the observables to be computed
and show the occurrence of a phase transition in the
P=O axis for A, &k, and any q. In Sec. III we will de-
scribe the Monte Carlo simulation to discuss the result-
ing phase diagram in Sec. IV. In Sec. V we use analyti-
cal and numerical results, to study the existence or
nonexistence of free charge. We finish this work with a
concluding section.

II. MODEL, LIMIT MODELS, AND OBSERVABLES

with 5 defined as

S[U,4]=—,'P g [U„(n )+ U„,+(n )]
p, v, n

+ —,
' J g [4(n ) Uq (n )4 (n +@)

p, n

+c.c. ]—V(N),

where P is the gauge coupling constant,

(2.2)
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FICi. 1. Phase diagram for the U(1) gauge-Higgs model at
A. = oo . (a) q =2; (b) q =6.

The partition function of the Abelian Higgs model in
a hypercubical lattice in four dimensions with Higgs
fields of charge q is

Z(P, J,A, ) = I g dU„(n ) Q d@(n ) exp(S[U, 4]),
p, v

(2.1)
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and

V(4 )= y V(@(n))

= gI ~

@(n)
~

+k[
~

4(n) —1] } (2.3)

Therefore in the J= m axis U„(n ) is a Z variable,
which we denote by cr„(n ). The partition function is
now

Z (P,J= oo, A, = oo )

exp —,'/3 g [o„,(n )+cr„,,(n )]
4(n ) =p(n )P(n ) =p(n ) exp[i'(n )],

p(n)&[0, oo), P( n)E(0, 27r] . (2.4)

cr (n jEZq n, p, v

(2. 10)

In (2.1) dU„(n ) is the Haar measure of the U(1} group,
and

f d+(n ) = f p(n )dp(n )( —,'n) f dX(n ) . (2.5)
0, oo 0, 2~

The notation is standard: p is a unitary vector in the p
positive direction (@=1,2, 3,4), n EZ labels the site,
and U„,(n ) stands for the plaquette.

The action (2.2) represents Higgs fields of charge q be-
cause when a local gauge transformation is made

J g p(n ) cos[qg„(n )]p(n +p), (2. 1 1)

and we obtain a Z gauge theory, with, for q =2, a first-
order phase transition at /3, =0.44, with area law for the
Wilson loop for /3 ~ P, and perimeter law for P & /3, (Ref.
8). In the q =6 case two second-order transition points
do exist (in /3, =1 and Pz ——1.6) with area law for /3&/3&
and perimeter law for P&/3i (Ref. 8). In the case of
finite A, (but yet J= oo ) the interaction term is

U„(n)~V(n )U„(n)V (n+p), (2.6)
and the dominant configurations in the partition func-
tion are those for which

with V(n ) CU(1) and U„(n ) = e xp[i g(n )], to obtain a
gauge-invariant action, the Higgs fields must transform
as

p(n ) = oo, g„(n ) =2kvr/q, t/n, p,
k=0, 1, . . . , q —1, (2.12)

P(n )~P(n )V~(n ) . (2.7)

We call "integer charge" the charge q and "fractionary
charge" the charge 1.

Knowledge of the theories which we obtain for the
limiting values of the parameters of the original theory is
useful in order to study the phase diagram of the model,
because whenever we have a transition point for such
theories we have a line of phase transition, starting at
that point, for the original theory.

In the J=0 axis one obtains, for any value of q, a pure
gauge theory, with a second-order transition in /3=1. 1,
separating a confining phase (with area law for the decay
of the Wilson loop) and a Coulomb phase (perimeter
law). "

To study the J= ~ axis, we use the unitary gauge,
that is to say, we fix X(n ) =Own, in (2.4). In the A. = ao

case [and then from (2.3) p(n ) =1] the interaction term,
which is (Jg„„cosqg„(n ) }, makes the only
configurations contributing significantly to Z to be those
for which

which imply, also,
points in the J= oo

In the /3= ao

U„(n)=1, and we
modulus

a Z theory so that the transition
axis are A. independent.
axis, U„„(n ) = 1, t/n, p, and then
obtain the X-Y model with variable

(P(0)P (r ) } — C(P }exp(const/
~

r
~

),

and, for J &J„
(P(0)P (r ) } — C exp( —

~

r
~
/g),

Sx r ——J Re g p(n )P(n )P (n+p)p(n+p) —V(p ) .
n, p

In this model, at k= ~, a first-order phase transition
occurs in J, =0.453: this model has a global symmetry
(global gauge transformations for the Higgs fields) which
breaks spontaneously for J & J, ( ( 4 }&0), and the
correlation function for the Higgs fields has two clearly
different behaviors. For J ~J„

cosq O„(n ) = 1Vp, n,
so that

O„(n ) =2k'/q, k =0, 1, . . . , q —1 .

(2.&)

(2.9)

with g, the correlation length.
Last, we study the /3=0 axis. The partition function

(2. 1) for /3=0 becomes, in the unitary gauge,

Z(/3=0, J,X)= f [dg„(n ) /~2][p(n )dp(n )] exp J g Ip(n ) cos[qg„(n )]p(n+p, )}—V(p2)
'

n, p

where O„(n ) play the role of an external field which can be exactly integrated

( ,'rr) f dg„(n ) exp—(J[p(n ) cos[qg„(n )]p(n p+)} }=ID(Jp(n)p(n+@)},
0, 2~

(2.13)

(2.14)

with I0 the modified Bessel function. This expression is q independent. Then the property of analyticity of Z is also q
independent; as for q =1 Z is nonanalytic, ' the same would happen for any value of q.
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To understand the occurrence of this last phase transition let us consider the partition function after the U„(n ) in-
tegration

Z(P=O, J,A, )= f [p(n )dp(n )]exp g in[ID(Jp(n )p(n+(u. ))]—V(p )
n, p

(2.15)

To study the qualitative behavior of this effective action,
we recall the asymptotic behavior of the Bessel functions
for small and large values of their argument:

=PG(L, T) N'G(L, T) where 8 denotes the refiection
through the time-zero axis [see Fig. 2(b)]. We define
then

Io(x ) —1+ ~)x
x~0

I()(x ) —(2m.x )
'~ e",

(2.16)

(2.17)

G(L, T) = ('0 (0,0)
n EPG(L, T)

Uee(» ) 4(O, R )),

(2.22)

= 1 —(2/[d (d —1)] ) g ( Re U„(n ) ), (2.18)

with x =Jp(n )p(n+ p, ) in our case. For A ~ Go (in prac-
tice for A, &0.2) the p(n ) field configurations giving a
significant contribution to Z are close to 1 (in the A. = Go

model we have a Higgs field without radial degrees of
freedom), and, then, when J increases from J close to
zero to large J (and therefore so increases the Io argu-
ment), we move slowly to a behavior as (2.17) and no
phase transition occurs. For X~O (in practice for
A, & 0. 1) the p(n ) field configurations can be very
different from 1, and, then, for increasing J, the Bessel
function argument grows rapidly so that the Io behavior
changes quickly from (2.16) to (2.17), giving rise to a
phase transition. This image is supported by our Monte
Carlo simulation, iohich shotos a erst order phase -transi
tion at J=J, for A, (k, [A,, =0.1] (Ref. 16).

Up to now we have studied only the limit models. To
study the full phase diagram of the multicharged U(1)-
Higgs model with radial degrees of freedom, we must, of
course, resort to Monte Carlo computations of the Wil-
son loop [for the case q & 1 (Ref. 8)] and of thermo-
dynamical functions, as the plaquette energy

E~ = 1 —(2/[d(d —1)]}(8/BP) lnZ

R(L, T)= ii U„( )),
n EP~ (L, T)

and the FM parameter becomes

cr = lim [ ~

G(L, T)
~

/&(L, 2T)] .
L, T~ oo, L /T~O fixe

(2.23)

(2.24)

with P =2(L +2T ) and A an irrelevant constant
different from zero. In this form o. is manifestly in-
dependent of the ratio L/T. Using (2.25), confinement
occurs if CG ——Cz and if CG & C& it is possible to isolate
a charged matter field. As noted in Ref. 15, in order to
compute CG and C„we need to look for the asymptotic
behavior of CG(L, T ) and Cz (L, T ), defined by'

The confinement criterion is that if the limit (2.24) is
different from zero, confinement occurs. If it is zero it is
possible to approximate an isolated quark and there is
no confinement.

As noted in Ref. 9, G(L, T) as well as R(L, T) have,
asymptotically, an exponential decay with the perimeter,
so another way of writing o is

tr = lim 3 [exp( —CGP)/exp( —C~P)],
P~ oo, L /T~O fixed

(2.25)

and the expectation value of the link

L =(1/d )(8/BJ) lnZ
and

CG(L, T)= —
—,
' ln[G(L, T+1)/G(L, T)]

Cz (L, T ) = ——,
' ln[R (L, T + 1 ) /R (L, T ) ]

(2.26)

(2.27)
=(1/d ) g (Re@(0)U+~(0)N (0+p)) . (2.19)

~= (p'(o) ),
and the "phase" expectation value of the link

(2.20)

Other interesting quantities are the expectation value of
the modulus of the Higgs field'

and use any couple of paths with linear distances smaller
or equal to one-half of the lattice size (we use periodic
boundary conditions). On the contrary, when the
confinement criterion is applied using (2.24), the loop
entering the denominator must be twice the one entering

N = ((/d )( X Re/(0)Ue(0)P((0+(e)) . (2.21) (O, T) (L,T) (0,T) (L,T)

Quantities such as (4), (U„(n)), (U~(n)) are zero
because they are not gauge invariant.

To study the existence of free dynamical charge, we
use the FM parameter. We begin denoting by Po(L, T)
a semirectangular path [see Fig. 2(a)] in a space-time
plane 0i, with end points 0 and I in the time-zero axis,
and by PR(L, T) the path defined by P„(L,T)

(0,0) (O, R)
PR (L,T)

t=XO

x =-"i
(0,0) ( L, O)

FICx. 2. The paths PG(L, T) and PR(L, T) for the operators
entering o..
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the numerator which implies (in order to have both in-
side one-half of the lattice) that, when computing the
limit (2.24) a smaller number of points is available than
when computing Cz and Cz, therefore, the sensible
thing will be to study confinement through the asymp-
totic behavior of CG(L, T) and Cii(L, T) (Ref. 14).

III. DESCRIPTION OF THE
MONTE CARLO SIMULATION

We use an 8 lattice with periodic boundary condi-
tions for both the gauge and Higgs fields. We work in
the unitary gauge in order to make the simulation faster.
The unitary gauge is problematic in the large /3 region,
because the thermalization of the system is very slow,
but in the region of study in this paper (/3 & 4) there are
no problems (we have controlled that thermalization is
fast). The continuum group U(1) has been replaced by
the discrete Z72 in order to obtain a greater speed in the
simulation. For P »6 this substitution is not correct be-
cause the theory has a transition not present when the
continuum group is used. For our /3 values this problem
is irrelevant and we have checked that the use of greater
values of Z(n ) does not change the results. For the
modulus of the Higgs fields we also use discretized
values. Because of the small values of A which we will
study, the modulus of the Higgs fields can be very large
and we have controlled that the mean value of (p ) is
always much smaller than the maximum of our discre-
tized Higgs fields. We use 2000 different values of p(n )

which have been arranged as

p, (n )=(p,„,„/2000)i, i = 1,2, . . . , 2000, (3.1)

with p „between 10 and 20, and carry out one update
per p(n ) variable as follows. An integer random num-
ber, ru, is generated between —100 and + 100 (zero is
excluded), and the new tentative variable is defined as

(3.2)

turn cycle in one parameter (P or J) keeping the other
one fixed.

According to the discussion in Sec. II, in the q =2
case a "new confining" phase must occur inside the old
(A. = oo ) confining phase. To confirm this, return cycles
in J, for fixed P are considered. In the q =6 case, two
new phases must occur, one inside the old confining
phase and the other one inside the old Coulomb phase.
To study these phases two types of cycles are considered:
(a) J cycles, with P fixed to values in the old confining,
Coulomb and large P (Coulomb and Higgs phases)
ranges; (b) P cycles, with J fixed to values above and
below the transition point, in the P=O axis, which turns
up for k &A, We repeat these cycles for several A. 's be-
tween 0.02 and 1.

V„,(p) =4Jp —p —X(p —1) + lnp (4.1)

whose value, asymptotically (for large J and small k) is

12

11-
10-
9- 18%- (b)

A. Phase diagram for q =2
For k greater than 0.2 the phase diagram is similar to

that of the X= oo case (except for small numerical
differences in the Higgs-Coulomb transition): in the
small p region the J cycles have no hysteresis and the
thermodynamical functions evolved slowly.

For k &0.05 the L, M, and N variables have hysteresis
at small P indicating a first-order transition. E is con-
stant in practice. In Fig. 3 the values of I in a typical
cycle with A, &A,, are shown. The phase transition mani-
fests itself by a sudden jump of N from values near zero
to values near 1, and another jump of M from 1 to p, ~, ,

where p,~, is the minimum of the potential

with "refIection" boundary conditions.
For the U„(n ) update, a U(1) group element G is gen-

erated in the neighborhood of the identity, and the new
tentative variable is

8-
L 7-

6-
5
4-

- 10%-

U„(n )~GU„(n ) . (3.3)
- 2%-

.25.30.35 !0.45.50 .55.60.65 .70 j 0
ils~Saa

12 24 36 48 70 75

Now, because in the large J region U„(n ) is "almost" a
Z variable, in order to improve thermalization, we al-
low G to be an element of Z, otherwise the U(1) vari-
able cannot travel through the entire group because the
energy of intermediate configurations is very large.

To compute local observables (E, L, etc. ) the system
was previously thermalized with 100 iterations, and then
400 iterations for measurements, measuring expectation
values only every two sweeps through the entire lattice.
For nonlocal observables the thermalization is done with
1000 iterations, and then 5000 iterations for measure-
ments, measuring every five sweeps.

IV. PHASE DIAGRAM

To extract the phase diagram we have computed F. ,
L, M, and N (2.18)—(2.21) for various I,'s, through a re-

0.9 (c)-

0.5-

0.1—
I I I

0.5 1 1.5 2 0 co

FICs. 3. U(1) gauge-Higgs model with q =2 and X=0.02. (a)
Hysteresis for L at P=0. 1. (b) Frequency of occurrence of U„
at p=0. 2. The histogram stands for a typical configuration
close to the equilibrium with J=0.61 (J & J, ) and the smooth
line for J=0.15 (J &J, ). (c) Phase diagram (the dashed line
indicates the extrapolation of the line transition for J or p very
large).
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TABLE I. Abstract of the situation for q =2, 6, and any A. in the Coulomb, Higgs, and confining
phases with J &J„from the results of Refs. 4 and 11.

Wilson loop
decay

o. value
Existence of free
fractionary charge
Existence of dynamical
free charge

Confining phase

Area

&0

No

No

Coulomb phase

Perimeter

=0

Yes

Yes

Higgs phase

Perimeter

Yes

No

For A, & 0.05, the J cycles for P & 1 (old confining
phase) and for 1. 1 &P & 1.6 (old Couloinb phase) present
hystereses for L, M, and N (and these hystereses are
larger for larger P) and E remains almost constant [the
results for l. are plotted in Fig. 4(a)]. In the Coulomb-
Higgs transition all observables present hystereses, in-
cluding E [Figs. 4(c) and 4(d)]. As regards the P cycles,
at these values of A. only for E and J & J, we find a very
small hysteresis, while L, M, and N remain approximate-
ly constant [see Fig. 5(a)].

For increasing k, the hysteresis in the J cycles de-
creases very rapidly (more significantly in the small p re-
gion). And the new transition line between the two
"confining" phases goes up (see Fig. 6). The origin of
this transition is the same as in the q =2 case: for these
X values and for J &J„the theory is very close to a Z6
gauge one [see Fig. 5(c)] and the p(n ) field is concentrat-
ed in the neighborhood of p,&„while for J & J„U„(n ) is
random and p(n ) is close to 1 [see Fig. 5(d)].

For k greater than, but close to, A,, ("intermediate"

A, ), the transition point is not present in the P=O axis,
but the old Coulomb phase is still separated in two
phases (see Fig. 7).

Lastly, for A. &0.2 these transition lines disappear and
we recover the situation of the A, =Do case [Fig. 1(b)].
We have checked that for k & 0.2 no phase transition ex-
ists for any value of J, i.e., the transition fades out,
which makes the new phases to be connected through
the A, axis.

V. FREE CHARGE AND CONFINEMENT

As mentioned in Sec. II, the existence of free fraction-
ary and dynamical charges is investigated computing, re-
spectively, the behavior of the Wilson loop and of the
FM parameter.

In the q =2 case the study has been made in Ref. 6,
using strong-coupling and mean-field methods in all
phases except in the confining one with J & J, . In Ref.
13 this analysis is completed by a Monte Carlo simula-
tion, which agrees with the analytical results. In Table I
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I I ! 1 I

X=0.1 (b)

2 .3 .4 .5 .6 .7 .8
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FIG. '7. U(1) gauge-Higgs model with q =6 and ~=0.1. (a)
J cycle for L at p=0. 5. (b) J cycle for L at p=1.2. (c) phase
diagram.

FIG. 8. Numerical values of 10CG (L, T ) (circles) and

10C&(L,T) (triangles) versus S=L+2T. (a) q =2, 1=0.02,
J=0.61, P=0.2. (b) q =6, A. =0.02, J=0.75, and P=1.2.

Two circles or triangles at the same value of S correspond to a

different combination of L and T. In (a) the size of the sym-

bols is also the error size.
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we summarize the results for the q =2 case in the
Coulomb, Higgs, and confining phases with J &J, .

For q =6, in these three phases (in this context
Coulomb phase means the old Coulomb phase with
J &J, ), we obtain, using the strong-coupling and mean-
field techniques, the same results as in the q=2 case,
with small numerical differences.

In this study, the confining phase with J & J, for q =2,
and the con@ning and Coulomb phases also with J & J,
for q =6, will be analyzed To. do that, we run a Monte
Carlo simulation to compute the Wilson loop and the
FM parameter. A point in the parameter space has been
considered in each phase. For each one we have run
5000 Monte Carlo iterations per point.

A. A. &0. 1, q =2
The chosen values of the parameters are P=0.2,

A, =0.02, and J=0.61. The Wilson loop behaves as the
area, and o is different from zero. In Fig. 8(a) the values
of CG (L, T ) and C~ (L, T ) show that asymptotically
CG ——Cz and therefore no dynamical free charge exist.

B. A, &0. 1, q =6
(1) Confining phase with J & J, . The simulation is

made with the same values of the parameters as in Fig.
5(a), and the result is qualitatively identical. Then no
free charge exists, either fractionary or dynamical.

(2) Coulomb phase with J&J, . The Wilson loop de-

cays with the perimeter and o&0 with CG=CR [Fig.
8(b)]. Then in this phase a fractionary free charge exists,
but no dynamical charge.

The perimeter decay of the Wilson loop is obtained
only for very large perimeters. This is due to the typical
intercharge distance at which screening sets in being
close to half the lattice size. Here finite-size effects could
start becoming important, so, in order to control this, we
have also calculated the expectation value of the Po-
lyakov line, which turns out to be zero within errors and
therefore the finite-size effects are small.

Since both Coulomb phases with J ~ J, and J &J, are
connected through the A. axis, this result would imply
the existence of a frontier, which does not exist when
one computes the phase diagram by means of thermo-
dynamical functions, obtained by a finite number of

derivatives of the partition function. Yet, since already
for the Wilson loop the perimeter behavior is obtained
only for large loops, it might well turn out that when I.
and T increase, different values are obtained for C6 and
C~ ~

VI. CONCLUDING REMARKS

In this paper we have analyzed the phase diagram of
the U(1) gauge-Higgs model with radial degrees of free-
dom, and charge q of the Higgs field equal to 2 and 6,
for a wide range of the P, J, and A. parameters. As
pointed out in Ref. 6 the occurrence of a phase transi-
tion point in the P=O axis for any q produces new
phases, which have been studied here by a Monte Carlo
simulation. The new phase transitions result to be first
order for very small value of A, , and higher order for in-
creasing A, , while the old Coulomb-Higgs transition is al-
ways first order.

Also, by using analytical results and performing a
Monte Carlo simulation, the existence or nonexistence of
free fractionary and dynamical charge has been studied
in all phases. On1y in the Coulomb phase (and for
J &J„ in the q =6 case) both free fractionary and
dynamical charge, do exist. So in the q =6 case the new
Coulomb phase is not, in fact, a real Coulomb phase. In
the Higgs and the new Coulomb phases only fractionary
free charge does exist.

In the remainder phases no free charge exists, either
fractionary or dynamical.

We have checked that no important finite-size effects
exist, and that the discretization of gauge and Higgs
fields is fine enough. The conclusion obtained with rela-
tion to the existence or nonexistence of free dynamical
charge is based on the asymptotic behavior of the
Fredenhagen and Marcu parameter, and it would be in-
teresting to confirm this result for larger perimeters in
bigger lattices.
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