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Gauge invariance of the quantum Wilson loop
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We define the quantum operator for the Wilson loop in QCD and prove that it is gauge invari-

ant. We also derive diagrammatically the Feynman rules in various gauges for the perturbative
calculation of the Wilson loop. Our result solves the puzzle whether the Feynman rules in the axi-
al gauge are consistent with those in other gauges, to all order of the coupling constant and for all

contours in the space-time region. In particular, we show that one must include the contribution
of ghost loops if the principal-value prescription is used for the axial-gauge propagator.

I. INTRODUCTION

a„(k)= b„(—k), — (1.2)

and with e' infinitesimal, let the ghost-ghost-gluon vertex
be

The Feynman rules in the axial gauge' for non-
Abelian gauge field theories have always been suspect.
In this paper, we shall derive sets of Feynman rules in-
cluding those in the axial gauge which give the same
value for the quantum Wilson loop as that in the Feyn-
man gauge.

First, we give a brief account on past difficulties. In
the temporal axial gauge, the gluon propagator in the
momentum space is singular at ko ——0. (There is a simi-
lar singularity in the case of the spatial axial gauge. )

The path-integral formulation is unable to determine
whether one should use the principal-value prescription.
Indeed, the principal-value prescription is especially
called to doubt by the work of Caracciolo, Curci, and
Menotti, who calculated the rectangular Wilson loop in
the temporal axial gauge to the order of g . The sides of
the rectangle are parallel to the x and x ' axes with the
lengths of T and L, respectively. These authors stated
that, in the asymptotic region of T/L »1, the result is
not consistent with that ' obtained in the Feynman
gauge or the Coulomb gauge, if the principal-value
prescription is used. They also gave an axial-gauge
propagator which yields the correct value for the Wilson
loop (to the order g and in the region of T/L ))1).

In this paper we shall establish the Feynman rules for
the Wilson loop in any gauge, including the axial gauge.
We shall prove the validity of these rules to arbitrary or-
ders of the coupling constant, and for arbitrary loops in
the space-time region. This will be demonstrated in two
independent ways.

The first way is diagrammatic. The diagrammatic
method will lead to the following theorem of equivalence
of Feynman rules in non-Abelian gauge field theories:
let the gluon propagator be

i5ab
D „v=—

2 (g„„—a„k, bk„), —
k +is'

with a„(k) and b„(k) related by

. [(a k) —1]k" ka "(—k)G" k)=t
k +i@'

where k" is the momentum of the outgoing ghost [the
ghost propagator has been included in (1.3)], then the
on-shell scattering amplitude and the Wilson loop calcu-
lated with the rest of the Fey n man rules in a non-
Abelian gauge field theory are independent of a„(k). In
particular, all of these sets of Feynman rules are
equivalent to the set of Feynman rules with a„(k)=0,
the latter being the Feynman rules in the Feynman
gauge. In the above, we have made the implicit assump-
tion that, in the gauge considered, the Feynman integrals
are sufficiently convergent so that a change of loop-
momentum variables are allowed. Otherwise, the rules
must be amended by including the contribution of anom-
alous terms. That this theorem holds for on-shell
scattering amplitudes has already been proven else-
where. ' We shall prove below that this theorem holds
for the Wilson loop as well.

The second way to study the Wilson loop is on the
basis of canonical quantization and is in fact nonpertur-
bative. We shall show that there exists a correspondence
formula which equates the Wilson loop in the temporal
axial gauge to the Wilson loop in the effective theory
with ghost fields. A perturbative expansion of this
correspondence formula leads to the equivalence of the
Feynman rules in the temporal axial gauge with those in
the covariant gauge. This equivalence can be extended
to other gauges such as the Coulomb gauge and the spa-
tial axial gauge.

II. DIAGRAMMATIC PROOF

In a quantum non-Abelian gauge field theory, the Wil-
son loop is defined to be

W = trPT exp —ig, A„dx" (2. 1)

In (2.1), ( ) denotes the vacuum expectation value, c is
a closed contour in the four-dimensional configuration
space, g is the coupling constant, and 3„ is the matrix
of field operator in the Heisenberg representation:
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where T' is one of the infinitesimal group generators in
the adjoint representation. The symbol T signifies that
the operators A„' in (2.1) are time ordered [see the dis-

cussion in the paragraph following Eq. (3.2)] while the

symbol P signifies that the group matrices in (2.1) are
path ordered. Thus, expanding the exponential in (2.1),
we have

n=oo ~ n

W=trI+ g trP(T ' . T ")f, dx, ' . . f, dx„"G„' . . .„'(x„.. . , x„),
2 n!

(2.3)

where tr T'Tb=trTbTa (2.8)

G„', . . . „"( xi, . . . , x„)=(TA„'( xi) A„(x„}) (2.4)

is the n-point Green's function. The term corresponding
to n =1 is omitted from (2.3) as trT'=0. We shall
prove that, in the perturbative calculation of the expres-
sion in (2.3), any a„(k) can be used in the gluon propa-
gator (1.1) and the corresponding ghost (1.3) (absence of
anomalous terms assumed).

The lowest-order nontrivial term in (2.3) is of the or-
der of g . It comes from the lowest-order (g ) term in
the two-point Green's function in (2.3) and is equal to

2

trP ( T' T ) rt), dx ~& f, dx 2D &„(xl
—x 2 ), (2.5)

with

d ka„(x)=f „e '" "a„(k),
(2~)"

(2.7)

and with bF(x) the Fourier transform of (k +is') '. It
is easy to prove that the expression in (2.5) is indepen-
dent of a. We have

where, by (1.1),

D„' (x)=5,l, [ ig„„h—F(x)—B,a„(x)+B„a„(—x)],
(2.6)

[hence we may drop the symbol P in (2.5)]; thus a term
such as () a„(x) in D„' (x) is integrated to zero over the
closed contour c.

The next-order terms in (2.3) are of the order g, and
come from the term of the order g in the two-point
Green's function, the term of the order of g in the
three-point Green's function, and the term of the order
of g in the four-point Green's function. These terms
are illustrated in Fig. 1. Let us first consider Fig. 1(e).
In this figure, the four-point Green s function is approxi-
mated by

D„'„(x,—x2)D~ (x3 —x4), (2.9)

and the others obtained from it by permuting the coordi-
nates. Let us first prove that the a functions in

Dz (x3 —x&) are canceled by some corresponding terms
in the three-point Green's function. We note that the
group factor trP(T'T T'T ) associated with Fig. 1(e)
depends on the ordering of x&,x2, x3,x4 on the closed
contour c. In particular, the di6'erence of the group fac-
tors corresponding to the two orderings illustrated in
Figs. 2(a) and 2(b) is that of the three-point Green's
function in Fig. 2(c). Let the coordinates x &, x2, and x3
be ordered as in Fig. 2(a) and let us carry out the follow-
ing integration over x4.

Z)
trP(T'T"T'T")f dx& a~(x3 —x4)5'"5'"= tr(T'T'T"T ) f dx4 az(x3 —x&)5' 5'

x4 x4
Z2 ()+tr(T'T'T T ) dxf a~(x3 —x4)5' 5'" .

Z)
(2.10)

Ba~(x 3
—y)

Qyp
(2.12}

We get

[a~(x3 —x i ) —a~(x3 —x2)]

Xgroup factor of Fig. 2(c) . (2.11)

Next we consider the diagram in Fig. 3 and concentrate
on the term

p I „,(p, q, k)= (q g„„—q„q„}
—(k g„~—k„k„), (2.13)

where I z „„(p,q, k) is the three-point interaction in Fig.
3. The term in the first parentheses in (2.13), multiplied
by the propagator (in momentum space) for the line join-
ing x& with y, becomes

l

in the propagator Dpp In momentum space, —iB/Byp
is equal to p, where p is the momentum for the gluon
line joining x3 with y in Fig. 3. Now we may easily
check that

2 gI I' q~~I'
i (q g„——q„q„)

q

= —lgp~ —!G~ (q)qp (2.14)



3198 HUNG CHENG AND ER-CHENG TSAI 36

(o) (b)

(e)

FIG. 1. g terms in the Wilson loop. The double-line circle
represents a contour c in space and time. A solid line
represents a gluon and a dashed line represents a ghost.

FIG. 3. The lowest-order diagram for the three-point func-
tion with x l, x2, and x3 in counterclockwise order. The dot at
y denotes a three-gluon vertex.

where G, (q) is the ghost-ghost-gluon vertex given by
(1.3). In configuration space, the term ig„„ —in (2.14)
corresponds to

and

DA (k)=
—i6,b

8pvk 2+ I. e'
(n„k„+n,k„)ko —k„k

ko +e

(2.17)

—ig„, 5 (x, —y) .(4) (2.15)

n„ko ——,
' k„

a (k)=
k, '+e2 (2. 16)

where n& is the temporal vector (1,0,0,0), then

Therefore, this term gives, together with the factor
az(x3 —y) in (2.12), an expression which cancels the first
term in the square brackets of (2.11). Similarly, the term
in the second parentheses in (2.13), multiplied by the
propagator for the gluon line joining x2 and y, produces
an expression which cancels the second term in the
square brackets of (2.11). Finally the ghost terms such
as the second term on the right side of (2. 14), as well as
terms such as Ba (x 3

—y) /Bx ~3 in the propagator
Dpp' (x 3 y ) produce expressions which cancel terms be-
longing to Fig. 1(a). Specifically, these latter terms are
the ones generated by the [B„a„(x)—B„a„(—x)] terms of
the propagators in the virtual loop in Fig. 1(a) if we re-
peat the procedure above.

If we choose

G„(k)=—
k +ie'

k kon„+e k„
k 2+62 (2.18)

I. 6,b e
D oo(k) =-

(k'+ie')(ko +~ )
(2.19)

We emphasize that, while D 00(k) vanishes in the limit
e~O with ko fixed, it is of the order of unity in the limit
E~0 with k o /e fixed. It has been verified that there ex-
ist diagrams with temporal gluons giving nonzero contri-
bution in the neighborhood of ko ——0. Therefore, the
propagator D 0 (k) may not be set to zero at the begin-
ning. Rather, we should take the limit e~O at the end
of each diagrammatic calculation.

(ii) From (2.18) we have in the limit a~0,

G„(k)= —in„P 1

0

We may regard the propagator (2.17) in the limit of
e~0 as the gluon propagator in the temporal axial
gauge. There are, however, two points to keep in mind.

(i) From (2.17) we have

where P signifies that the principal value is taken. Since

(o, , x) (o, x ) J™dkPg =0,

(b, x xg (d,

(o) (b) (c)

FIG. 2. The difference of the group factors corresponding to
(a) and (b) is equal to that corresponding to (c).

iV )2 and a„&a if n&m, it may appear that one need
not, in the axial gauge, take into account ghost loops, as
asserted by the path-integral approach. This conclusion
is erroneous for the same reason just given, and we must
include ghost vertices in a diagrammatic calculation,
taking the limit e~O only at the end.

The choice (2.17) for the axial-gauge propagation is
not the only one possible. We may use, for example, the
propagator
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abDp ———i5,b
g —(5 k+6 k)— +k„kv—1 1 l

(ko+ie) '(ko —i@')
(2.20)

In the limit e~O, this propagator is traditionally regard-
ed as the temporal-gauge propagator in the principal-
value prescription. The corresponding ghost vertex
remains to be given by (2.18). This propagator together
with the corresponding ghost again give the correct
value for any Wilson loop, if the limit e~O is taken at
the end of a calculation, not at the beginning as was
done in the literature. We have verified that, in this lim-
it, both the temporal gluons and ghosts contribute. This
explains why Caracciolo, Curci, and Menotti did not
obtain the correct answer for the g term of the Wilson
loop, using the conventional principal-value prescription.

It is also possible to choose the axial-gauge propagator
to be

operators, and one is not allowed to move u (x&) from
the leftest position to the rightest position as one takes
the trace. It turns out that this minor complication can
be handled by ordering the quantum operators in the
Wilson loop according to time, as is given by Eq. (2.1).
In this way the matrix elements of u (xz) and u '(x~ )

are adjacent if t2 ——t], and the Wilson loop is unchanged
under A„~3„'.

As we have mentioned, A„(x) in the Wilson loop is in
the Heisenberg representation. It remains to specify the
Hamiltonian used in this representation. Let us consider
the Wilson loop with the Hamiltonian being the one cor-
responding to the effective Lagrangian with ghost fields:

ab ~ab n&k v

k

n k„
kp —lE i (B"—)I )'(D„g)', (3.3)

k„k+
kp +LE'

(2.21)

The ghost-ghost-gluon vertex corresponding to (2.21) is

—k2n" —irk„
kp+ie k +i@'

(2.22)

III. THE CORRESPONDENCE FORMULA

Finally, we shall derive the correspondence formula
which equates the Wilson loop in the temporal axial
gauge to that in the Feynman gauge. To do this, we first
discuss the meaning of the Wilson loop as a quantum
operator. It is well known that if

For such a vertex, the integrand for a ghost loop has
singularity at kp ———ie only. Therefore, we may choose
to close the contour integration in the upper-half kp
plane, obtaining zero. In other words, there is, in this
prescription, no contribution from ghosts. However, the
contribution from temporal gluons remains to be
nonzero.

U =exp i f A—o(x)V A'(x)d'x (3.4)

for the operators in the quantum theory of (3.3). We
shall indicate the transformed operator by an overbar,
e.g. ,

Heff: UHeff U )

while H, fr is the Hamiltonian corresponding to (3.3).
Specifically, we have

where )I and g are Hermitian ghost fields. This is be-
cause there exists, in this theory, a conserved [Becchi-
Rouet-Stora (BRS)] charge which generates the gauge
transformation (3.8) below. The symmetry of the Wilson
loop under this gauge transformation will enable us to
derive the correspondence formula (3.17) which equates
this Wilson loop with that in the original Yang-Mills
gauge theory. For clarity of presentation, it will prove
convenient to make a unitary transformation represented
by

2 p
——uA„u '+(ig) 'uB„u

where u is a matrix in the group space, then

Xp
P exp ig f 3„'(x—)dx"

(3.1)
H ff =HF + d x im'$77(+g 3 p

i ( V)I )' ~ ( Dg—)'],

where

(3.5)

Xp
=u (x2)P exp ig A„(x—)dx" u '(x( ) .

(3.2)

HF = f d x[ ,'m' m'+ ,'B'.B'+—Ao(D.m. )—'

—
—,'vr'„~o —vroV A'] . (3.6)

For a closed loop, x& ——x2. Therefore, in the classical
theory, one may prove from (3.2) that the Wilson loop is
unchanged under a gauge transformation, as the factors
u (xq) and u '(xi ) cancel each other when the trace is
taken. In quantum theory, one must further take note of
the fact that the matrix elements of u may be quantum

g = f d'x[ (Dg)' m'+i~'„—~o+ ,'gf"~g'g'] . —

It is easy to verify from (3.7) that

(3.7)

In the integrand of (3.6), a term which is equal to a spa-
tial divergence has been dropped, as it does not contrib-
ute to Hp. The BRS charge is
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and

[Q, A"']= —i (D"g)',

[Q Pl+ = —
—,'ig&'7"P,

[Q n']+ =~o

(3.8)

(3.9)

(3.10)

(OiI w.ffIW~&=(0. iI w. IO.z&. (3.17)

A(x) =—e A(x)e

where 8' is the Wilson loop operator in the temporal
gauge in which Ao ——0 and

[Q, rt(]+ = —i (D tr )' igf—'"'fftg' . (3.1 1)

Since Q commutes with H, ff, the fields in Eqs.
(3.8)—(3.11) can be replaced by their Heisenberg repre-
sentations. Therefore, (3.8) means that Q is the operator
which generates the infinitesimal gauge transformation
with the group parameters g'(x ), where

g'(x) =exp(iH, ffxp )P(x)exp( —iH, ffx p ) .

with

H =-,' f d'x(n' m'+B' B') . (3.18)

f(A„', ri', P)=e "P ( A'),
where

(3.19)

Equation (3.17) is valid for any states
I g ) and

I P )
satisfying

It then follows from (3.8) and (3.2) that Q=0)+Oq, (3.20)

[Q W ff(x2 x
1 )l=gT[ W,ff(x2 xl )Pxi )

—$(x2 }W ff(x2, x ( )], (3.12)

where

8)———i d xg' VD
&—v'

O~ = —,
' f d x ( +—V A p i V —A').

(3.21)

and where
Xp

W, ff(xq, x ) )=PT exp —ig Aq(x)dx", (3 13)
XI with

X (+—V Ap iV A—'),
&—v' (3.22)

with (D m)g =0, (3.23)

A„(x)=—e ' 'A„(x)e

In particular, if x
&

——x z, we have

IQ W.ff]=o

(3.14)

(3.15) QQ=O. (3.24)

which is the Gauss law. It is straightforward to verify
from (3.19)—(3.23) that'

where 8',& is the Wilson loop operator in the theory of
(3.3). More precisely

W, ff
——tr W,ff(xp, x ) ), (3.16)

where x& ——xz and the contour of integration is a closed
one.

We are now ready to prove the correspondence formu-
la

The proof of the correspondence formula (3.17) will in-
volve the repeated use of (3.24) for both

I
gz) and

I 1'&).
The inner product on the left side of (3.17) involves func-
tional integrations over all four polarizations of 3„' as
well as the ghost fields, while the inner product on the
right side of (3.17) involves functional integrations over
AT only. More precisely, (3.17) can be written as

f DA„'(x)Dri'(x)Dp(x)g ~ (A&, ri', p)Weffgq(A&, g', p) = f D A'(x)5(V A')det V D g'&( A')W /~2( A') .

To prove (3.17), let us first prove that if the time components of x, and xz are equal, then

(3.25)

(3.27)

W(t)—= (g& I
trW, ff(x&,xz, & )e ' e W (x2, x~, & )

I p2)

is independent of this time component denoted by t In (3.26), th.e points on the contour of W (W,ff) are of time

components smaller (larger) than t, as indicated by the sign & ( & ) in (3.26). To prove this, we differentiate (3.26)
with respect to time and get

d W(t) — — itt, ffr
—iH t

i =(g&
I
trPW, ff(x~, x2, & )e ' [H H, +gffAp( ])—xg—Ap(x2)]e W~(x2, x~, & )

I g~) .
dt

The term in square brackets in (3.27) is equal to zero.
To see this, we have from (3.8)—(3.11) that

m~()~p ——[Q, ri'vrp ]+, (3.28)

ffpV. A' —iri'(V. Dg)'=[Q, g'V. A']+, (3.29)

and

Ap(D rr)'+gf'b'Apbpfft+in„'art [Q,i~)Ap]+ . (3——.30)

From (3.28) —(3.30), (3.5}, and (3.18), we get

H =H, = d x,—,'g' o+q'V. A' —i ~AD

(3.31)
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W(Tf )= W(T; ), (3.34)

where Tf (T, ) is the largest (smallest) time on the con-
tour c in the Wilson loop. Equation (3.34) is, explicitly,

iH, ~T, —lH T, . —
)&oi I

w, s.e ' 'e " '
I &2

Because of (3.31), the term H H—,tt in (3.27) becomes,
after we make use of (3.12) and (3.24),

f d' x[gg( xi) —gg(xz), ,'ri'—mo+ri'V A' i—~&A o]+

=gdo(xz) —gAo(xi) (3 32)

In deriving (3.32), we have made use of the facts that Q
commutes with H,„, (3.24) holds for g, and

[Q Ww(x2 x i )] gTWul(x2 x i )[g(xi ) Pxz )1

which is the counterpart of Eq. (3.12). From (3.27) and
(3.32), we find that W(t) is independent of t. Therefore,

. dA(t) n lH i—i =&e g i I

trw (xi, xz, & )e [H, e ]dt
—iH t

Xe W (xzxi, &) 1' 2) .

(3.38)

,'m';[rr', , A—]e"+—,
' [~;,Il]e "vr;'. (3.39)

We shall show that (3.39) vanishes upon being inserted
to (3.38). Applying Eqs. (3.8)—(3.10) to (3.21), we get

0]—— d x,q' V A'
—V

The commutator on the right side of Eq. (3.38) can be
decomposed as

[H,e"]=—,
' [(rr,'), e "]

(3.35)

As we have proven in Ref. 7, we may replace H,z in

(3.35) by H . This is because e " '
I
itiz),

e Ww
I

lilz)
I Pi) and We@'

I
itli) satisfy (3 24) and

a correspondence formula holds for the matrix elements
IH ff. tof e ' between states satisfying (3.24) (Ref. 7). Equa-

tion (3.35) then becomes

(3.36)

To reduce (3.36) to (3.25), we need to carry out the func-
tional integration over Ao as well as the ghost fields in
the right side of Eq. (3.36). These integrations cannot be
done yet, as the operator 8' operates on the e factor
in the initial wave function. To move this e factor to
the left of W, let us define, similar to (3.26), an inter-
mediate quantity,

—fdx~o V A'.
V2

Thus (3.20) can be written as

0=Bi+02,
where

Qi= f d x Q, rj' V. A'1

V2

102= — d X ~O V A +02—V

and 02 is expression (3.22).
It is straightforward to show that

[rr,', Iiz]e "F(A) =0,

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

A(t)—:&e "its~i
I

«W (xi,x, , & )e

)&e W (xz xi, & ) itl z), (3.37)

where t is the time component of xI and x2. We shall
show that A(t) is independent of t The deriva. tive of
A(t) with respect to t is

where F is any function of A. This can be done by com-
puting [~;,II2] explicitly and observing the explicit
dependence of vro in this commutator and that of Ao in
Q. The factor [ir';, II] in both terms of the right side of
Eq. (3.39) can therefore be replaced by [~;,Qi] when
(3.39) is substituted into (3.38). Therefore the right-hand
side of (3.38) can be rewritten as

—,'&e "g i I

trW (xi, xz, & )e "' (~;[~;,Qi]e +[a.,', II ] iver,')e W„(xz,xi, &)
I g 2) . (3.45)

Next we substitute the right side of (3.42) for Qi in (3.45). We may then replace Q in the resulting expression by
gT(g(xi) —g(xz)). This can be proved by writing out all the terms in [m;, Qi], with Qi replaced by the right side of
(3.42), moving Q to the left (right) for the term in which ri'(I/+ —V )V. A' lies to the right (left) of Q, and making
use of

[Q e "l=o Q I 0. ) =o [Q ~;]= tgf'"'k'~; . —
Since g(xi ) —g(xz) anticommutes with 21'(I/+ —V )V A', expression (3.45) vanishes. Thus A(t) is a constant and
we obtain the conclusion

A(Tf )=A(T; )

(3.46)
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iH T, iH TfFinally, we may move the e to the left of e ' or e in the expression above. This is because we may prove,
just as in the above, that the commutator [H, e ] vanishes when it is inserted between two states satisfying (3.24).
Thus

By carrying out the functional integrations for the ghost fields and the Ao field, we obtain

DA„' x Dg' x D ' x ) A„',g', ' 8',g 2 Ap, g',

(3.47)

= f D A'(x)exp —f d x (V A') (V. A') det V D f" t( A')8' P z( A'),
V2 p2

(3.48)

DLL (x,x') = t 5 '(x ——x')t
& (3.49)

where t is the larger of xo and xo. Also, for the trans-
verse gluon, we have

which is equivalent to the correspondence formula (3.25)
(see Ref. 7).

Equation (3.17) is an exact formula, and is valid be-
tween states

I g & satisfying the Gauss law. If we
choose

I
tt &

& and
I g 2 & to be vacuum states, and if we

make a perturbative expansion of (3.17) and use the adia-
batic hypothesis, the left (right) side of (3.17) is the per-
turbation series for the Wilson loop in the Feynman
(temporal axial) gauge. The propagator for the longitu-
dinal gluon on the right side of (3.17) is

Do„(x,x') =D„o(x,x') =0 . (3.51)
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This is the propagator given by Eq. (8) of Ref. 2 with
n = —1. The other choice of a = 1 in Ref. 2, also giving
the correct answer, can be obtained from our formalism
by reversing the roles of g*t and 1t 2. Note that, in this
prescription, we pay the price of translational invariance
for the propagator but gain the advantage that Do„ is
strictly zero.

Finally, we mention that the correspondence formula
(3.17) can be extended to the covariant a gauge, the spa-
tial axial gauge, and the Coulomb gauge.

d k 1
4 kk

X,X —l 4
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