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The structure of the renormalization of the Yang-Mills theories in the light-cone gauge is inves-
tigated. It is shown that, despite the appearance of an infinite number of nonlocal divergent terms,
the theory can be made finite to any order in the loop expansion by introducing a finite number of
renormalization constants. Those constants can be interpreted as coefficients of a canonical trans-
formation of fields and coupling constants in such a way that gauge invariance and unitarity of the
renormalized theory are manifestly satisfied. In particular it is shown that the nonlocal structures
are completely decoupled from the physical quantities.

I. INTRODUCTION

The light-cone gauge has been frequently used in per-
turbative calculations involving Yang-Mills theories. Its
main virtue is the possibility of a partonic interpretation:
after eliminating the redundant degrees of freedom, the
number of the independent fields equals the number of
"quanta" present in the theory. This circumstance
makes this gauge choice particularly suited to study the
properties of supersymmetric models' as well as in con-
nection with nonco variant formulations of string
theories.

The resulting treatment is, however, quite singular; in
particular, it cannot be considered as the limiting case of
an axial-gauge formulation of the theory when the gauge
vector n& becomes lightlike, owing to the presence of
severe singularities in the Green's functions when
n ~0.

As a matter of fact, it was commonly believed that,
within the light-cone gauge choice, as well as for the
axial-gauge choice, only physical transverse quanta
were needed to describe the dynamics of the massless
vector fields, at the price of losing manifest Lorentz co-
variance, due to the presence of the gauge vector n„,
and of getting spurious singularities in the vector propa-
gator (and in the whole set of the Green's functions),
which need to be properly and carefully handled. T' he
quantization procedure set up along the same lines of the
axial case, as traditionally done for instance within the
"null plane" formalism, unfortunately leads to an incon-
sistent formulation of the theory, at least as far as the
perturbative framework is concerned. The point is that
a resolution of the constraint equations in terms of the
physical degrees of freedom, as it could be implemented
by inverting the difFerential operator n "8„, in analogy
with the axial case, forces the use of the principal-value

prescription for the spurious singularities. This in turn
results in a breakdown of the power-counting criterion
for the light-cone Feynman integrals, preventing the usu-
al renormalization procedure for the Green's functions.
Another drawback of the principal-value prescription,
strictly related to the previous one, is the loss of simple
rules, such as the familiar Wick rotation to get Euclide-
an Feynman integrals. As a consequence, this quantiza-
tion scheme has to be abandoned.

More recently a difFerent quantization based on the
usual equal-time operator algebra has been proposed.
The main consequence of this approach has been the ap-
pearance of a new prescription, we shall call the
Leibbrandt-Mandelstam (LM) prescription for handling
the spurious singularity in the vector propagator, in a
way which allows a Wick rotation without extra contri-
butions and thereby a power-counting criterion for the
convergence of the Feynman integrals. Such a prescrip-
tion was previously proposed in Refs. 8 and 9 with pre-
cisely this motivation. For instance, if the /3 function in
the supersymmetric (SUSY) n =4 model is computed
from the self-energy at one loop using this prescription,
it is found to vanish in agreement with the result ob-
tained in other gauges.

Within this new quantization scheme the Gauss law
does not hold as an operator constraint equation in the
whole Hilbert space, where a ghostlike degree of free-
dom propagating along the generating line of the light-
cone is present. Nevertheless it was shown that it is
still possible to select in the Hilbert space, a physical
subspace with positive-semidefinite metric where the
Gauss law, the Lorentz covariance, and the unitarity of
the formal S matrix are recovered, at least in the frame-
work of perturbation theory. The essential point is that
the ghostlike quanta are necessarily present to generate
the nice LM prescription for the spurious singularities,
but, as required from gauge invariance, they decouple
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from physical quantities.
We notice, however, that the above statements, al-

though quite natural and satisfactory, are only of a for-
mal character, due to the occurrence of the well-known
ultraviolet divergences. It is the aim of this paper to in-
vestigate in detail the general structure of those ultravio-
let divergences, and to set up a consistent renormaliza-
tion procedure for the Green's functions, in such a way
that the above-mentioned physical requirements are still
manifestly satisfied.

It was soon realized that the accomplishment of that
program is not a trivial application of general known re-
sults, owing to some unusual features specific of the
light-cone gauge, as already emerging in the one-loop
calculations. ' The difficulties are twofold. The first
one is connected with the presence in the LM prescrip-
tion of a "dual" null gauge vector n„* besides the original
vector n

&
which defines the gauge choice. The oc-

currence of two gauge vectors allows the dangerous pos-
sible appearance of a very wide class of Lorentz-
noncovariant divergent structures compatible with di-
mensional analysis and symmetry properties. The
second, and more delicate problem to deal with, is the
presence of singularities with a nonlocal character in the
proper vertices: namely, of poles at ~=2 (2' being the
dimensions of space-time) with residues which are not
polynomials in the external momenta. ' We stress that
this pathology is peculiar to the light-cone gauge choice;
indeed one can prove that other algebraic gauges do not
share it. Nonlocal divergences require nonlocal counter-
terms; plenty of them can be envisaged starting from the
basic nonlocal quantity (n "r)„) 'n "3, which is homo-
geneous in n„and dimensionless, in a way compatible
with the Lee-Ward identities; therefore, a rationale must
be found to put the otherwise a priori arbitrary prolifera-
tion of those peculiar divergent structures under control.
As a matter of fact, we shall succeed in determining the
precise form of those counterterms, starting from basic
symmetry principles and fully exploiting the characteris-
tic features of this gauge. It will be found that, although
their number is infinite, as they are present in one-
particle-irreducible (1PI) vertices with any number of
legs, their general form is quite specific and depends on
few renormalization constants. We shall also show that
those nonlocal counterterms, although necessary in or-
der to make the 1PI vertices finite, always decouple from
the physical sector.

After having reviewed the canonical quantization and
introduced the basic notations in Sec. II, in Sec. III we
review and comment on previous results showing how
renormalization can be accomplished at the one-loop
level. This is quite useful and actually necessary as a
first step towards the inductive proof of renormalization
at any order in the loop expansion. The latter is given in
Secs. IV and V for the pure Yang-Mills theory and ex-
tended in Sec. VI to the case in which massive Dirac fer-
mions are also present.

We stress that, after having understood the peculiari-
ties of the light-cone gauge in a well-established theory
(at least in the perturbative sense), we can now apply
this gauge choice to more complicated situations, being

able to disentangle true dynamical difficulties from pure
gauge artifacts.

II. QUANTIZATION OF THE YANG-MILLS
THEORIES IN THE LIGHT-CONE GAUGE

where

F„',=B„A '„—8,A „' +gf'"'A „A '„, (2.2)

r' is a basis in the fundamental representation of the Lie
algebra of the internal-symmetry group, A' are Lagrange
multipliers, and n„ is the lightlike vector (no, n), we
derive the equations of motion and constraints:

D' F"""+ger'y"P=n "A',
n"A' =0

p

(i+i m)$=—0,

(2.3)

(2.4)

(2.5)

where

and

Dab g 5ab fabc' c
P P P (2.6)

g)p =()pI —Egg (2.7)

Applying the covariant derivative D„" to Eq. (2.3) and
taking into account that the fermionic current is covari-
antly conserved, we get the basic equation

n c)"A'=0
P

(2.8)

for the Lagrange multipliers.
Equation (2.8) can a priori give rise to two different

approaches. The first one is to consider a null-plane for-
malism ' in which Eq. (2.8) is treated as a constraint;
with suitable boundary conditions the differential opera-
tor n 8—:3 can be inverted, thereby recovering the
Gauss law, in a strong sense, in the Dirac terminology.
Following this way, the spurious singularity in the vec-
tor propagator turns out to be defined as the Cauchy
principal value. It leads, however, to trouble in the per-
turbative expansion for the Green's functions, as the
superficial degree of convergence of an arbitrary Feyn-
man diagram is no longer controlled by any power-
counting criterion. Moreover, a computation of the first
coefficient in the perturbative expansion for the P func-
tion of the renormalization group disagrees with the one
obtained, e.g. , in a covariant gauge.

The second possibility is to look at Eq. (2.8) from the
usual point of view of the time-evolution framework.
Within this context the above equation is nothing but an
equation of motion, so that the Gauss law has to be
thought to hold in a weaker sense, as we shall better

In this section we summarize the main results we ob-
tained in Ref. 7. In doing so we also establish our nota-
tions and conventions. Starting from the Lagrangian
density

,' F~ F—""A'n —"3 q +Q(i 8 m)—g+ g P A 'r'g,

(2. l)
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specify in the following.
This fact amounts to keeping extra degrees of free-

dom, namely, in dealing with a Hilbert space with
indefinite metric, where ghostlike states are present ~

Nevertheless, we have shown in Ref. 7 that it is possible
to select a subspace &p of the physical states in which
A vanish; i.e., the Gauss law is satisfied. This subspace
has a positive-semidefinite metric and is stable under the
Poincare group generators, whose algebra closes in &~;
furthermore, the restriction of the formal perturbative S
matrix on Az is a unitary operator.

Following this last quantization scheme a new
prescription emerges for the spurious singularity of the
vector propagator, viz. ,

1 n*p 1 (29)[~.p] (n p)(n* p)+i@ n p+ie gsn( n*.p)
where n„' is the null vector (no, —n). The LM prescrip-
tion of Eq. (2.9) allows the usual Wick rotation and a
power-counting criterion for the Feynman integrals.
Equation (2.9) implies the presence of a ghost propaga-
ting along the generating line of the light cone, as al-
ready noticed.

In conclusion, if one wants to perform perturbative
calculations in the light-cone gauge, the LM prescription
must be chosen, which, however, makes explicit use of
the "dual" vector n„*. It is just owing to the presence of
the ghostlike degree of freedom and of the dual gauge
vector, endowed in the LM prescription, that it becomes
nontrivial to control the theory when loop corrections
are taken into account. We shall see, however, in the
remainder of this paper that all new objects, typical of
the light-cone quantum theory, work very well in pro-
ducing coherent and satisfactory results to any order in
perturbation theory.

III. THE ONE-LOOP RENORMALIZATION

In this section we recall some known results concern-
ing one-loop calculations with the aim of pointing out
the most remarkable features of this gauge choice. In so
doing we shall discuss the main difficulties of the theory
which prevent a straightforward application of the stan-
dard renormalization procedure to this case.

The one-loop calculation of the divergent part of the
self-energy tensor has been given in Ref. 9 and reads

lg Cg
ri ()=p. v 16 p(2 }

3 p, vp (c v

2
—2 (O' R' +6'*11~), (3n-n

p„n"(p) =0, (3.2)

which is one of the Ward identities. We also stress that
out of the possible four independent transverse tensor
structures allowed by Eq. (3.2), only two appear in Eq.
(3.1}.

The divergent part of the three-vector-irreducible
proper vertex has been computed in Ref. 11. As it has
been explicitly verified there, the terms which are
present correctly map onto the corresponding ones of
the self-energy as required by the Lee-Ward identity

p" „',' p, q, r)=gp f' '[H, , (r) —fl, , (q)] . (3.3)

Once again nonpolynomial coefficients arise in the fol-
lowing four structures:

' "S'„'(p, q, r) =f '"'
g

n qn* q —n rn*. r
n. n "n.p

(3.4a)

' 'S „'";p(p, q, r ) =f' ' p„n n
n-q

n *.r
n r n. n'

(3.4b)

(3) abc cs i cabc q P ~ P ~*.q n* r
pvp(p~q~rj =f +nn nq nr Is)

(3.4c)

2 4 2
4Sabc(p q r) fabc& n &

q ««q
nnnqnr

, (s)

(3.4d)

where the subscript (s) means cyclic symmetrization.
The trouble is that, just owing to the presence of non-

polynomial coefficients, the Lee-Ward identity (3.3)
might be eluded by an infinite number of possible ker-
nels, as for instance the tensor

@&=n„—p„n 'p/p, n =n —n n .p/n p

We notice that the presence of the vector n„' allows
several non-Lorentz-covariant structures; in addition a
nonpolynomial coefficient appears which requires nonlo-
cal subtractions in the Lagrangian. It is worth em-
phasizing that this term is unavoidable in order to satis-
fy the transversality condition

&„':,(p.q, r) =f" n ~qp
n. q

np
r — p. r — g

n p

n p
n p

n
r — q r

n q
(3.5)

which satisfies the homogeneous equation

p "K„',' (p, q~, r) =0 . (3.6)

This critical feature of the light-cone gauge has been

discovered in Ref. 12 in the fermion-fermion-vector ver-
tex, where it really occurs at the one-loop level, and fur-
ther discussed in Ref. 13; in this paper the existence of a
fine-tuning mechanism to treat it has been explicitly
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recognized at the one-loop level.
One should also notice that, because kernels are possi-

ble, the equality of the coefficients of the standard co-
variant parts of the three-vector vertex and of the self-
energy (implying Z, =Z, ) at one loop, should be regard-
ed, at this level, as rather accidental.

In an analogous way, N-point 1PI vertices could ex-
hibit divergences with nonpolynomial behavior. In par-
ticular, the complete divergent part of the 1PI four-
vector vertex at one loop has never been explicitly com-
puted to our knowledge. The renormalization procedure
we shall develop in the following sections will give, as a
byproduct, a precise prediction concerning this divergent
term as reported in Appendix A. It might be interesting
to check this prediction by means of a direct calculation.
In summary, if one wants to make all the 1PI vertices
finite, one has to perform nonlocal subtractions in a con-
sistent way: namely, one has to prove that the theory
can be renormalized by a suitable finite number of in-
dependent counterterms. The same troublesome features
also occur in the Becchi-Rouet-Stora (BRS) approach; a
program along this line has been recently attempted by
some authors. '

As far as the one-loop Green's functions are con-
cerned, we have shown that renormalization is possible
by means of local counterterms the extension to the
many-loop case was, however, lacking.

In the remainder of this paper we will be able to prove
that, at any order in the loop expansion, the 1P1 vertices
can be made finite by introducing nonlocal counterterms
of a "vanishing" type and of a very special nature. The
renormalized Lagrangian density can be obtained by per-
forming a canonical transformation on the fields in anal-

ogy with the renormalization of the Yang-Mills theory
in the planar gauge. '

As a byproduct, one can show that the Green's func-
tions (and a fortiori the formal S matrix) can be renor-
malized only with local counterterms to any loop order.

IV. THE STRUCTURE OF THE DIVERGENCES
IN THE LIGHT-CONE INTKGRALS'

In this section we will treat for simplicity the pure
Yang-Mills theory, deferring the general case to Sec. VI.
Our aim is to prove the following basic property: (i) it is
possible to make finite all the Green's functions by intro-
ducing only a finite number of local counterterms; (ii)
the 1PI vertices can be made finite by subtracting a spe-
cial kind of local and nonlocal counterterms which will
be completely determined.

Let us introduce some useful definitions. We shall call
the effective part of a 1PI graph G the corresponding di-
mensionally regularized analytic expression in which
possible terms containing at least one gauge vector n„
with external Lorentz index p are disregarded. This
definition is convenient, as only effective parts of a 1PI
graph can contribute as subdivergences in a Green's
function.

The second definition we need is an extension of the
concept of the degree of divergence of a diagram. We
recall that the prescription (2.9) allows the usual Wick
rotation without extra contributions and thereby, even-

tually, a power-counting criterion for the convergence of
the integrals is indeed respected. Actually two different
kinds of power counting are needed to deal with light-
cone integrals, one related to the total high-momentum
behavior of the integrands not distinguishing among the
different components of the loop momenta, and another
concerning the high-momentum behavior with respect to
the transverse components kIJ' =(f. 'J', n* O'J'), kIJ' be-

ing any one of the loop momenta and k ' ' being its com-
ponents orthogonal to both n„and n„'. This fact obvi-
ously stems from the noncovariant nature of the propa-
gator. For example, the propagator contributes with
power a= —2 to the total high-momentum behavior of
the integrand of a diagram, while the covariant and the
spurious parts of the propagator contribute with powers,
respectively, given by /3~= —2 and P~= —1 to the trans-
verse high-momentum behavior of the graph. '

The overall (or superficial) degrees of divergence
deg(G) and deg~(G) are the indices obtained by counting
the total and transverse powers of loop momenta in a
graph G. It is evident that the total index coincides with
the usual index of the corresponding covariant version of
the graph.

A sufficient condition for the convergence of a light-
cone Feynman integral will be that both the above-
mentioned overall indices be negative for the whole dia-
gram as well as for any possible subdiagram. ' The va-
lidity of this statement is evident if one realizes that (i)
the two indices are what is needed to control the conver-
gence of the integrals in the lack of covariance and (ii)
the LM prescription (2.9) for the spurrous denominators
in the integrand is a Feynman-type prescription: name-
ly, it can be simply Wick-rotated to give absolutely con-
vergent integrals in Euclidean space. Thereby, with
those ingredients, one can mimic step by step the reason-
ing used in the covariant case.

We also employ the usual concept of subtracted graph
and Bogoliubov R and R operations acting on the di-
m ensionally regularized integral corresponding to a
graph G, as introduced for instance in Ref. 19. We can
now state and prove the following lemma.

Lemma 1. The pole part (in the dimensional regulari-
zation) of a subtracted graph R(G) is a polynomial in
the transverse components p~; of the external momenta.

This simply follows by observing that the operation Bz
of derivation with respect to transverse external momen-
ta entails a lowering of both degrees of divergence and,
thereby, eventually leads to convergent integrals. As a
consequence, the reasoning of Ref. 20 can be repeated to
get the desired result.

As a corollary one can show, using dimensional
analysis and homogeneity with respect to the vectors n„'
and n„, that the divergent parts of a graph with more
than four external legs necessarily are of vanishing type:
namely, they possess at least a factor n„, p; being an

I

external Lorentz index.
We are thus led to investigate the graphs with two,

three, and four external legs, according to the mentioned
criteria.

First of all any subtracted two-point effective graph
with n loops can only exhibit the following divergent
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tensorial structures:

(n)S(1)(p) y (~)g p2

'" S„".'(p)=y, ( )p„p. ,

(n)S(3)( ) y (~)g
'P 'P

n n*

'"'S„".'(p) =y, (e)n „*p.n.p In n". ,

"~S„' '(p) = y 5(E)n *p„n .p In n *,
r 2(S()()()*np

n n*

(4. l)

np, kp+Il k
[n'k J (noko) —(n k) +i@

(4.5)

which helps in making more transparent the relation be-
tween the light-cone gauge and other algebraic gauge
choices. It is well known that the light-cone gauge can-
not be obtained as the limit of an axial or planar gauge
when n ~0, as this limit is a highly singular one. How-
ever, a kind of continuity still exists with respect to the
component n of the gauge vector n". To understand
this point, let us consider once more the spurious singu-
larity of the vector propagator in the light-cone gauge
with the LM prescription (2.9):

where y;(e) are divergent coefficients when e~O. All of
them are local and none of them can be multiplied by
functions of the dimensionless quantity Q (p) =p I
n pn *.p [of course, under multiplication by Q (p),
S' '~S" ], as the already established polynomial behav-
ior in the transverse momentum pz would be contradict-
ed.

The singular part of any effective subtracted three-
point proper graph with n loops can exhibit the follow-
ing independent structures obeying the mentioned con-
straints:

'"'S, 'b'(p, q, r) =y, (e)f'"'g.~(q —r)„,

n n

(4.2)

S„',; (p, q, r)=y9(e)f' 'g„r n. (p —q)
n-r (4.3)

Such a nonpolynomial effective term, which would not
even contribute to the on-shell formal S matrix [as
e~ '(r) r =0], and analogous ones, which can be set up
out of Q; -type variables, would jeopardize, if present,
the renormalizability of the theory in this gauge. We
shall shortly give an argument which will forbid the ap-
pearance of those unpleasant dimensionless ratios of
external longitudinal momenta.

Finally, the singular effective part of the subtracted
four-point graph with n loops can only exhibit the usual
covariant structure

(p, q, r, t) =y«(e)f'"'f'"'(g«g„g„g, ,~), —

(4.4)
always apart from cyclic permutations and from dimen-
sionless ratios of Q,J type which will be eventually ex-
cluded. Then, if we are able to rule out a possible
dependence of the singular part of the subtracted
effective 1PI graphs on those dimensionless ratios of
external longitudinal momenta, we have proven the first
part of the basic property we have announced.

To reach this goal we have first to prove a lemma

and cyclic permutations thereof.
It is clear that factors involving functions of the di-

mensionless quantities Q,"k& np; n *.p In .n——*p&.p& are
forbidden; however, functions of dimensionless quantities
such as Q,~

=n p, In.p~ are still possible. An example of
those dangerous coefticients is given by

of course in the light-cone case
~
n~ ~ =

~

n ~; however
Eq. (4.5) defines a distribution allowing Wick rotation
without extra contributions for any Ualue of the parame-
ters np and n, provided that n&0. In other words, the
prescription (4.5) avoids the pinches of the integration
contours between Feynman and spurious singularities, so
that the limit no~0,

~

n
~
~0, in the sense of distribu-

tions is a smooth one. This continuity property is even
more apparent if we consider the structure of the Eu-
clidean space version of a dimensionally regularized, ab-
solutely convergent, subtracted integral corresponding to
the effective part of a 1PI proper graph with n loops and
no subdivergences, as it can be easily realized.

Now it is known that Feynman integrals with space-
like spurious denominators can be subtracted with poly-
nomial counterterms. This theorem can be inductively
proven, using for instance the argument given in Ref. 3.
The proof is based on the possibility of writing the spuri-
ous term k„/n k as (BIc)n")1n

~

k.n
t

in any propagator
appearing in a loop integral and of applying the Wein-
berg theorem, ' after the Wick rotation has been per-
formed. We note that, if n p =0, we are guaranteed that
the Wick rotation does not entail any problem. We also
stress that, in the light-cone case, the proof, as expected,
cannot go through; in fact if we use the logarithmic rep-
resentation for the spurious singularity, we obtain the
principal-value prescription which interferes with the
Wick rotation, as already noticed in Ref. 9. If we in-
stead correctly start from the LM prescription (2.9), a
logarithmic representation is no longer possible. In con-
clusion we can enunciate the following lemma.

Lemma 2. Nonpolynomial singular coefticients in a
subtracted effective 1PI graph must either vanish or be-
come local in the limit no~0,

~

n
~

&0 (spacelike lim-
it) 22

As previously promised, this result excludes the ap-
pearance of dimensionless ratios of longitudinal external
momenta of Q;J type in a subtracted effective part of a
1PI graph, so that the first part of our basic property is
established and the possibility of making finite all the
Careen's functions of the theory by performing only local
subtractions is proven.

So far we have considered only effective parts of 1PI
proper graphs; however, the previously established re-
sults can be used to control the divergences of the whole
1PI graphs, including their nonpolynomial evanescent
(i.e. , not contributing to the Careen s functions) singular
parts. Let us first observe that the complete one-loop



36 RENORMALIZATION OF THE YANG-MILLS THEORIES IN. . . 3143

1PI graphs do satisfy continuity in the limit nQ~O,
~

n
~

&0. As a consequence, the divergent parts are po-
lynomial in the transverse external momenta and contain
spurious poles, but only in special combinations which
disappear in the spacelike limit, as it can be explicitly
verified in the examples reported in the previous sections
(note that different cancellation mechanisms work to im-

plement this remarkable property; see in particular the
calculations of Ref. 11). We shall call this very special
type of singular coefficients in the 1PI proper graphs
"quasipolynomial. "

It is now not difficult to foresee that an inductive
proof can be developed for 1PI complete proper graphs
to get the following result: 1PI proper graphs can be
subtracted order by order by means of quasipolynomial
counterterms. There is nothing strange in these kinds of
counterterms which are typical of the light-cone gauge:
they satisfy, by construction, the properties of polynomi-
al behavior with respect to transverse momenta and con-
tinuity with respect to the spacelike limit and this is all
we need in reaching our basic results. As we shall see in
the following sections, the number of those special coun-
terterms is very limited and this fact will result in the
possibility of finding important relations among renor-
malization constants.

V. RENORMALIZATION AND COUNTERTERMS

We shall again be concerned in this section with the
pure Yang-Mills case, the generalization including fer-
mions being deferred to the next section. Starting from
the Lagrangian density

cone gauge leads to the simple functional Eq. (5.4) and
thereby it is possible to understand renormalization
without resorting to the general BRS analysis. ' Nev-
ertheless all our results could be rephrased in this
language.

We first remark that the loop integrals do develop
singularities with a nonpolynomial character in the 1PI
vertices, which however, must be compatible with the
lemmas of the preceding section. We are thus led to in-

vestigate possible nonlocal gauge-co variant structures
which can emerge as divergent parts of 1; in so doing
the usual inductive procedure with respect to the num-
ber of loops always has to be kept in mind. One possi-
bility is given by the solution 0" of the equation

P 4V
pD abel b n f a (5.5)

n "(ni'D )

Q, = f„
n n*

(5.6)

or in more complicated expressions, are not allowed be-
cause they convict with the result stated in lemma 2. To
this regard we realize that the structure

where f~, are the field strengths in terms of the classical
potentials a& (we recall that the operator nD'" can be in-

verted in a perturbative sense). It is also immediate to
verify that 0, is compatible with the lemma 2, as it van-

ishes in the limit nQ~O.
Actually, a careful analysis shows that 0," is the only

nonlocal possibility. As a matter of fact, covariants con-
taining (n.D) ' in the combination

Q'= n '"0'
P

(5.7)

J„' and K' being external sources, we can define, as usu-
al, the generating functional for the Green's functions

8'[J"',K']=IV ' f 2)[A„',A'] exp i f X d x . (5.2)

is a crucial and unique one.
Dimensional analysis together with homogeneity with

respect to n„and n„* leads us to the following expression
giving rise to the nonlocal divergent density of I:

Then, introducing the generating functional for the con-
nected Careen's functions Z, and the "classical fields" a„'
and X', we can construct the generating functional of the
1PI vertices I (a„', I,') and define

I (a„',X')=I (a„',A, ')+ f d x n "a„'(x)A,'(x) . (5.3)

It is easy to show that I obeys the Lee-Ward identity

D„' 5I /5a„"(x) =0 . (5.4)

Actually, the generating functional I will be thought of
as dimensionally regularized. Later on we shall see that
the same form of the functional equation holds if the
regularized functional I is replaced by the renormalized
one.

Equation (5.4), upon differentiation with respect to the
classical fields, generates the whole set of Ward identi-
ties. As it stands, it simply means that I, besides satis-
fying the usual constraints coming from dimensional
analysis and symmetry properties, must also be invariant
under a gauge transformation. We notice that the
decoupling of the Faddeev-Popov ghosts in the light-

b, n=n "D'f„Q . (5.8)

g(1) fa fp , va

Q(2) n Pf a n e vf P,a/n
PP

'=(n "n '"f' ) /(n n *)
P, V

(5.9a)

(5.9b)

(5.9c)

The density 6"' is the standard invariant expression,
whereas 6' ' and 6' ' are to be excluded, as they are in-
compatible with the Lorentz invariance of the (formal) S
matrix. ' ' Following the usual inductive procedure
with respect to the number of loops, the most general
structure of the divergent part of I can be obtained
starting from a linear combination of the invariants (5.8)
and (5.9a). As a consequence, there is no freedom for
constructing kernels of the Lee-Ward identities of the
type of Eq. (3.5) and thereby no independent renormal-

Obviously 6& leads to an infinite set of 1PI vertices with
any number of legs of vanishing type, according to the
result of Sec. IV.

As far as local divergent terms are concerned, we have
three possibilities:
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ization constant for the three-vector vertex: namely, we
get Z

&
——Z3. It should be stressed once more that,

within the light-cone gauge choice, it is not possible by
merely using gauge invariance of the quantum theory as
expressed by the Lee-Ward identities to show the gauge
invariance of the renormalized S matrix as well as the
relation Z, =Z3, to do this properly it is necessary to
resort to the basic property we have proven in Sec. IV,
which guarantees the uniqueness of the counterterm (5.8)
as the only possible nonpolynomial one.

In conclusion, the general form of the density of the
divergent part of I reads

fa fpv, a+& & pQaDabf v, b
3 Pv 3 V P (5.10)

It is then remarkable that the renormalized Lagrangian,
although nonlocal, can be generated by performing the
canonical transformation

—1/2go=Z3
a (0) =Z 1/2ga

3

(5.11a)

(5.11b)

(5.11c)

Z3 and Z3 being two renormalization constants related
to physical and unphysical components of the bare po-
tentials, respectively. Equation (5.10) is the light-cone
counterpart of the canonical transformation introduced
in Ref. 16 for the spacelike planar gauge.

It is easy to verify that the renormalized Lagrangian
can be written in terms of the "bare fields" as

( y (0) .y (0)pv p(0).& p g (0)
R 4 PV (5.12)

according to the general formulation of the gauge-
invariant renormalization given in Ref. 26. However, at
variance with the cited planar gauge case, the regular-
ized and renormalized Lagrangians are invariant with
respect to the same representation (apart from a scale
factor for the coupling constant) of the gauge group, as
it happens in the axial case, where the wave-function re-
normalization is instead purely multiplicative and lo-
cal. As a matter of fact, it is easy to check that the
infinitesimal gauge transformation of the bare potentials

gg a(0) g a+ fabc' b(0) c
SCOP g 0 Mp (5.13)

corresponds, through Eqs. (5.1la) and (5.11b), to the
infinitesimal gauge transformation for the renormalized
potentials

gga g a+ fabcgb c
P P P

(5.14)

We can say that the light-cone shares renormalization
properties with both axial and planar gauges. In particu-
lar, the renormalized Lee-Ward identities take the same
form of Eq. (5.4) where regularized quantities are re-
placed by renormalized ones. We remark that the struc-
ture of Eq. (5.11) manifestly guarantees that the
Lagrange multiplier A =Z3' A' ' still obeys the free
equation (2.8) thereby leading to the covariance and uni-
tarity of the formal renormalized S matrix. Indeed,
since the second term on the right-hand side (RHS) of
Eq. (5.10) is proportional to the classical equations of

motion, it is known that it never contributes to the
"on-shell" quantities to any order in perturbation
theory. Therefore, the on-she11 counterterms are simply
given by the standard local and Lorentz-invariant part in
the RHS of Eq. (5.10). This last fact has been explicitly
verified to one-loop order on Ref. 15 and, as we have
seen, is true to any order in the loop expansion; it is ow-
ing to this result that we call the component along the
dual gauge vector n„* of the bare potential in Eq. (5.1 la)
unphysical. In particular, the renormalized Lagrangian
(5.12) is Gaussian with respect to the unphysical poten-
tial n'. A' ', so that we can tolerate the presence in
n* A of a non-Hermitian part without having trouble-
some physical consequences. On the other hand, the
decoupling property of the nonlocal singular counter-
terms from the S matrix was already established when
we showed that the Green's functions do not require
nonlocal subtractions in the Lagrangian.

Another consequence of the decoupling property of
the nonlocal sector from physical quantities is that,
thanks to Eq. (5.11b) the P function can be read directly
from the physical components of the full propagator. It
is worthwhile to notice that, although the whole set of
Green's functions with physical components can be ob-
tained, as it is well known, from a "two-component"
formalism with related Feynman rules, the renormaliza-
tion structure cannot be obtained so transparently as in
the complete "four-component" formalism, owing to the
lack of Lee-Ward-type identities for two-component
Green's functions and 1PI vertices. From the renormal-
ized Lagrangian (5.12) it is straightforward to check the
one-loop renormalization of the self-energy and of the
three-vector vertex (including the nonpolynomial term of
vanishing type) and to give a prediction for the divergent
part of the 1PI vertices with any number X of external
legs. In particular, the case N =4 is exhibited in Appen-
dix A.

As a final remark we note that one might conceive an
approach to renormalization based only on Green's func-
tions. The obvious advantape would be the possibility of
dealing with only local structures as counterterms; how-
ever, the price to be paid is twofold: on the one hand
Lee-Ward identities for 1PI vertices are no longer direct-
ly useful anymore and, on the other hand, Ward identi-
ties for the Green's functions always involve the pres-
ence of external legs corresponding to the Lagrange mul-
tipler. This last feature makes it rather involved to ex-
tract the necessary relation among the coefficients of the
local counterterms.

VI. RENORMALIZATION IN THE PRESENCE
OF DIRAC FERMIONS

The introduction of Dirac fermions does not entail
any essential new difficulty in renormalizing the theory.
Nevertheless it deserves a separate treatment as a fine-
tuning mechanism emerges as pointed out in Ref. 13 in
the one-loop case. In the theory with fermions Eq. (5.4)
becomes
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+gp P~' —g)M r'P =0, (6.1), .—.6r, .6r .
vhere P and (t are the classical Fermi fields and ~ are

the SU(N) Lie-algebra matrices in the fundamental rep-
resentation. Again Eq. (6.1) means that I is invariant
under a gauge transformation of all the classical fields.
As a consequence, the new admissible divergent struc-
tures, which obey all the previously mentioned condi-
tions, are

~s=N
n

(6.2)

b ()
=m ())P, b 9 =m P

/pe

n n*

which are the local ones, and

b.ri /pi~'PQ', —— (6.3)

+ia2$(n Xlpi" —n* l)pi)/In n *

+a, fl'n "(D'f' gp "P~'y„P—) . (6.4)

We notice that, at variance with the pure Yang-Mills
case, where it has been shown that no kernel of the Lee-
Ward identities is allowed, when fermions are present,
kernels with a divergent coefficient are indeed switched
on (see Sec. III for the one-loop case), as one can read
from Eq. (6.4). For instance, for the fermion-fermion-
vector vertex we have

y(&)
n. n

n '.k
"n.k

(6.5)

where y(e) is a divergent coefficient when @~0. The
coefficients of those kernels are willingly controlled by
the on-shell Lorentz covariance as the relevant term in
Eq. (6.4) vanishes on the classical equations of motion.

It is remarkable that the renormalized Lagrangian Lz
can be obtained by generalizing the canonical transfor-
mation of Eqs. (5.11) as

as the only admissible nonlocal one. In analogy with
what happened in a pure Yang-Mills case, the require-
ment of Lorentz invariance for the S-matrix elements
imposes further constraints on the coefficients of the
terms (6.2) and (6.3). In particular, the Lorentz covari-
ance of the on-shell fermion self-energy imposes the
combination A5 —66, while analogous considerations for
the fermion-fermion-vector vertex rule out A7 and A9
and establish a relation between A~ and Az. As a
matter of fact, it is easy to realize that, by iterating the
inductive procedure with respect to the number of loops,
a cancellation mechanism takes place between Lorentz-
noncovariant divergent parts of the on-shell amputated
Green's functions (see Appendix B). As a consequence
the form of the density of the divergent parts of I in the
presence of Dirac fermions is given by

b, =a~f„'„f'" +a2$(iS m+6m)$—

q(0)=(Z, Z, )'" I —(1 —Z )
2n n*

gZ3gmo ——m —6m A''=Z3

(6.6)

(6.7)

Once again, from Eq. (6.4), the finiteness of the one-loop
1PI vertices (including nonpolynomial contributions)
with Z3, Z2, Z3, and Z2 as given in Ref. 13, can be easi-
ly checked in the cases with few external legs.

Let us conclude this section with a remark. As is well
known, even in the presence of fermions, it is possible to
resort to a two-component formulation, by decomposing
the Dirac spinor in two two-component spinors f+ and

It turns out that one can perform the functional in-
tegration with respect to one of the two-component spi-
nors, say P, giving rise to a determinant which is pure-
ly kinematical (as A =0). In this way the Green's
functions with P -type external legs can be expressed in
terms of the remaining "independent" ones. Now it is
worth considering that, at variance with the pure Yang-
Mills case, also the "dependent" Green's functions are
obviously physically relevant, so that the on-shell renor-
malization for the spinor wave function is achieved by a
genuine matrix transformation, involving both Z2 and
Z2.

VII. CONCLUSION

The basic result of this paper is a constructive proof
of the renormalizability of the Yang-Mills theory quan-
tized in the light-cone gauge to any order in the loop ex-
pansion. We have indeed shown that, in spite of some
unusual (and potentially pathological) features such as
the presence of singularities with a nonpolynomial char-
acter with respect to the external momenta in the 1PI
vertices, this theory can be made finite by means of the
introduction of a small number of renormalization con-
stants in a way that preserves the unitarity of the (for-
mal) S matrix in the physical Hilbert space. As a matter
of fact, the usual procedure based on the Lee-Ward iden-
tities can be repeated in this case even in the presence of
some singular features we have stressed; in addition be-
cause this gauge is "physical, " there is no need of
Faddeev-Papov ghosts and of BRS fields. As a byprod-
uct we have shown that the nonlocal terms in the
effective action are of a vanishing type: namely, they do
not contribute to the S matrix. As a consequence, only
the local parts of the counterterms are relevant in mak-
ing finite all the physical quantities, as expected on the
basis of gauge invariance.

In Sec. IV we have characterized the possible singular
structures that can (and do) appear in the course of any
diagrammatic calculation. In Secs. V and VI we have

possessing the following expression in terms of the
bare fields:

& F(0)F(0),Pv A(0) P g (0) +,T(0)( g)(0) )„)(0)
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learned how to handle them in a consistent way. In par-
ticular, we notice that one should not be afraid of the
appearance of nonlocal terms in the counter-Lagrangian
as they are just needed to cancel (in a natural way)
analogous nonlocal terms that the theory itself produces
in loop calculations. A11 of them are completely under
control. We conclude by saying that the light-cone
gauge can now be safely used with the given prescrip-
tions in any kind of perturbative calculation, taking full
advantage of its peculiar features.
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APPENDIX A

In this appendix we report the contribution to the
four-vector lPI vertex generated by the structure (5.8).
A straightforward calculation gives

„';~"(,p, q, r)= g'f'"'f—'"'(n. n*) '
n

(
n )g, +&~ n )g —6'~, n~g , —6'~ n, g,

n (r —q) n" k n" p+n„n g n(r+q) nk np

n (p —k) n*q+n n g„,,"' n (p+a~
n 'r
n ~ r

+2(n„k,, n, ,p„)—
n (q+r)

n* ~ r n .q
nr nq

n n
+2(n q —n r ) n. (k+p) n p n. k

+n„n, , n n p
n p n. k n. (q +r) n-r n-q

n r n .
q

q n '.p n *.k+ nr nq n(k+p) np nk

+(b, v p~c, p, q)+(b, v,p~d, a, r), (A 1 )

where && has been defined in Eq. (3.1) and the symbol
[p, &pqj means symmetrization with respect to those in-
dices.

We notice that it is of vanishing type and that it be-
comes local in the limit no~0, as it should. It is also
easy to check that it exactly matches, under the Lee-
Ward identity,

ik "I „' '" (k p, q, r)= gf'"1' '
( —q ——r, q, r)

gf"'I,"".;( —r ——p r p)

n„*k'" 1~",, (k),tr
———a3

"
n kn-n* (B1)

tures appearing in I by the request of Lorentz covari-
ance. We consider the divergent part of the fermion-
fermion-vector amputated subtracted Green's function in
the nth order in the loop expansion (see Fig. 1). The
effective divergent noncovariant part of the vector self-
energy is

gf'"'I ".:,( —p ——q p, q), (A2)

the corresponding structures of the three-vector 1PI ver-
tex, explicitly exhibited in Ref. 11. It would be nice to
check the structure (Al) by means of a direct calculation
of the divergent part of the four-vector 1PI vertex at one
loop.

APPENDIX B

In this appendix we give an example of the constraints
(fine-tuning) forced upon the possible divergent struc-

FICx. 1. Equation relating the fermion-fermion-vector ampu-
tated Careen's functions to the corresponding 1PI vertices.
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a3 being the divergent quantity multiplying the structure
Qn "D f„[see Eq. (6.3)]. As far as the fermion-fermion
proper vertex is concerned, we get

(n)l div( ) ) ~ i n p ~ n 'p
I
ea'= n-n*

[see again Eq. (6.3)]. Finally for the fermion-fermion-
vector proper vertex we have

(6.3)].
In the limit k„~O setting the two ferrnionic lines on

shell, we obtain

'"'6„""(p)
I ...-,=( —a2 a3+~&+~2)

n„*n.p w(p)w(p)
X nn* m

which is requested to vanish by Lorentz covariance.
Hence

where we have denoted by a3 the (divergent) coefficient
in front of the structure gQQ~AQ [compare with Eq.

CX3 =a3

as promised.

(85)

D„(k)= 1

k'+ l 6

npkv+ n vkp

[n k]

It is easy to recognize that under the rescaling k„~Ak„, it
is a homogeneous function of degree a= —2. On the con-
trary, under the rescaling k, ~A,k~, for large A, , the covari-
ant part still exhibits a degree I3~= —2, whereas the nonco-
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