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The field-theoretic time-dependent variational approximation allows the study of dynamics by a
formalism which reflects some of the nonlinearities of the full theory. We study renormalizability
of the time-dependent variational equations which are obtained when a Gaussian trial wave func-

tional is used. Renormalizability depends on the specified initial data. We develop reasonable cri-
teria for limiting the initial data, and show that the time-dependent variational equations are made

finite by the renormalization prescription used in the vacuum sector.

I. INTRODUCTION

Field-theoretic descriptions of natural processes often
suffer from a serious shortcoming; the usual approach
for solving dynamical equations is the perturbative ex-
pansion, in which nonlinear features of the quantum field
theory cannot easily be seen.

The field-theoretic time-dependent variational approxi-
mation allows studying dynamics by a formalism which
reflects some of the nonlinearities of the full theory.
Furthermore, calculations are performed in the
Schrodinger picture, where one has a clear description of
the system's time evolution.

In this paper we shall study renormalizability of the
time-dependent variational equations, which are ob-
tained when a Gaussian trial wave functional is used.
Although the formalism for this field-theoretic approxi-
mation was introduced by Jackiw and Kerman' some
time ago, the issue of renormalizability was not ad-
dressed. Renormalization of a time-dependent system is
intrinsically interesting, but our main motivation is to
apply this approximation scheme to the dynamics of the
inflation-driving scalar field in the inflationary
scenario. '

In Ref. 5 the range of validity of the time-dependent
Gaussian variational approximation has been examined:
The method is applied to various one-dimensional
quantum-mechanical problems and the approximate re-
sults are compared with exact ones, obtained by numeri-
cal calculation. The approximation is found to be very
accurate for quantum roll processes, in which a particle
rolls down from the maximum of a potential.

This is similar to what happens in the new inflationary
universe. In the original scenario, it is assumed that the
initial state of the inflation-driving scalar field was in
thermal equilibrium and that the system was initially de-
scribed by a density matrix. As the temperature de-
creases, the scalar field begins to roll down the hill of the
potential diagram. At this stage the system is no longer
in thermal equilibrium and can be described by a single
wave functional.

Moreover, in the recently modified picture of the new
inflationary universe, one expects the initial
configuration of the inflation-driving scalar field to be a
random, nonthermal configuration. The reason for this
is that proper density fluctuations require the inflation-

P(x)
~

g(t)) P(x)+(P, t) . (1.2)

The action of the canonical momentum n(x) is realized
by functional differentiation:

~( x )
~
g( t ) )~ EA +—( p, t ) .

6
5$(x)

(1.3)

The functional Schrodinger equation, which governs
how a given initial state evolves with time, may be ob-
tained by considering the effective action

(1.4)

and demanding that it be stationary against arbitrary
variations of

~
g(t)) =—ql(p, t). This requirement pro-

duces

5= I —,+ —,'(vp)'
x 2 $P~(x)

+ v(p) %(p, t) . (1.5)

As an approximation we take a Gaussian trial wave
functional in the evaluation of I:

driving scalar field to interact extremely weakly with a
coupling constant of order 10 ' or smaller. Such a
weakly interacting field cannot be in thermal equilibrium
with other fields. It remains an open question whether
inflation can actually arise from a random initial
configuration. For this problem, our variational ap-
proximation may be used for the entire time evolution of
the scalar field.

We shall first describe the time-dependent variational
approximation where the trial wave functional is a
Gaussian. In the functional Schrodinger picture for field

theory, an abstract quantum-mechanical state
~
g(t) ) is

replaced by a wave functional V(P, t ), which is a func-
tional of a c-number field P(x) at a fixed time:

~
g(t)) +(p t) .

The action of the operator P(x) on
~

P(t)) is realized by
multiplying 4(P, t ) by P(x):
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G
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x, y 4A x

(1.6)

A normalization factor has been suppressed. The meaning of the various quantities in this wave functional is seen
from the following:

(P(x)) =P(x, t),
i fi — =m. (x, t),6

(P(x)P(y) ) =P(x, t)P(y, t )+&G(x,y, t ),

(
iA = ~x, t x, t +R X x, y, t G y, x, t

Bt x x, y

(1.7a)

(1.7b)

(1.7c)

(1.7d)

[Here and in (1.4) expectation values are evaluated by functional integration. ] 4 is Gaussian centered at P with width
given by G. The conjugate momentum of p is ir and X plays a role of the conjugate momentum of G. The variational
parameters are P, n, G, and X. The effective action in this approximation is

XGX — —,'G ' xxt ——,'Vx G xyt x=y+zV G XX,
X

XG —2

—irt —,
' V' '(p) f G(x, x, t)G(x, x, t)

x

where Vj"'(P)—= [d "V(P)/dP "]. Notice that the first integral is the familiar classical action. The variational equa-
tions are then

sr
5&/(x, t)

=0~~(x, t ) =P(x, t),
5m. (x, t )

=0~2(x, y, t)+2 f X(x,z, t)X(z, y, t)
sr

5G x, y, t Z

=0 k(x, t ) =V'y(x, t) —V'"(p) ——G(x, x, t ) V" (4),
2

= i G (x, y, t )+[—'P„——'V (P) ——' irtv (P)G(x, x, t)]5'(x —y)

(1.9a)

(1.9b)

(1.9c)

=O~G(x, y, t ) =2 [G(x,z, t )X(z, y, t )+X(x,z, t )G(z, y, t)]
6F

5Xxyt ' '
z

Henceforth we set A to unity.

(1.9d)

II. RENORMALIZATION OF EFFECTIVE POTENTIAL

V(4)= ,'t '0'+
4,
~0'- (2.1)

the effective potential in the Gaussian approximation is

V,s(P, G)=2@'P'+ —kP'+ —,'G '(x, x)

——G(x, x)G(x, x), (2.2)

we take P to be homogeneous (x independent). G is the

Before studying renormalizability of the time-
dependent system, we shall briefly discuss how the static
effective potential in the Gaussian variational approxi-
mation is renormalized. When the potential V(P) in
Eq. (1.5) is given by

translation-invariant solution of the gap equation:

—,'G (x,x')=[ —V' +p +2AQ + —,'AG(x, x)]5 (x —x') .

(2.3)

Infinities of this system are contained in G(x, x) which is

G(x, x)= f G(k)
k

1
(2.4)

k 2[k +p + —,'AP + —,'XG(x, x)]'

where f:—f (d k)/(2n) and we have defined the
k

Fourier transform of a function f (x) as
f(x)= f e' "f(k).

Since the approximation is very similar to the large-N
approximation, where n-point functions are also ex-
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pressed in terms of only one- and two-point functions,
we shall use the three-dimensional analogue of the renor-
malization prescription used in Ref. 9, for the large-N
effective potential. Renormalized quantities (subscript
R) are defined by

2

kR k '
k 2k

+—,I], I] =

we obtain a finite expression of V,ff. '

4 4m —PR m M~ 1, 4

64~ m
(2. 10)

(We have adjusted a constant —p /2A. .) In the limit of
infinite cutoff A, ~O

1 1= —+ 'I (—M),
R

(2.5)
III. FREE THEORY SOLUTION AND INITIAL STATES

A. Free theory solution
1

2(k'+M')'"I,(M)—= ', f
where M is an arbitrary mass, at which the renormaliza-
tion is performed.

We introduce a mass m defined by

As we shall see later, the structure of the free theory
provides the key ingredients for the time-dependent re-
normalization. In the simpler case where {t ( x, t ) =0
which we henceforth consider, our variational equations
are

m =@+—P + —f 6(k),

which is finite by virtue of Eq. (2.5):

(2.6) G(k, t) =4K(k, t)6(k, t),

X(k, t) = —G 2(k, t ) —222(k, t )
8

(3.1a)

m =pg + f +
2

k'+p'+ — G k, i
2 2 k

(3.1b)

~R 1+
k 2 k2+ 2 1/2

1

2k
For A, =O, Go(k, t ) is oscillatory about its equilibrium
point

m 1+
2k

1

2(k 2+M2)1/2

1

267 k

1

2(k 2+ 2)1/2

~R
p

~R
p m=pR+ P+ min

32~ M
(2.7)

This can be seen easily if we set 60—=Q, whereupon
Eqs. (3.1) become

2
R p R

R =PR + 2 R 232m M
(2.8)

which, when we choose the arbitrary mass to be
M=mz, becomes ming

——pR . By expressing G(x, x) and
6 '(x, x) in terms of m

G(x, x)= —m I2(m)+I, , (2.9a)

6 '(x, x)= — m +2m Ii —m I2(m), (2.9b)
I

32~2

The usual vacuum sector renormalized mass mR is given
by m at &j=O:

1 ~aQ. (3.2)

&(Q)= + —,'~i, 'Q' .
8Q 2 (3.3)

The minimum of the potential is at Q= 1/+2~& and
the particle oscillates around this point.

Next, we present the most general solution to the free
equation. For a given initial condition 6(k, O) and
G(k, O)=4X(k, O)G(k, O), the solution Go(k, t) is

This may be regarded as a mechanical equation of
motion for a particle, with coordinate Q, moving in a
potential

Go(k, t) = [1+2nk —[(1+2nk ) —1]' c so[2co tk—5o(k)]],
2' k

where the average energy of the kth mode Ek is

Fk ——(np+ —,
' )cok —— ' +—'6 (k, O)+ —'cok G(k, O),

G (k, O)

86(k, O)

and the phase is given by

(3.4a)

(3.4b)

cot260(k) =
6 (k, O)G(k, O)

62(k 0) 6 ( )+
24co k

(3.4c)
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(Everything may be taken to depend on the magnitude of
the vector k; therefore, we replace the vector k by k.)

The energy Fk has been expressed in terms of the aver-
age kth-mode particle number nk, in the initial state.
This is defined by

(a '(k)a(k') ) = nk(2') 6 (k —k'), (3.5)

where the annihilation operator has the representation

d3
(k) J' d x —ikx

)
I/2

6
+coke(x) (3.6)

B. Initial states

must have a nonvanishing overlap with the vacuum state
%v, which in the variational approximation is given by

The Gaussian trial states whose covariance satisfies
Eqs. (3.1) are given in Eq. (1.6) with P(x, t) =sr(x, t)=0.
To obtain a solution initial data must be specified, and
we fix at t =0 both G(x —y) and X(x —y); i.e. , we select
an initial Gaussian state. However, for the equations to
be renormalizable, G and X cannot be arbitrary. Here
we develop reasonable criteria for limiting these quanti-
ties.

We are interested only in those states which belong to
the Fock space built on the vacuum. In particular, we
want our trial states at initial time t =0 to be in that
Fock space. Such initial states

%=exp — x —,'G ' x, y —iX x, y y
x, y

(3.7)

which we shall take to imply that nk must satisfy

nk (oO (3.12)

In other words, the average particle number density
must be finite. We shall satisfy (3.12) by requiring ni, to
decrease faster than k at large k and shall choose our
initial states so that they satisfy

k 4 (3.13)

[For simplicity, we ignore possible fractional powers,
logarithmic behavior, or the possibility that (3.12) is
finite because of oscillatory behavior. ] From (3.10) we
see that (3.13) requires the following large-k behavior for
G(k, O) and G(k, O):

lim G(k, O)= 1+01 1

2k k
(3.14a)

lim G(k, O)=0 1

k', (3.14b)

In general, the terms of 0 ( I /O ) may have the following
structure:

0 = [A +B (k)],1 1
(3.14c)

G(k,O)=, [1+f(k)],1

2(k +m )'~
(3.15a)

where A is a constant and B(k) is an oscillating func-
tion. Therefore, we shall parametrize the initial value of
6 by

tv=exp — x 4Gv I—y y
xy

(3.8a)
where

where

G ( x y ) f p
i k ( I—7 j

k 2(k'+m ')'" ' (3.8b)
1 m g cosa(k)

(3.15b)

and m„ is the renormalized mass in the vacuum sector.
(If +'s overlap with 4z vanishes, then its overlap with
all multiparticle states in the Fock space build on Vv
also vanishes. ) We are assuming throughout that the or-
der parameter vanishes at equilibrium; hence, P has been
set to zero.

The overlap between 4 and 4v is
2 -e =exp —

—,'L ln 1+nk, 3 9

where L is the infinite-volume factor and nk introduced
in (3.5) is

nk —— [(1—2cokG) +G ] .
860k G

(3.10)

N
3 2 In(1+n„) & oo (3.11)

(Interactions produce mode-mode coupling, so that the
mode number and mode energy are not time indepen-
dent. )

By "nonvanishing overlap" we shall mean

and

A +B cosP(k)
kazoo k 2

(3.15c)

IV. RENORMALIZATION OF
THE TIME-DEPENDENT VARIATIONAL EQUATION

In this section we shall study renormalizability of the
time-dependent variational equation for the states %(gati, t)
presented in Sec. III. We shall consider the simple case
where i'(x, t)=0. Generalization of our result to the
case where P(x, t) =i))(t)&0 is straightforward, but will
not be discussed here because renormalizability is
unaffected by the value of gati(t). We show that the time-
dependent variational equations are made finite by the
static vacuum renormalization described in Sec. II.

Our variational equation in terms of G alone is

with nonoscillatory a and /3 and k-independent constants
g, 3, B, and m, the last being a mass parameter that we
shall specify shortly.
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G= —'G '+ —'G 'G' —2 k + + — G(k, t) G .
2 2 2 k

and m is the effective static mass in the vacuum sector
discussed in Sec. II, and

(4.1)
m (t)—= —f [G(k, t) —Gl, (k)] .-2

2 k
(4.4)

The possible divergences of this equation are contained
in the integral 6 k, t . As in the static case, let us

k
define an effective mass term which is now time depen-
dent:

m (t)=p + —f G(k, t)
2 k

By the static renormalization prescription given in Eq.
(2.4) we then obtain

m (t)=mR +m (t), (4.5)

where mR ——rn is the usual renormalized mass in the vac-
uum sector given in Eq. (2.8). Therefore,

=@+— G~k+ — G kt —G~k

=m +m (t). (4.2)

and

Gl, (k) =
2(k 2+ m 2)1/2 (4.6)

Gi (k) is the value of the G in the vacuum state; there-
fore,

m2—=P2+ — GV k =P2+ —
2 21/22 1 2 1 2(k 2+ m ')'/2

(4.3)
l

m '(t)= ' f [G(k, t) G, (k—)]+m 2(t)I2(~) .
2 k

(4.7)

Our goal is to show that Eq. (4.7) is finite for all t
when we choose our initial conditions in the form given
in Eqs. (3.15).

Let us first consider finiteness of m (0). From Eq.
(4.7) we have

m (0)= ~R 1 1 0
2(k2+m 2)l/2 2(k2+ 2)1/2 M2

[1+f (k)]— 1

2k
1

2(k '+M')"'
—2 2

~R m mR m (0) g cosa(k)
3 + 3 + 3 +

3 + finite terms
4k 4k 4k k Zk

(4.8)

lim a(k) —k", n &0,k~ oo

(4.9)

The integral g cosa k /2k has an ultraviolet
k

structure which may lead to a logarithmic divergence if
lim& a(k) =const. We shall choose a(k) such that

tations in the initial G(k, O) relative to the Gl, in the
vacuum state.

Now we shall show that m (t) is finite for all t To do.
this let us first assume that m (t), as given in Eq. (4.7),
is finite and look for the solution of Eq. (4.1), which may
be written as

and therefore the integral is finite.
Next we observe that rn is finite only if G= —,'G '+ —,'G 'G —2[k +mR +m (t)]G . (4. 1 1)

m =m (0)=mR +m (0) . (4.10)

Namely, the mass % in the initial G is self-consistently
determined by Eqs. (4.5) —(4.7) at t =0. We notice that if
f (k) =0 in the initial G, then G (k, 0) is just Gi, ; f (k)
determines the value m (0)=m and describes the exci-

First we observe that the k~ao limit of this equation
coincides to the kaz oo limit of the free equation when
mass terms are ignored. Next we conjecture that when
the next-to-leading terms, which depend on the time-
dependent mass are included, the solution of Eq. (4.11)
at large k is still given by the free solution

1 mR +m (t) g cosa(k) A +B cosp(k) . 1
sin2kt +0

k k

1

2k
1—mR +m (t) 1

2k
—2+nt, cos[2kt —25(k)]+0

k
(4.12)

where nk is the average number of particles with mass m (0) in the kth modes of the initial state. That the conjecture
is true is straightforwardly established by checking that the expression in Eq. (4.12) indeed satisfies Eq. (4.11) for large
k up to terms of 0 (1/k).

Now let us examine finiteness of m at all t From Eqs. (4. .7) and (4.12) we have
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~R
m (t)=

2

mR +m (t) g cosa(k) 3 +B cos/3(k)cos2kt+ sin2kt
2k k k

1

2k
1—

2
mR m (t)+ 3 + finite terms
2k 4k

~R

2
g cosa(k)

2k'
A +B cos (k)cos2kt + sin2kt + finite terms

2k
(4.13)

m (0)=p +—f G(k, O) .
2 k

Then the time-dependent mass has the expression

m (t)=m'(0)+ —f [G(k, t) —G(k, O)]
2 k

(4.14)

=m (0)+m (t) . (4.1S)

With the same coupling-constant renormalization used
before we have

m (t)= f [G(k, t) —G(k, O)] —m (t)Iz(M)
2 . k

(4.16)

The integral involving cos2kt has a structure of a possi-
ble divergence at t =0, but as discussed earlier such a
possibility does not occur because of the oscillatory be-
havior of cosa(k). The integral involving sin2kt term is
finite for all t Ther. efore, m (t) is finite.

We have thus shown that for the initial states, which
belong to the Fock space built on the vacuum, the time-
dependent variational equation is made finite by the stat-
ic renormalization used in the vacuum sector. A de-
tailed perturbative proof that G(k, t) given in Eq. (4.12)
is correct and that m (t) is finite is given in the Appen-
dix. (A brief discussion on the two space-time dimen-
sional case is given in Ref. 11.)

Finally we would like to point out that one may alter-
natively renormalize the time-dependent variational
equations at initial time t =0. Here, the initial renor-
malized mass has no communication with the static mass
in the vacuum sector. At t =0, with P(t) =0, we define
our renormalized mass as

In order that the energy density of the system
be finite, stronger constraints than the ones considered
here are needed; specifically in Eqs. (3.15) f (k)

0(ilk ) or smaller and G(k, O) —„„0(1 lk )

or smaller.
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APPENDIX

We shall present the perturbative calculation which
shows that m (t) given in Eq. (4.2) is finite and that
G(k, t) given in Eq. (4.12) is the large-k asymptotic solu-
tion of our variational equation. For our perturbative
calculation we find that it is simpler to use a combined
quantity of G and X:

Q(k, t) = —,
' G '(k, t) —2iX(k, t), (Al)

(A2)

The time-dependent mass, in terms of mR, A,R, and 0 is

which determines the covariance of the Gaussian wave
functional.

In terms of A, our variational equations become a
first-order equation in time:

m (0)=0 .

Since we already know the large-k behavior of our solu-
tion G (k, t), it is straightforward to check finiteness of
m (t). We find that m (t) is finite only if m of the ini-
tial G is given by m (0). Therefore, when we use a mass
renormalization prescription which is not related to the
vacuum mass renormalization, the initial mass m is not
self-consistently determined, rather it coincides with the
collection of infinite quantities [Eq. (4.14)] defined to be
finite (renormalized) in the sum. Furthermore, although
the renormalization prescription described in Eq. (4.14)
makes our equation finite, one cannot calculate physical
quantities in terms of the renormalized mass in the vacu-
urn sector.

+m '(t)I, (M)

—mR +m (t) .

n=0 n =].

Q(k, t)= g AR "Q„(k,t),
n=0

we obtain

By expanding m (t) and Q(k, t) as

m (t)= g AR m„(t)=mR + g AR "m„(t),

(A3)

(A4)

(AS)
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mo (t)=mR2 2

m, (t)= — J
1 1

k 2Reno
—Gy

(A6a)

(A6b)

1 1

2 f. 2Ren,

1 1

~. 2R.n

2
Ren2 Ren,

+Reno Renp
+m, '(t)I, (M) -,

Reni
+m, '(t)I, (M)

Reno
(A6c)

(A6d)

1

2 Jk 2ReQo

Ren„ Ren,
+ terms involving products of two or more, 1 &i & n —2

Reno Reno '

im„, '(t)I, (M) . (A6e)

and

Bno
i =Ilo —(k +mR ),

dt

an,
i =2000, —m, '(t),

at

(A7a)

(A7b)

Bn2
1

at

Bn3
l

a7.

=2000,~+0, —m2 (t),

=20,OQ3+2II, Q~ —m 3 (t),

(A7c)

(A7d)

an„
i =2000,„+(all possible Q, A with 1(i,j (n —1 and i +j =n ) —m„(t) .

Bt
(A7e)

Our initial states are subject to the same constraints
given in Eqs. (3.15). In terms of ReQ(k, O) and
ImQ(k, O), Eqs. (3.15) are

where g„and 5„are functions of g, 0&m &n, and a&,
1&l &n:

g„=g„(g,a, ), 0&m &n,
lim ReQ(k, O)=k 1+

2 k 2
(A8a)

5„=5„(g,at), 1&1 &n .
(A10b)

lim ImQ(k, O)= ——[3 +B cosp(k)] .
1

k~ oo k

In perturbation expansion, we shall expand

m =mR + g AR m„
n=l

g cosa(k)= g AR "g„cos g AR "a„(k)

(A8b)

(A9a)

(A9b)

The g„, being expansion coefficients of g, are k indepen-
dent. Moreover, in order that g„be k independent, we
choose ai, l ) 1 to be k independent, and in turn assume
that the phase shifts 6„also are k independent. There-
fore, in each order of A.z, we specify two new constants
g and ai to produce g cosa(k) in the full initial condi-
tion. A similar expansion is obtained for B cosp(k):

n=0

g kR "3„,
n=p

(A9c) B cosP(k)=BocosPD(k)+ g AR" „Bc so[ P( o)k+p„],
n =1

B cosP(k)= g AR "B„cos g AR "P„(k) (A9d) (A10c)
n=p

Then, we find that

n=p
where B„and p„are constant and functions of B
0& m & n, and PI, 1 &1(n Therefore, w. e have

g cosa(k) =gocosao(k)+ g AR "g„cos[ao(k)+6„],
n =1

(A10a)

mR gocosao(k)2

lim Redo(k, 0) =k 1+
k

(A11a)
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(A 1 lb)

lim ReQ„(k, O)=
k-~ oo

2m n g„cos[(to(k ) +5„]
n ) 1

lim Imago(k, O) = ——[ 30+BocosPo(k)],
1

k
integration constants which are related to our initial
conditions. By comparing with the free solution
Go( k, t ), obtained earlier in Sec. III, with
Redo(k, t) = —,'Go '(k, t) we identify eo(k) and 50(k) by

lim ImQ„(k, O) =-
n ~ oo

(Al lc)

B„cos[Pa( k ) +p„]
n ) 1

(A 1 ld)

cosh 2e'0( k ) 1

sinh2e (k)
(A13a)

= [(1+2n& ) —1]' —0, (A13b)
sinh2eo k k'

First, let us discuss the lowest-order solution Qo(k, t)
The most general solution of (A7a) is

Slo(k, t) = ice—i, cot[cod, t —[50(k)+iso(k)] }

and

cos250( k ) g 0cos(to( k )

sinh2EO(k) I- (A13c)

sinh2e'0( k ) —i sin2[co I, t —5O( k ) ]
" cosh2eo( k) —cos2 [co& t —50(k ) ]

(A12)
sin250(k) Ao+BocosPO(k)
sinh2e(k) u- k

(A13d)

where co„=(k +m~ )' and 5(k)+i@(k) are complex The general solution to Eqs. (A7b) —(A7e) is given by

II„(k,t) = if„(k,r)h (k, r)dr+ A„(k,O), n & 1,1

h k,t, 0

where

(A14a)

and

h (k, t) —=exp i f 260(h, t')dt'
0

f, (k, t) =m, '(t),

sin (cut, t 50 ie—o)—
sin (50+i@0)

(A14b)

(A14c)

f (k, t) =m„(t) —(all possible 0;fI, with 1 &i,j & n —1 and i +j =n ) for n &2 .

Now let us examine finiteness of m i (t):

1'"=
2 f, 2R'.n, 2(k 2+ m 2)1/2

1 1

2 k 2k

mR go cosao(k) Ao+BocosPO(k) 1 m~
cos2kt + sin2kt — + + finite terms . (A15)

4k 2k 2k 2k 4k'

Equation (A15) is precisely the same form as Eq. (4.13). Since a(k) =ao(k)+g„& A+a„where a„ is k independent,
limf, „ao(k)&const by Eq. (4.9) and the integral involving cosao(k) is finite for all t including t =0. Therefore,
m i (t) is finite.

Now let us consider the large-k behavior of Qi(k, t). From the solution given in Eqs. (A14) we obtain

lim II, (k, t) =
kazoo 2k

mi (t)+ Refli(k, O) — mi (0) cos2kt+ImQ&(k, O)sin2kt
2k

+ i [Impel &(k, O)cos2kt —ReQ&(k, O)sin2kt]+0 1

k
(A16)

From our initial condition Q, (k, O) given in Eqs. (Al 1),

lim Q, (k, t) = '

k ~ oo

1

2k m, (t)+
——,'m, (0)+—,'m, —g, cos[ao(k)+5, ]

k
cos2kt

1——
[ A, +B,cos[po(k)+p, ]}sin2kt +iO 1

(A17)

Next, using the above expression for Q, (k, t) we immediately see that m&~(t) is finite when we tal(e m, (0)=m, (0):
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m2 (t)= —,
'

ReII, mi (t)

2 ReA0 M
' + 1

2(k 2+M2)1/2 (A18)

Finally, we are ready to generalize our result to an arbitrary order in A~. The fact that lim„„Q, (k, t) —1/k tells
us the following.

(i) In the limit k~ oo the equation for A2(k, t) becomes

BAq
i (k, t) =20,02 —m, '(t),

Bt
(A19)

since in (A7c) fbi (k, t) —
& „(1/k ), and is negligible compared to m2 (t) term. The above equation is exactly of the

same form as the equation for 0, , and, therefore, the large-k behavior of A2(k, t) is given by Eq. (A17) with all sub-

scripts 1 replaced by 2.
(ii) In the limit k~ ao, the expression for m3 (t) given in Eq. (A6d) becomes exactly the same as that of m2 (t)

again with all subscripts 1 replaced by 2, since the term

ReA, )

Redo k- k

is negligible compared to

Re0, 3

ReAo k- k'

and we have

—ReQ, z
m3 (t) — J 2 +m2 (t)I2(M)

k ~ k 2ReQO
(A20)

therefore m& (t) is finite when m2 ——m2 (0).
The above two-step procedure can be continued indefinitely and to an arbitrary order in A,z and we have, in the

large-k limit,

and

an„(k, t)
i =200fl„—m„'(t)

ReO, „
m„+,'(t) = — j—,+m„'(t)I, (M)

2 k 2 ReA02

(A2 la)

(A21b)

where

A„(k, t)= ' m„'(t)+
——,

' m„(0)+—,'m„—g„cos[ao(k)+5„]
k

eos2kt

1 1——
[ A„B+„c s[oP„( )kp+„) I sin2kt +iO (A21c)

Therefore, m„+i (t) is finite when we take m„=m„(0).
Furthermore, the large-k behavior of the full solution G(k, t) obtained from our perturbative calculation is, from

Eqs. (A12) and (A2lc),

Q„(k, t)
lim G(k, t) =

2ReA (0k, t) „, 2ReQ, o (k, t)

1 -
2 „2 . 1

4k „ ) 2k
mii + g Ai, m„(t) + gocosao(k)+ g Aiig„cos[ao(k)+5„] cos2kt

1
A~ A„+Bocos/30(k)+ g Aii „Bc so[p„(k)+p„] sin2kt

2k n =].

1

2k
m (t) 1 1+ g cosa(k)cos2kt+ [A+B cosP(k)]sin2kt .
4k 2k 2k

(A22)

The above expression is precisely the one given in Eq. (4.12).
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