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We derive the time-evolution equations appropriate to initial-value problems in A(¢,¢,)? field

theory at large N.

The Heisenberg equations of motion for this theory are compared to the

Schrddinger equation for a wave functional constrained to be in a Gaussian state [the time-
dependent Hartree-Fock (TDHF) ansatz]. The TDHF ansatz corresponds to a special choice of
initial conditions for the general large-N Heisenberg equations of motion. The renormalization of
the theory is discussed in both approaches and a simple method is given to arrive at finite

differential equations suitable for numerical integration forward in time.

A necessary and

sufficient general condition for these equations to be finite is that the initial state contain a finite
average number of particles and/or correlated particle pairs per unit volume.

I. INTRODUCTION

In this paper we study initial-value problems in quan-
tum field theory. Initial-value problems in classical
physics are very familiar. In nonrelativistic quantum
mechanics, the Schrodinger equation may be solved in
terms of the initial data on the wave function. When
one studies relativistic quantum field theory, however,
one generally does not find a discussion of initial-value
problems, and a quite different approach to relativistic
quantum field theory is found in the standard texts.

There are two basic reasons for this. First of all, in
quantum field theory one encounters ultraviolet diver-
gences in perturbation theory for the first time. The
technical problem of the isolation and removal of these
divergences (i.e., renormalization) was not well under-
stood historically until relativistically covariant methods
of calculation were developed by Feynman and
Schwinger. Conceptually, this is still the best way to
handle the problem of divergences. The noncovariant
Schrodinger Hamiltonian method, though more familiar
and better suited to the initial-value formulation, is
much more cumbersome for that purpose.

The second reason for the relative unimportance of
initial-value problems in quantum field theory is that the
great majority of problems to which the theory has been
applied do not require knowledge of the detailed time
evolution of the wave function. Instead, one is typically
interested only in scattering matrix elements for the cal-
culation of cross sections, decay rates, etc. A precise
initial-value formulation is mostly superfluous for such
applications.

In the last several years, there has been an increase of
effort on various problems where the time evolution of
initial data is not only relevant, but actually forms the
heart of the matter. Our particular interest has been in
the early Universe and inflationary cosmology,! ™3 but
many problems of current interest in nuclear many-body
theory,* condensed-matter physics, and quantum chemis-
try® fall into this class as well. The common feature
seems to be the applicability of semiclassical or mean-
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field methods to quantum problems with infinite (or very
many) degrees of freedom, where the time evolution is
important. Because of the broad nature of such prab-
lems, a wide variety of techniques have been developed
with little communication between the various subfields
or understanding of the alternative approaches.

Accordingly, a major purpose of this paper is to at-
tempt to bridge the gap between those who prefer the
more intuitive Schrodinger wave-functional approach
and those who prefer more elegant covariant treatments,
but are less likely to have considered the initial-value
formulation of field theory in any detail. A large frac-
tion of the paper is devoted to a review of different for-
mulations and the relationship between them. Our new
contribution is (we believe) a simple and elegant treat-
ment of the renormalization problem, entirely within the
context of the (noncovariant) initial-value formulation of
quantum field theory.

This present work is an outgrowth of a previous inves-
tigation of one of us® (F.C.), which reconsidered the
time-dependent variational principle of Dirac,” later
studied also by Jackiw and Kerman.® We considered in
Ref. 6 some simple quantum-mechanical models of tun-
neling and quantum “‘rolling” and then extended the for-
malism to include field theory. The equations obtained
in that paper, using Gaussian trial wave functionals are
related to those recently posited by Mazenko® to study
the inflationary epoch of the early Universe. Mazenko’s
method involved a large-N approximation to the correla-
tion functions of field theory.

Although Mazenko derived the evolution equations at
large N in the Heisenberg picture, he did not present a
general strategy for solving the initial-value problem for
arbitrary initial data. He also did not discuss the prob-
lem of mass and coupling-constant renormalization. In-
stead, he realized that if the initial data were a thermal
distribution, normal ordering with respect to the vacuum
would suffice to make the theory finite. The main in-
gredient missing from these earlier approaches was a
clear understanding of the renormalization problem for
arbitrary initial data, which we treat carefully in this pa-
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per.

Because of this background and the diverse applica-
tions possible, we have decided to concentrate on a
specific field theory to clarify the various approaches.
We consider an interacting A(¢,¢,)?/(8N) field theory in
flat spacetime and we also assume spatial homogeneity.

The label a runs from 1 to N. This allow us to discuss
the large-N approximation and its relationship to the
time-dependent Hartree-Fock (TDHF) approximation to
the wave functional. We show in Sec. II that the latter
Gaussian ansatz is actually just a special case of the
more general large-N Heisenberg equations of motion.
In Sec. IIT we give a general specification of the initial-
value problem for the noninteracting theory (A=0) in
the Heisenberg picture and derive an intuitive way of
parametrizing the initial data by an equivalent
specification of the particle number density and density
of correlated pairs present in the initial state of the sys-
tem. We then discuss the same preblem in the
Schrédinger picture and obtain the restriction on the ini-
tial data when the initial wave functional is Gaussian.
When the initial wave functional is Gaussian, specifying
the real and imaginary parts of the width of the Gauss-
ian wave functional at time zero corresponds to a
specific choice of particle and correlated-pair densities
which are not independent. Sections IV and V are de-
voted to the renormalization question. There we show
that the natural choice of the renormalized-mass param-
eter is the effective mass at t=0, which we take to be
finite and well defined by definition. The relationship to
covariant approaches to mass renormalization is also dis-
cussed. We conclude with a discussion of extensions and
applications of our methods to a variety of physical
problems.

II. INITIAL-VALUE PROBLEMS
IN THE LARGE-N APPROXIMATION

In this section we would like first to rederive in the
Heisenberg picture the large-N approximation to the
time evolution of the two-point functions following the
J

G(x —y,t)=2D(x —p,t)—i8(x —y),

D(x —,008,5=8,5K (x —p,0)+ {bo(x,)[V2b 4y, 1) — 126 s(y) — A s(»)b1(»)6,(3) /(2N)])

work of Mazenko.’ In the large-N limit, the theory,
which consists of an infinite number of coupled Green’s-
function equations, reduces to the solution of coupled
equations for the one- and two-point functions. !0~
Since the two-point function obeys a second-order equa-
tion in ¢ and t’, there are three independent initial data
which one needs to specify at t=0. If we confine our-
selves to equal-time Green’s functions, one choice of
variables (chosen by Mazenko) are the ¢¢, ¢, and 7r
Wightman functions. For simplicity, let us first consider
the case (i |d,(x,t)|i)=0 (we will lift this restriction
later). Here |i) is an arbitrary initial state in the
Heisenberg picture and is time independent. In what
follows we suppress the / in the expectation value.

For the case (¢,)=0 the equal-time Green’s func-
tions are proportional to 8,5 and so we define three
Green’s functions G, D, and K as

(9a(x,)h5(»,1)) =G (x,9,1)8,5 , 2.1

(@o(x,0)p(y,2)) =D (x,9,8)8 45 (2.2)

(Tra(x,t)#B(y,t)>EK(x,y,t)Saﬁ . (2.3)
Using the Hamiltonian

H= [ dx[ir,m+ (Vo) (V) +1u’s?

+Mapa)?/(8N)] (2.4)

and the commutation relations

[$a(x,0),050,1)]=i8(x —y)8,5 , (2.5)
we have the operator equations of motion

ba=Ta > (2.6)

7oq=V2¢g—p’bo—Adb1$1/(2N) . 2.7

The exact equations of motion we obtain for G, D, and
K are then (assuming translational invariance of the ini-
tial state)

K(x —p,0085= [ V2o(y,1) — 12 o(3) — Ao(3)6, ()6 (») /(2N) Jr )

+ o[ V2, ) —2d(y) — Adg(»)b, ()b, (») /(2N)]) .

At large N when (¢, ) =0 we have the factorization

<¢a(x,t)¢3(y,t)¢k(y,t)¢h(y,t))=GaB(x —y,t)GAA(O,t)+2GaA(X —y?t)GB}»(O)t)

=8,4(N +2)G (x —y,1)G (0,1) ,
(ba(x,1)(x,0),(x,)3(p,1) ) =8 ,5(N +2)G (0,2)D (x —y,1) .

The terms discarded are of order 1/N or smaller as
N — . If we have spatial translational invariance we
can introduce the Fourier transforms for the various
functions via

(2.8)
(2.9)
(2.10)
(2.11)
2.12)
[
flk= [dx e **=*)f(x —x",1) .
We obtain
G(k,t)=2D (k,t)—i , (2.13)
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(2.14)
(2.15)

D(k,t)=K (k,t)—T'G (k,1) ,

K(k,t)=—2I'D (k,t)+iT",
where T is given by

T=k24+mX )=k *+p?+ 11 [ [dK]IG (k,)=w, (1)

=02+ 44 [ [dk]G (k1) (2.16)

and [dk]=d’k/(2m)>.

We emphasize that, in general, at large N there are
three independent functions G, D, and K which require
three independent pieces of initial data at r=0. As we
shall show below, at =0 the quantities G, D, and K can
be related to the number density »n (k) and the real and
imaginary part of the correlated-pair density F (k) as

G (k,0)=[142n(k)+2ReF(k)]/[20,(0)],
D(k,0)=i/2+2ImF(k),
K (k,0)=1w,(0)[142n (k)42 ReF (k)] .

(2.17)

If at =0 we assume that one has a thermal distribution,
then

n(k)=(eP®

—1)~1, F(k)=0 (2.18)

This was the case discussed by Mazenko® in a curved
background geometry. In flat space, when F (k)=
everything becomes time independent (i.e., a thermal dis-
tribution stays thermal). For an initial thermal distribu-
tion, one can prove that renormalization proceeds exact-
ly as for the vacuum state using, for example, path-
integral methods recently reviewed and elaborated upon
in detail by Semenoff and Weiss.!> In this paper we
would like to consider arbitrary initial n (k) and F (k)
which are consistent with the physical requirements that
the initial state have a finite number of particles and
correlated pairs per unit volume.

We now would like to study the same theory in the
Schrodinger picture. To do this we extend our previous
analysis of the time-dependent Hartree-Fock approxima-
tion in the Schrddinger picture to the case of ¢* field
theory with O(N) symmetry. In the Schrodinger picture
the abstract quantum-mechanical state |¥(¢)) is de-
scribed by a wave functional over the field configuration
¢(x) at a given time ¢ (the ¢ representation):

[ (1)) =W(g,t)=(D|¢) . (2.19)

This is the analog of
Wix,n)=(x|¥),

for the Schrodinger wave function of a one-dimensional
quantum-mechanical system.

The action of the operator tI>
by multiplying W(¢,?) by ¢,(x

) on Wz t)) is realized
(a=1,2, ,N):

Y(g,t)y =Nexp «(5,D1G 5

s

+i [ Fx,0[$(x)

X,9,1) /4—iZ

. (x,1)] l ] R
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D, (x) | (1)) = (x)¥(,1) (2.20)
and the action of the canonical momentum 7,(x) is real-
ized by functional differentiation:

1)) =>—i Y(d,t) . (2.21)
x) | ¥(1) i 5.0 ¢
The inner product is defined by functional integration:
1= [do|oX (@],
(2.22)

0 (0)= [ doWi(e,0¥,(8,1)

The expectations of functions of operators are deter-
mined by

1] Ald,m) | (1))
= [dow*(s,04

In order to make variational approximations to the func-
tional Schrodinger equation, one needs a variational
principle from which the Schrodinger equation can be
derived. This principle is due to Dirac.” The exact vari-
ational principle starts with the action

(¢, —i5/5¢6)¥(,1) (2.23)

S = f (W, ¥*)d (2.24)
where L (\P,\IJ*) is given by
L (W, ¥*)=(¢|id/0t —H | ) /{¢|¥) . (2.25)

The variational principle is that 8S=0, which leads to
the exact functional Schrodinger equation for this sys-
tem in the ¢ representation:

ioW(¢,t) /0t =HW¥(o,1)

= fd3x{—%82/[8¢a(x)]2+%(V¢aV¢a)

+V($)}W(d,1) (2.26)
In order to obtain tractable approximation schemes in
quantum field theory in the Schrodinger picture one re-
stricts the variation of W to a subspace of the Hilbert
space. The easiest way of doing this is by parametrizing
a trial wave function, which we denote by W¥,. The
TDHF approximation is a specific choice of a trial varia-
tional wave functional ¥, which is a Gaussian with vari-
ational parameters G and 2 related to the real and imag-
inary parts of the width of the Gaussian, and ¢ and 7
which are the expectation values of the operators ¢ and
7 in the trial wave functional. Of course, in the varia-
tional method, one is not restricted to such a simple an-
satz and by increasing the number of variational parame-
ters cleverly one expects to get a better approximation to
the field theory. Specifically, in TDHF one assumes, for
N) ¢* field theory,

(x,,01[5(y) — 4y, 1)]

(2.27)
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where N is a normalization factor. The four variational

functions G, =, ¢, and 7 have the following significance:

(9o(x))y=,(x,1), (2.28)
(—i8/8¢,(x))y =T,(x,1) , (2.29)
(Bo(x)s(y)) y =@ (x,)p(p, 1)+ G o5(x,,1) , (2.30)
(i3/dt ), = fx T o(x,1)0B(x,1) /3t

— fw 38,0, 1)G g (x,3,1) 2.31)

where the expectation values are determined as in (2.23)
using the trial variational wave functional.

Thus, ¥, is a Gaussian centered at ¢ with the real
part of the width given by G. The conjugate momentum
of ¢ is 77, and I plays the role of the conjugate momen-
tum of G.

Defining the effective action in the trial state as

T 3,7,G,3)= [ dt,(y(1)|(1d/3t —H) | %(1) ,
(2.32)

we obtain

[g= fdt [ fx To(x, )3, (x,t) /0t

+ fxy 2.5(%,y,6)0G g, (x,y,t) /8t —H ¢t | ,

(2.33)
where

Hg= fx [17yTo+1V4, VP, +TrG /8
+2TrEGE— 1V, %G (x,3,0) | s, +(V )y ] .

The trace is over coordinate space as well as internal
space and we have used boldface to indicate the matrix
structure. We see that when we approximate the true
wave function by the variational one, the approximate
action (which we call the effective action because it is re-
lated to the large-N effective action of Cornwall, Jackiw,
and Tomboulis'®) has the form of a classical action for
the variational fields ¢ and G. When V is at most quar-
tic we can use the method of the generating functional®
to show that

(V)=V($)+1G Vs

+ 35 Vapys(GapGrs+GoyGps +GosGp, ), (2.34)
where
Vap =8V /86805 ,_5, etc.
If we choose
Vido]l=1u2d,0%+rd,0 058P /(8N) , (2.35)
we obtain
(V($))=V($)+Lp’TrG +AG 5d,45/(2N)
+A(TrG)$2/(4N)
+AL(TrG)*+2G 453G ,51/(8N) . (2.36)
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To obtain the large-N limit of this equation we write

and rescale the field ¢
é,=N'"?, . (2.38)

One can show by a detailed study of the large-N approx-
imation that the correction term

AGaBOCJaJB/( ,&al ,$ﬁ| )

and that this term does not contribute to the leading
large-N behavior. After this rescaling and breakup of
G, we plug into (2.36) and keep the leading behavior of
(V') at large N and obtain

(V)=NV($)=N(u’¢*/2+1d*/8+u’G /2

+AG*/8+AGH2/4), (2.39)

where ¢ 2=¢ ¢, etc.
If instead we just set N=1 in (2.34) we recover! the
TDHF approximation for single-component field theory:

(V) lyo1 =20 /2+1d*/8+1>G /2
+3AG*/8430G¢*/4 . (2.40)

When ¢=0, the N=1 TDHF approximation and the
general large-N expansion give identical equations for G
with a rescaling A/(8N)—A/24. Since, at large N, the
Hartree-Fock approximation becomes exact, we expect
Eq. (2.39) to be an excellent approximation to large-NV
dynamics. We will therefore use the result of (2.39) with
the rescaled fields ¢ as the (V') in this paper. Since N is
in front of the entire action after rescaling we will
suppress the N (and also the tilde in what follows) and
write

(V)Y=u¢*/2+18*/84+u*G /2

+AG?*/8+AGp*/4 . (2.41)

The effective potential V g[¢$,G] is defined as H 4 for
constant ¢ and is

Veald,G]=(V )+ 1 TrG ' 1V 2G(x,y3,0) | , _, .

(2.42)

We will discuss the renormalization of the effective po-
tential in the Appendix.

Having evaluated (V) we can now apply the varia-
tional principle 8I'=0. This variation leads to

#(x,1)=V2(x,t)—3(V ) /3¢ , (2.43)
b(x,t)=m(x,1), (2.44)
G (x,p,0)=2 [ J [6x202p,0
+2(x,z,t)G (z,p,8)] | , (2.45)
S(xy,0)==2 [ 20x,2,02(z,1)
+ LG x,p,1)
+(1V, 2—3(¥V ) /3G)8(x —y) , (2.46)
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where (V') is given by (2.41).
Introducing the Fourier transforms at fixed time as be-
fore, we obtain (for ¢ =0)

G(k,t)=43(k,t)G (k,1) , (2.47)
S(k,t)=1[G (k)] *—=23%(k,t)—-T /2, (2.48)
or, in second-order form,
2G (k,1)G (k,t)—G *(k,t)+4TG?(k,t)—1=0, (2.49)

where I is given by (2.16) above.

To compare with the general results of the large-N ex-
pansion we need to connect 2 and G to the variables
defined previously. To do this we need to evaluate D
and K in terms of G and X using the wave function
(2.27). We find

(o5 pr=0,5G (k,1) , (2.50)
(o) rr=1i8,5+2G (k,1)Z(k,1)8 5

=D (k,1)8,5 , (2.51)
(Tobp) pr=—1i8,5+2G (k,1)2(k,1)8,5 , (2.52)

(momp) 1 =045l G ~'(k,1)/4+4Z(k1)G (k1)Z(kt)]
=K (k)85 , (2.53)

where the subscript FT stands for Fourier transformed.
Using (2.50)—(2.53) we find that (2.13)-(2.15) are au-
tomatically satisfied as long as G and 2 obey (2.47) and
(2.48). Thus, for Gaussian initial data, only two pieces of
initial data, G(0) and G(0), are needed instead of the
more general case of arbitrary initial data where three
pieces of initial data are needed [that is, in general, G(0)
is an independent piece of data]. We will show later
that, in general, one can specify the initial-number densi-
ty and real and imaginary parts of the density of pairs at
t=0 as independent variables if we use the Heisenberg-
equation approach. In the TDHF there is a constraint
between these quantities. When one has initial data
which comes from a Gaussian wave functional, the (in
general) three independent functions necessary to specify
the time development of the large-N approximation
satisfy one relationship.

We have thus shown that, in the context of Gaussian
initial data, the large-N approximation to the TDHF
variational approximation is identical to the exact large-
N approximation to the two-point function although it is
not as general as the full large-N approximation. This
result was found for static fields by Cornwall, Jackiw,
and Tomboulis. ! This results from the fact that at large
N an initial Gaussian wave functional remains Gaussian
as time evolves.

We would also like to study initial conditions where ¢
is nonzero. For the case of spatially homogeneous
configurations, ¢ is a function only of time:

|
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#(t)={d(x,1)). At large N the equations we obtain us-
ing (2.41) and (2.43) are

$o)+ ﬂ2+%k¢2+§?\f[dk]G(k,t)laﬁzo, (2.54)

26 (k,1)G (k,t)— G 2(k,1)+4T G k,t)—1=0, (2.55)

where the only difference in (2.55) is that now
=k p+ (1) +1a [ [dk1G (k1) , (2.56)

where [dk]=dk /(27)>.

III. INITIAL-VALUE PROBLEM WHEN A=0

To understand the divergences in I, it is useful to
solve for G (k,t) in the case A=0. Because of our in-
terest in the new inflationary universe we will allow u? to
be positive or negative. First let us study the free field
case in the Heisenberg picture which is more familiar to
field theorists. We will use a parametrization which will
generalize simply to the interacting case.

By translational invariance,

(i [balx,Dp(x",1") [ i) =Wolx —x',1,1")8,5 . (3.1

In general (even in the interacting case) we have the
following Fourier decomposition of ¢ at time ¢:

dox,0)= [ [dk]lagafy(te’ ™
+a) fr(e TRO] (3.2)

where the operators a and a’ obey the commutation re-
lations

[araargl=8k —Kk")8,4 (3.3)
and the functions of f (¢) obey
frodfE/dt —frdf, /dt =i | (3.4)

In free field theory, because of the free field equation, we
may choose
fo=e 2wV (3.5)

Spatial homogeneity then requires

(i |agaapg|i)=n(k)2m)83k —k")8,p5 ,

(i |agaalp i) =0nk)+112m)8%k —k")8,4 , R
(i |apgapp|i)=F(k)(2m)*8*(k +k")8,4 ,

(i |agaapg | i) =F*(k)2m)8(k +k")8,4 ,

where n (k) is the phase-space particle number density in
the initial state |i) and F(k) is the pair density. After
a little algebra we obtain, for the free-field-theory two-
time Green’s function,

W(k,t,t")=20; )" "{[1+2n (k)]coswy (t —t')—Li sinw, (t —1')

+2ReF (k)cosw, (t +1t')+2ImF (k)sinw, (t +1')} ,

(3.7
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so that the free equal-time two-point function G (k,?)
can be written as

G (k,t)=Qaw; ) '{[142n (k)]+2 ReF (k)cos2w, t
+2ImF (k)sin2w,t} . (3.8)
The initial data therefore has the following significance:
G (k,0)=(20, )" '[142n (k)+2ReF (k)] ,
G(k,0)=21ImF (k) , 3.9

G(k,0)= —4w,ReF (k) .

When the initial wave functional is Gaussian, G and G
are related to the real and imaginary parts of the width
of the Gaussian so that when we specify the shape of the
initial wave functional we automatically determine the
number and correlated pair densities at t=0. From
physical considerations we require that the average num-
ber of particles and pairs per unit volume is finite, which
places integrability conditions on n and F:

[ noldk] < o, [ Fk)dk]<w . (3.10

This clearly places integrability conditions on the real
and imaginary parts of the width of an initial Gaussian
wave functional.

Now let us turn to the same problem in the
Schrodinger picture when our initial data is a Gaussian
wave functional that is not the vacuum wave functional.

In free field theory the conserved Hamiltonian density
in momentum space is

H(k)=G?2/(8G)+G~'/8+(k*+u®>G/2. (3.11

Since energy is conserved, G=0 determines the turning
points of the G motion which oscillates between two
values of G.

In free field theory the vacuum Green’s function is
time independent and is found by setting G=G=0 in
(2.49). We have

Golk)=1/2VT)=Qa0, ) '=L1(k24+pu?)~ 172 (3.12)

More generally, at t=0,
Gk,t =0)=f,(k)=Qaw, ) '[14+2n (k)+2ReF (k)] ,
(3.13)

where n (k) is the particle number density and F (k) is
the density of pairs.

In general, the solution for G can be parametrized as
in (3.8):

G (k,t)=Q2w; )" '{[142n (k)]+2 ReF (k)cos2w, t

+2ImF (k)sin2ew;t} . (3.14)

If u* <0, then for k% < —u? the cosine and sine functions
become hyperbolic functions and w, is replaced by
[y |

Because of (2.49), when the initial data is a Gaussian,
recall that the three initial data must satisfy one rela-
tionship. If we parametrize

G(k,0)=(14+A)/Q2w;), A/2=n +ReF ,

3119

then
n(k)=(A*+4ImF?) /[4(1+A)],
ReF =(2A+A>—41ImF?)/[4(1+A)] .

We see that if A is the leading correction to the vacuum
contribution to the ultraviolet behavior of G (k,t), then,
if A is integrable, n (k) which goes like A? is automati-
cally integrable. So in the TDHF approximation one
needs for integrability only to specify that the pair densi-
ty is integrable. The more general parametrization of
the Heisenberg picture allows one to study arbitrary ini-
tial data including initially thermal or near-equilibrium
configurations at t=0. These more general initial states
do not correspond to Gaussian wave functionals.

(3.15)

IV. RENORMALIZATION
IN THE HEISENBERG PICTURE

The integral in the definition of I' [Eq. (2.16)] has both
quadratic and logarithmic divergences which are related
to mass and coupling-constant renormalization. When A
is different from zero, then Eqgs. (2.47)-(2.49) are mean-
ingless because of these divergences. For the static prob-
lem (i.e., the ground state), the problem of renormaliza-
tion at large NV or in mean-field theory has been solved in
several different contexts before.’~® In the Appendix,
for completion, we show how to renormalize the static
effective potential in the TDHF approximation.

In the time-dependent problem there are some new
physical conditions that have to be considered. Firstly,
one would like to parametrize the initial data at t=0 so
that it is independent of the renormalization procedure.
This can be done if we choose as our renormalized mass
parameter the effective mass m2(0) defined by (2.16).
Secondly, from physical requirements discussed earlier
we will find that in order to make these equations finite,
the initial data itself will have to be restricted to those
initial data for which the average number of particles
and correlated particle pairs unit volume is finite. In the
TDHF large-N approximation, the equations we need to
render finite are Eqs. (2.52)-(2.54).

Before analyzing these equations, which look quite
noncovariant, let us first discuss renormalization in the
Heisenberg picture at large N. Our approach to renor-
malization is to use a generalized WKB method, taking
advantage of the fact that, in the large-N approximation,
the equation for G is similar to the well studied time-
independent Schrodinger equation of quantum mechan-
ics. We will show that the ultraviolet properties of the
Fourier transform of the Wightman function are deter-
mined by the WKB approximation to the Wightman
function and, thus, an all order in A renormalization can
be explicitly done. Physically, the motivation for this
approach is that the ultraviolet divergences are quite in-
dependent of the time variation and initial data, since
they are present even in the vacuum state. Therefore,
the first few orders of the WKB expansion contain all
the divergences and lead to a natural technique for their
removal. This WKB approach is related to other adia-
batic methods found in the literature. '°

At large N the covariant field equation is
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[O+m%t)]o(x,t)=0, 4.1
where m?*(t) is given by u*+1A f [dk]G (k,t). Using
the general Fourier decomposition (3.2) we obtain
[80> +k24+mA(1)]f, (1)=0 . (4.2)
Since this equation resembles the time-independent
Schrédinger equation [here time takes the place of space
and the “potential” is w?(t)=k2+m?(t)], we make the
WKB ansatz for the wave function f (¢):
J
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Fr()=(1/V2Q)exp[ —iy (1)], (4.3)
where
t
1= Q 4.4
y(0)= [ QGx)dx (4.4)
and we suppress the k label on Q) and w.
We then obtain the exact equation for Q:
Q/02Q)—HQ/Q)P2+Q*=w0(1) . 4.5)

Using this we obtain, for

W(k,t,t'),

parametrization of f

W(k,t,t")=1Q()~2Q(t") " VA 1+2n (k)]cos{ [y (1) —p (¢')]} — Li sin{[y (1) —y ()]}

+2ReF (k)cos{[y (t)+y (t")]} +2ImF (k)sin{[y (£)+y (t')]}) . (4.6)

At equal times we obtain W (k,t =t')=G (k,1),
G (k,t)=[20(t)]1"{[142n (k)]+2 ReF (k)cos[2y (2)]
+2ImF (k)sin[2y ()]} . 4.7)

This form is quite nice because it has the same structure
as free field theory except the angle y replaces wt, and
the constant frequency w; found in free field theory in
the denominator is replaced here by the time-dependent
frequency ()(¢) which obeys a second-order differential
equation.

It is convenient to choose, as initial data for (,

Q0)=w(0), (0)=0. (4.8)

This selects the effective mass of the theory at t=0 as
the natural renormalized mass parameter and chooses ()
at t=0 to be its WKB value. Since we have a general
parametrization of the initial data in terms of n(k),
F(k), and «(0), there is no loss of generality in this
choice of initial data for Q or in the choice (4.3) for f.

The initial data are now identical to free field theory
with w; replaced by »(0), which we take to be a given
fixed value. That is, we have, in the interacting case,

G (k,0)=[2w(0)]"'[142n(k)+2ReF(k)], (4.92)
G(k,0)=21ImF (k) , (4.9b)
G(k,0)=—4w(0)ReF (k) . (4.9¢)
We can specify the initial data in two ways. We may

give the value of G and its two derivatives at =0 which
for Gaussian initial data is related to specifying the real
and imaginary parts of the width of the Gaussian. Or
we may specify the number density and correlated pair
density functions pertaining to the initial state as well as
the effective mass of the state. The natural mass that
enters in the initial-data problem is m2(0) and not mg?,
the pole in the covariant vacuum two-point function.
These parameters are finitely related, as we will see later.
However it would be extremely complicated to discuss
the initial-value problem in terms of mgz2. Another
benefit of using m 2(0) is that all dependence of the initial
data on A is hidden in the implicit dependence of m %(0)

on A and my?2.
All the divergences in this approach come from the
expression for w(t):

X t)=k*+mx1)

=k +p+4a [ [dkIG (k1) , (4.10)
the integration over [dk]=d >k /(27)® having both quad-
ratic and logarithmic divergences which have to be ab-
sorbed by mass and coupling-constant renormalization.

It is fortunate that the large-k behavior of the integral
is determined by the WKB approximate Green’s func-
tion. To see this we can think of solving the equation
for (t) iteratively in terms of higher time derivatives of
w(t):

P =0?—6/Q20)+Ho/0)’+ -+, 4.11)
where what is left out has higher derivatives and more
powers of w in the denominator. When we neglect the
time derivatives of w on the right-hand side (RHS) of
Eq. (4.11) we obtain the usual WKB approximation. At
large k,

o~ 2 /k, &~(mY/k . (4.12)

Thus, the derivative terms on the RHS of Eq. (4.11) do
not affect the large-momentum behavior of , which is
solely determined by w.

Since we have an explicit expression for G(k,t), we
can determine the counterterms needed to all orders in
A

First let us discuss renormalization in the vacuum sec-
tor, which is the time-independent solution to the
equation, where

Q2 =w?=k>4mp=k>4p>+ 11 [ [dk]/20) . (4.13)

The renormalized mass is determined by the gap equa-
tion

mpl=p2+ i [ [dk]1/[20k?+mg?) 7] . (4.14)

We also need to determine the renormalized coupling
constant.
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A direct way of determining Ay is from the scattering
amplitude in the large-N approximation, where the sum
of bubbles gives

Ag =A/[1+1A2(0)], (4.15)

and

__1
(2m)*

0= [ [dk]/(40’),

S(q) [ Dplg —OD(K)d*k

(4.16)

and Dy is the usual covariant Feynman propagator with
mass mpg, so that w,2=k24+mg? If we write A as
Ag +6A, where 8X has a power series in A starting with
Ag?, then in large N we have that this series is totally
determined from the geometric series

A=Ag /(1—Ag81), 4.17)
where

sh= [ [dk]/(8w;>) . (4.18)
If we write

ur=m?+8m?,
then

smi=—1n [ [dk]/(2w;)

= —Ag /(1=2g80)] [ [dK]1/Qwy),  (4.19)

which on expanding in Az gives the counterterms need-
ed order by order at large N.

Having summarized what happens in the vacuum sec-
tor, let us now look at the initial-value problem for
which there is a time-dependent mass. We write this
time-dependent mass in terms of counterterms in analo-
gy with the vacuum case. However, now dm? and 8\
are unknowns to be determined. We have

mAt)=m>+8m>+L[Ag /(1—Ag8M)] [ [dk1G (k,1) .
(4.20)
If we now choose our finite mass parameter m >=m (0),

then we have
J

Sm2=—1[Ag /(1—Ag8M)] [ [dK]G (K,0), (4.21a)
mAt)=mX0)+ 1A [ [dk][G(k,)—G (k,0)]  (4.21b)
=m?0)+R(1) . 4.21¢)

The subtraction of G (k,0) from G (k,t) in the integrand
removes the quadratic divergence. In terms of R (¢) it is
easy to investigate the remaining logarithmic divergence
in (4.21b) explicitly.

The logarithmic divergence in (4.21b) is coming from
the term

i [ [dk]{1/[20(0]=1/[20(0)]} , (4.22)

since (0) was chosen to be w(0) and the large-k behav-
ior of (z) is determined by w(?).
Writing w(t)=[k*+m?2(¢)]'/? and simplifying, we ob-
tain that the divergence is
IAmA0)—m¥0)] [ [dk]/[40%(0)] . 4.23)
We have

R()=mXt)—m¥0)=1 [ [dk][G (k,0)—G (k,0)]/2 .

4.24)
So if we set, as in (4.17),
AM1—Ag8A)=2Ag (4.25)
with
sa=1 [ [dk]/[40%(0)] (4.26)

and multiply both sides of (4.24) by (1—Az6A) and sim-
plify, we obtain the finite equation

R()=1Ag [ [dk]{G (k,t)—G (k,0)

+R(1)/[40(0)’]} . 4.27)
To verify that this is indeed finite, it is sufficient to uti-
lize the lowest-order WKB (or adiabatic) approximation,
where Q) =w. By substituting (4.9) with Q=w and (4.10)
into (4.27) we may perform the integrations over k ex-
plicitly for the n =F =0 terms in G. The result is

R(t)=1Ag [ [dKk](2ReF (k){cos2y (t)/[20(1)]—1/[20(0)]}

+2n (k){1/[20(2)]—1/[2w(0)]} +2 ImF (k)sin2y (1) /[2w(2)])

+ AR (mAD{In[m A1) /m20)]—1} +m*0)) /(3272) .

(4.28)

This is explicitly finite as long as the number density and density of pairs satisfy Eq. (3.10). However, it is still a

difficult equation to work with numerically.
Since G (k,t) depends on R (¢) through

o(t)=[k*+m20)+R(1)]'/?,

(4.29)

one can convert the integral equation (4.28) for R (¢) into a first-order differential equation for R (¢) with initial data
R(0)=0 and a first-order differential equation for the angles y, (z) which depend on k:

y(0)= [k +m*0)+R (x)]'dx

(4.30)
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and satisfy

dy, /dt =[k*+m*0)+R(1)]'?, y,(0)=0. (4.31)

In this form the equations should be quite easy to solve numerically on the computer because one has converted the
integral equation for the self-consistent mass into a set of coupled first-order differential equations for R(¢) and y,(?),
which after being solved can be plugged into the explicit expression for G (k,t) [Eq. (4.7)]. The numerical solution of
Egs. (4.7), (4.28), and (4.31) and a comparison with the numerical solution of the exact equation for G (k,?) in two and
four dimensions will be presented elsewhere.

The form of G is the same for the exact problem and the WKB approximate solution, except that w gets replaced
by Q which is itself the solution of a second-order differential equation, and y is given by (4.4). For the exact large-N

Green’s function we obtain, for R(t),

R(1)=1Ag [ [dk1(2ReF (k){cos2y (1)/[29(1)]—1/[20(0)

1

+2n (k){1/[2Q)]—1/[20(0)]}
+21ImF (k){sin2y (¢)/[2Q)]+ 1/[2Q()] — 1 /[20(0)]+ R (£) /[40*(0)]}) (4.32)
The last three terms can be rewritten using the equations of motion for (t) as
Ag (mA(){In[mX(1)/m*0)]1—1} +m*(0)) /(327) + LAg lf[dk][f’z/um 3O /Q)*]/{2Q(0)e()[ Q1) +o(1)]}
(4.33)

which is explicitly finite. Thus, we verify that the
analysis of divergences in the WKB approximation
suffice to renormalize the large-N approximation. Sum-
ming things up, we obtain in the Heisenberg picture that
at large NV the renormalized equations are

G (k,t)=[20(1)]™
X {[1+42n
+[2ImF (k)

(k)]+[2 ReF (k)]cos2y (1)
Jsin2y (2)} , (4.34)
where () satisfies the second-order differential equation:

0/02Q) - (/0P + Q=0 (t)=k*+m*(0)+R (1)

(4.35)

with boundary conditions Q(0)=w(0), 0(0)=0; y
satisfies the first-order differential equation

dy /dt =Q(t), y(0)=0; (4.36)

R (1) satisfies the finite self-consistency condition (4.32)
or equivalently,

N=1rg [ [dK](G —G (k,0)

+R(t)/[4a)(0)3]} , (4.37)

which can also be converted to a first-order differential
equation.

After doing this renormalization of R with (¢ ) =0, it
is easy to look at what happens when (¢) is not zero.
For simplicity we consider only the case where the ex-
pectation value of ¢ is independent of x. In order for
the expectation value of ¢ to be independent of x,

(i dlx,t)|i)=(r) (4.38)
one needs after Fourier decomposition of ¢ that
(ilay )z’):%C<"33(k)/(27r)3 , (4.39)

[

with C a constant independent of k. Thus, for nonzero
¢ one needs C as well as n (k) and F (k) to specify the in-
itial state. In terms of C and f, (the k=0 mode of f})

one has

d()=Cfo(t)/24+C*fE(t (4.40)
We can rewrite this as

d(1)=[2Q,(t)]"*(ReC cosy,—ImC siny,) ; (4.41)
here Q(t) is determined from wy(t)=[m?2(2)]'/? using

Eq. (4.5).
The Heisenberg parameter C is related to the initial
data as

$(0)=
d$(0)/dt =

The change that takes place in the equation of motion
for ¢ when (@) is not zero is that the definition of R (7)
changes. One has now at large N that

mA ) =p>+ A+ 1A [ [dK]G (k1)

ReC /[20,(0)]'/?, (4.42)
—ImClwy(0)/2]V2 . (4.43)

(4.44)

Thus, we again define R (t) as m2(1)—m*(0) and we ob-

tain
m2(t)—=m*0)=R (1)

=1A[¢%(t)—¢*0)]

+11 [ [dk][G (k,t)—G (k,0)] .

(4.45)

Again the remaining logarithmic divergence is removed
by the coupling constant renormalization which now
must be performed with the new mass parameter m %(0)
determined from (4.44). With this implicit change in the
definition of 8A we obtain the renormalized field equa-
tion for (¢ ) [and fy(1)]:
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(1) +[mU0)+R(2)]p=0, (4.46)
where the renormalized equation for R (?) is now
R(t)=1Ag[¢%(1)—¢%0)]
+1Ag [ [dK]{G (k,1)—G (k,0)
+R(1)/[40°(0)]} . (4.47)

V. RENORMALIZATION OF THE TDHF EQUATIONS

Now let us turn our attention to the TDHF equations
obtained at large N and their renormalization. We have
that the equations are

2GG —G *+4I'G*—1=0, (5.1)

F=k24+m2)=k>+p*+ix [ [dk1G (k).  (5.2)
In the time-independent case we see that

Golk)=1/(2VT) . (5.3)

Thus, the usual renormalized mass is given by the same
gap equation as before:

mel=p?+ 11 [ [dKk]Gy(k) ,
Go=1/[2(k*+mg?'?] .

(5.4)
(5.5)

We expect that the coupling and mass renormalization
will be the same as we discovered in the Heisenberg pic-
ture, but now we will have to study these nonlinear
equations in a perturbation expansion in A to verify that
this is so.

To do this we again expect the counterterms for A to
be a geometric series

Ag =A/(1+A8R) , (5.6)

where 8A is logarithmically divergent, and we again
choose our renormalized mass parameter to be, to m 2(0),

m¥0)=p?+ 11 [ [dK]G (k,0), (5.7)

where [dk]1=d 3k /(27)>.
To identify the counterterms it is only necessary to

calculate to order A2. We rewrite (5.2) as

T=k>4+m?+8m>+(hg +51) [ [dkIG(k,n)/2. (5.8)
We assume

dmi=Agbm 24+ Ag28m 4 -,

~ (5.9)

A=Ag /(1—Ag8A)=Ag +6A .
Thus,

SA=Ag A+ - - . (5.10)
Now, from (5.8) and (5.2), if we choose m?*=m?2(0), we

see we will need
8m,?=—1 [ [dKk]G (k,0) . (5.11)
Since, in general for m2=m *0),

dm2=—1 [ [dk]G (k,0)=(hg +6X)8m,?, (5.12)
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we expect

5m22=8)»8m,2, etc. (5.13)

So at large N we need only to calculate to order A? to
identify the counterterms. (We will explicitly verify that
our renormalization prescription then works to all or-
ders.) In order to systematically study the Az expansion
of (5.1) and (5.8), we set

G(k,t)=Gy(k,0)+ 3 G,(k,1)Ag", (5.14)
n=1
F=k?4+m?+ 3 T, (Ag". (5.15)
n=1
Since this is an initial-value problem,
G (k,00=G,(k,0) and G(k,0)=G(k,0) (5.16)

completely specify the problem. It is convenient to
choose the free-field-theory Green’s function G,(k,?) to
satisfy the initial data. We see from Egs. (2.49) and
(2.16) that unless we choose m2=m?(0), then G(k,0)
will depend explicitly on Az and will change order by
order in a perturbation expansion in A. Thus, the most
convenient choice for the renormalized mass parameter
is m2(0), the effective mass at t=0, since if we consider
that parameter as given at t=0 the reexpansion of these
equations in A simplifies dramatically. Since we can
easily determine the connection between m 2(0) and mpg?,
the pole in the vacuum Green’s function, one can always
at the end reexpress everything in terms of myg2. Choos-
ing m2(0) to be a given value, I', (k,0)=0, and for n > 1
we have

G,(k,0)=G,(k,0)=G, (k,0)=0 . (5.17)

This initial condition on the perturbation expansion will
eliminate homogeneous solutions to the differential equa-
tions for G, (k,t).

(a) Order Ag°. At zeroth order in A, we obtain

2G,Go—G  +4(k>+m?)G =1, (5.18)

which is finite. The solution satisfying the initial data is
given by Eq. (3.8).

(b) Order Az '. Using G, we can calculate I',(z). We
have

T(0)=6m2+% [ [dk]G,(k,1) .

Requiring I';(0)=0, so that the initial data does not
change order by order in perturbation theory, yields

(5.19)

8m 2= —1 [ [dk]Gy(k,0), (5.20)
so that
T(0)=1 [ [dk)[Golk,H)—G,(k,0)] . (5.21)
Using (3.8) we find
(=1 [ [dk)2w;)™!
X[2ReF (k)(cos2w,t —1)
+2ImF (k)sin2w, t] . (5.22)

From this result we see that not all initial data will be
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rendered finite by the order-A mass renormalization. In-
stead we require that

[ Flldk]/20,) < 0 (5.23)

so that T',(¢) is finite. If we do not choose m2(0) as the
renormalization mass, but another finite mass such as
mpg? defined by (5.4), then we would discover that we
would also require [see (5.52)]

[ ntoldk]/(20,) < o . (5.24)

So the previous conditions on F and n are sufficient con-
ditions here also. Now that we have rendered I' (7)
finite we can determine G,(k,?). We have that G| obeys
the equation

GG, +G,6Gy—GG,+4k?+m?)G,G,

+2I(1)Gy*=0 .  (5.25)

To determine the coupling-constant counterterm it is
only necessary to study the ultraviolet behavior of this
equation. Thus we need the leading behavior of G, G,
and G, at large k. We have from Eq. (3.8) that, in gen-
eral,

Go~1/Qwy) , (5.26)
Go~21ImF (k)cos2w, t —2 ReF (k)sin2w,t , (5.27)
G~ —4w, [ImF (k)sin2w, t +ReF (k)cos2w,t] .  (5.28)

We see that we can ignore the G, and G, contribution
at large k as long as ReF (k) and ImF (k) fall at least as
fast as 1/k3. So asymptotically we need to solve

G440, 2G =T /w, (5.29)
with the initial data

G,(k,0)=G,(k,0)=0 . (5.30)
Using Green’s theorem we obtain, for large k,
G, (k,t)=— fo‘dz'sinzwk<t_z'>r1u')/<4wk2) . (5.31)

To obtain the ultraviolet behavior of this integral one ex-
pands I'},

Cy(t)=T{t)+(t' —)dDy/dt | ,_,+ -+, (5.32)
to obtain
G, (k,t)=T(t)(cos2w,t —1) /(40 *)+0 (1 /0w, *) ,
(5.33)

which is finite.
(c) Order Az2. At order Az’ we have that

T,=8m,2+1 [ [dk]G,(k,0)+8A [ [dk1G,(k,1)/2
(5.34)

=8m,2+ 1 [ [dk]G,(k,1)+8A[T (t)—8m 2] .
(5.35)

Using the asymptotic form of G,

G,(k,t)=T(t)(cos2w;t —1)/(4w;>) , (5.36)
we identify
8m,2=816m,2%, Sh= [ [dk]/(8w,°) . (5.37)

Thus, we see the coupling-constant renormalization is
the same as for the vacuum sector [with my replaced by
m(0)]. We notice here that it is easy to disentangle mass
renormalization from coupling-constant renormalization
without having to resort to a Feynman graph analysis
because the coupling constant multiplies a time-
dependent term, whereas the mass-renormalization terms
are time independent.

The momentum-space integral of T';(#)cos2w, ¢ /(4w;*)
is finite because I'{(¢) is zero at =0, the only dangerous
place.

(d) All orders in Ay. The explicit results of our calcu-
lations up to Agx? are consistent with the vacuum result
for coupling-constant renormalization

A=A /(1—Ag ) (5.38)

with dA= f [dk]/(8w,*); however, now we use as our

renormalized mass parameter, not the pole in the two-
point function but the effective mass at t=0:

a)k:(k2+m2)1/2:[k2+m(0)2]1/2 ,

m(t)=mX0)+R (1), >3
where

R()=1A [ [dK][G (k,1)—G (k,0)] . (5.40)
We still need to make R (¢) manifestly finite. Using

Ag=A(1—AgR8A), (5.41)

we obtain, after multiplying both sides of Eq. (5.40) by
(1—Ag8A), that

R()=1rg [ [dK][G (k,t)—G (k,0)+R (1)/(40,>)] .
(5.42)
Since
R()=Ag R ()+Ag’Ry()+ - -~
and G,(k,0)=0 for n >1, we have that for (5.42) to be
finite to all orders in A; we need, for n > 1,
R,()=1Ag [ [dK][G,_i(k,)+R, _((1)/(40;*)]
(5.43)
to be finite. This requires that, at large k,

G, _(k,t)~—R, _,(t)/(4w,3) . (5.44)

r

To show that this is the case, we write down the Ag
term in the power series in the Az expansion of (5.1) (for
r>1):

3 [26k6,_x—GiG, _+4 3 T,G,G, 4 _,, |=0.
k=0 m =0

(5.45)
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By studying the large-k behavior of the individual terms,
taking into account the rapid falloff in k of n (k) and
F(k), we find that at large k one needs to solve for all r
the same equation as for r=1 (5.29):

G, +4(k*+m?)G,=—T, /o . (5.46)

For r>1, I',=R, and so because of the initial condi-
tions on G, (5.17) we have, at large k [following
(5.29)-(5.36)],

G,(k,t)=T,(1)(cos2w;t —1)/(4w}>) , (5.47)

which shows that our renormalization prescription
works to all orders in Az. In summary we have that the
finite renormalized equations are

2G6G —G *+4IrG*—1=0 (5.48a)
F=k?4+mXt)=k>*+m*0)+R (1), (5.48b)
R()=1Ag [ [dk]{G (k,1)—G (k,0)

+R (1) /[40(0)*]} . (5.48¢)

The equation we obtain for R (¢) is exactly the same one
that we obtained in the Heisenberg picture using a WKB
analysis [Eq. (4.37)].

We have seen that to keep the initial data independent
of explicit dependence on A it was convenient to use
m?2(0), the effective mass at t=0, as our renormalized
mass. [Also in WKB approximation it is 72 %0) that is
the natural mass parameter.] But we could have used
mpg?, the position of the pole in the propagator in the
vacuum sector (in the same large-N approximation),
equally as well as our renormalized mass parameter. In
the latter case our initial data would have explicitly de-
pended on A. Using the definition of mz? given in (5.4)
and the definition of m*0) from (5.7) and (3.18), it is
quite easy to determine the relationship between the two
finite mass parameters.

We have, from (5.4), that we can write the renormal-
ized mass found in covariant treatments of large NV as

mpl=pt+ir [ [dk]/Qwy), o=k +mg?  (5.49)
and, from (5.7),
m¥0)=p?+ 1A [ [dk][1+2n (k)
+2ReF (k)]/[20(0)] ,
0(0)}=k2+m(0)*. (5.50)
Thus,
m20)—mp?=—IA[m*0)—mg?]

x [ [dk]/{20,0(0)[(0)+oy ]}
+A [ [dk][n (k)+ReF (k)] /[20(0)] .

(5.51)

Using the relationship Az =A(1—Az8A) with the vacu-
um value of 8A,

sh= [ [dk]/(8w;),
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we obtain
mA0)—mpi=Ag(m*0){In[m*0)/mg]—1}
+mpg?)/(327%)
+Ag [ [dk][n (k)+ReF (K)]/[20(0)],
(5.52)

which is a manifestly finite connection between the two
masses as long as n (k) and ReF (k) are integrable.

Now that we have renormalized the theory for
(¢>=0, it is easy to go back to the unrenormalized
equations for (¢ )=£0:

F+ [+ ner+1n [ [dk]G(k,t)]d;—_—O, (5.53)
2G (k,t)G (k,t)—G *(k,t)+4TGXk,t)—1=0, (5.54)
where

P=k24p?+ 102+ 10 [ [dK]G (k1) , (5.55)

and we renormalize them by a slight change in the

definition of R (¢). When ¢ is not zero we have
mA(t)=p?+ 11>+ 10 [ [dk1G (k1) . (5.56)

Thus, we again define R (¢) as m%(t)—m*0) and we ob-
tain

m(t)—m*0)=R (1)
=1A[¢*(1)—3*(0)]
+4A [ [dK][G (k,1)—G (k,0)] .
(5.57)

This equation is identical to the one we obtain in the
Heisenberg analysis, and we again use coupling-constant
renormalization to obtain the finite equations

(1) +[m*0)+R (1)]¢p=0, (5.58)
26 (k,1)G (k,t)—G Y k,t)+4T G k,t)—1=0, (5.59)
where

F=k?>4+m?0)+R (1) (5.60)
and

R (1)=1Ag[¢X1)—¢*0)]

+1g [ [dK1{G (k,1)—G (k,0)
+R (1)/[40°(0)]} ,
(5.61)

0¥ 0)=k*+m%0) .

VI. CONCLUSIONS

We have shown in this paper how to make sense of
the divergent equations one obtains from the functional
Schrodinger equation in the time-dependent Hartree-
Fock approximation and from the Heisenberg equations
in the large-N approximation by performing mass and
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coupling-constant renormalization. For the TDHF ap-
proximation at large N we proved that our renormaliza-
tion prescription, found by looking at the divergences
found at order A and A%, works to all orders in A because
of the geometric structure of the coupling-constant re-
normalization in Hartree-Fock (or large-N) approxima-
tion. In the Heisenberg-equation approach we were able
to study the divergences to all orders in A using a WKB
type of ansatz. The renormalization prescriptions found
in both approaches were identical. We hope that this
simple approach to the renormalization problem permits
those without extensive field-theory backgrounds to
derive and solve the semiclassical equations relevant to a
wide variety of problems. We have indicated that our
approach appears also to be practical for numerical
methods of solution.

This work presents a starting point for a systematic
analysis of the more interesting problem of what hap-
pens in a curved background space. The WKB method
of attacking the renormalization problem is easily ex-
tended to the curved-background-space problem and we
feel it is easier to work with than the functional
Schrodinger equation.

We also found in this study that the large-NV approxi-
mation as formulated in the Heisenberg picture allows
for a more general class of initial data than the TDHF
approximation at large N. That is because at large N
one does not have to restrict oneself to initial wave func-
tionals that are Gaussian. Thus, for example, one can
study near-thermal-equilibrium initial states in the
Heisenberg formalism. Such states are not Gaussian ini-
tial states and cannot be studied in the TDHF approxi-
mation. This clarifies some confusion about the relation-
ship of the two approaches in the literature. Also, previ-
ously in the literature, the only configurations studied
had been either the vacuum or an equilibrium initial
configuration. Our work shows that the condition neces-
sary for renormalization of an arbitrary configuration
are the integrability conditions on the initial density and
correlated pair density. These conditions are automati-
cally satisfied by a thermal distribution which falls ex-
ponentially fast at a large momentum.

In trying to understand the properties of the single or
two-time Green’s functions, we found it quite useful to
look at the WKB approximate solutions to our equa-
tions. We hope to present detailed numerical studies of
the range of validity of the WKB approximation and its
well-defined corrections in another paper. !’
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APPENDIX: RENORMALIZATION
OF THE EFFECTIVE POTENTIAL
OF THE TDHF APPROXIMATION

For completeness we will show how to do the renor-
malization of the effective potential. In order to simplify
some integrals, it is convenient to use the subtraction
procedure of Refs. 11 and 14. That is, we let

1
2 _ 2 _1 -
p/A=1pg?/hg—4, A=1 [ [dkl5 (A1)
where the plus (minus) pertains when p? is positive (neg-
ative). And we define

1/Ag=1/A+32(M) ,

_ _ _ (A2)
S(M)=14 [ [dk)2M )~ [1/k — (k24 M )12
where M is an arbitrary subtraction mass (M 2> 0)
which will be chosen conveniently later depending on
the sign of u?.

This latter renormalization procedure makes it quite
easy to render the effective potential finite.

V.i(¢) is obtained in the usual fashion from V 4[é,G]
[see (2.42)] by first determining G (¢) via

OV 4[9,G1/0G =0=>G =G (¢) (A3)
and defining
Vea(¢)=Veald,G =G ()] . (A4)

The effective potential V 4[¢,G] is given by Egs. (2.41)
and (2.42). Differentiating ¥ with respect to G yields the
gap equation, which defines G as a function of ¢:

m2[¢]:,u2+7u¢)2/2+%f [dk]G (k) , (AS5)
where
Gk)=1(kr+m?s])" 2. (A6)

Using this gap equation allows us to rewrite V' [¢,G] as
V($,G[6]1=1G ~'(x,x)—AG*x,x)/8
+1¢* /8470772 . (A7)

If we choose the arbitrary subtraction mass M to be mpg,
the self-consistent mass when ¢=0, then we obtain the
renormalized equation for m [¢]:

m?[¢l=mp*+Agd’/2
+1rg [ [dK] l[G(k)—l/(Zk)]
+"’—2[‘€—][1/(2k)
mpg

—1/Qw,)] |, (AS8)

where
G =1k 4+m[¢])7'% w,=(k*4+mg?)?.

Performing the integrations we obtain the finite gap
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equation:
m2[¢l=mp’+Ag$’/2
+Agm Y dlIn(m?[p)/mg?)/(3277) . (A9)

We can rewrite Eq. (2.42) using the definition of m?2[¢]
given in (AS5) in the form

4 G—l k) 4
Vald1="12L 4 [ 1an) | S g ) |- 4
(A10)
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The integral contains a quartic divergence which is ¢ in-
dependent as is the last term. Discarding these ¢-
independent terms and using (A2) to renormalize A we
are left with a finite integration to perform. The result-
ing renormalized effective potential is

4 A
Valg1="2121 [1+ o

2
m
1[“

m?[$]

I , (A11)

which is the standard result.
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