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We obtain the phase diagram of gauge theories by studying the inhuence of topologically non-

trivial boundary conditions. For this reason, we develop a scheme for computing the free energy
of topological defects at finite temperature. As an application, the free energy of topological de-

fects for the minimal SU(5) model are evaluated in the semiclassical approximation.

INTRODUCTION

One of the most important problems one faces in field
theory is the determination of the phase diagram of
gauge theories. The difficulty in this context relies upon
the question of how to distinguish the different phases of
gauge theories when coupled to matter fields. Bricmont
and Frohlich have proposed that the distinction (be-
tween different phases in gauge theories) is achieved by
analyzing the free energies of "topological defects. "

The defect free-energy approach relies upon the study
of the change in the free energy that takes place when
one forces a topological defect to appear in the system
through the use of convenient boundary conditions.
Comparing the free energies of the system, when one im-
poses different boundary conditions, one can learn about
its phase diagram: when the free energy becomes insens-
itive to certain boundary conditions the system has
reached a new "phase. "

One can have a better picture of this method by ap-
plying it to the Ising model: the analogue of the free-
energy defect is the surface tension. The surface tension
is nothing but the free energy of the topological defect of
the Ising model (domain walls). The temperature at
which the surface tension vanishes is the critical temper-
ature of the model, since one can prove that the spon-
taneous magnetization vanishes at the same tempera-
ture.

Now suppose that the system, originally at a given
phase at zero temperature, is in contact with a heat bath
at temperature T =P '. At low temperatures, defects
with positive free energy are rare or nonexistent (those
which require an infinite amount of energy). However,
for sufficiently high temperatures, quantum (entropy)
effects come into play in such a way that the free energy
of a given topological defect vanishes. ' Hence, there is
no energy cost to introduce an extra topological defect

into the system, which implies that one has reached
another phase of the theory —that is, the one in which
the condensation of defects takes place.

Topologically nontrivial structures (defects) emerge in
field theories whose symmetry are spontaneously broken.
At the classical level, these defects correspond to topo-
logically nontrivial solutions of the Euler-Lagrange equa-
tions.

In this paper we shall be concerned with the computa-
tion of defect free energy for non-Abelian gauge theories
at finite temperature. Explicit results are derived in the
one-loop approximation. We have illustrated how the
scheme works by considering the minimal SU(5) model,
which exhibits two types of topological defects: domain
walls and magnetic monopoles. The extension of this
method to other models and different defects is straight-
forward.

This paper is organized as follows. Section II deals
with the general framework and especially with a formal
expansion which allows us to implement the semiclassi-
cal approximation and an explicit separation of the zero-
and finite-temperature terms of the free energy. In Sec.
III we apply the scheme to obtain the free energy of the
topological defects of the minimal SU(5) model. In the
high-temperature limit we obtain closed expressions for
the free energy of domain walls and magnetic mono-
poles. We end this paper with conclusions in Sec. IV.
This paper is supplemented by two Appendixes.

II. FORMAL EXPRESSION
FOR DEFECT FREE ENERGY

The partition function for a given gauge theory, whose
Euclidean Lagrangian density is L, may be expressed as
a functional integral
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Z(P)=N '(P) f [DP]exp —f dr f d x[L —J(x)P(x)] ~gauge-fixing terms,
0

(2.1)

where r is the Euclidean time, P stands for all fields in
the theory, and the integral over the fields is subject to
the following boundary condition on P: P(x, O)=P(x, P)
for bosonic fields and P(x, O)= —P(x,P) for fermionic
fields.

X is a normalization constant which may be chosen
such that Z( ce )= l.

The free energy of the system is defined through the
equations

F(P,J)= —P ' lnZ, (2.2)

5(PF )

5J(x)
I (P, M )=F(P,J)+P ' f dr f d xM (x)J(x) .

0

M (x,J)=MJ(x) =— (2.3)

(2.4)

ZM
FM = —p 'ln

Zv
(2.5)

I (P,Mz) is the generating functional of one-particle-
irreducible Green's functions and is the free energy of
the field configuration MJ. The effective potential
method analyzes I for constant field configurations MJ
in order to obtain the phase diagram of the model.

One can define the free energies of the different types
of topological defects' ' by

(2.8)

where the overbar stands for constant field configura-
tions.

Whereas for the defects that we are concerned with in
grand unified theories (monopole, string, and wall) one
has

FM = [r(yM ) r(y, )),— (2.9)

F,= —[r(y, ) —r(y, )], (2.10)

the relevant ones. Z~, Zz, and Zw stands for the parti-
tion function of the system evaluated when one imposes
boundary conditions that force the existence of a mag-
netic monopole, string, and domain-wall defect in the
system, while Z„, is the partition function obtained us-
ing topologically trivial boundary conditions (vacuum
sector). L is the size of the system.

The various thermodynamical functions can be writ-
ten, in the one-loop approximation, as shown in Appen-
dix A, as differences of the effective action of the theory
evaluated at certain field configurations. Let 1 (P) be the
eff'ective action of the theory and Pt, be the constant
field configuration associated to the vacuum of the
theory. In terms of the effective action one can write the
effective potential

and

P
—' Zs,

Fq ——— ln
Zv

(2.6)
F = ', [r(y ) —r(y, )]; (2.11)

p' Zw
Fw= ln

Z
(2.7)

where Fw, Fz, and F~ are, respectively, the free energy
for domain walls, strings, and magnetic monopoles.
Usually a given model does not exhibit all the three
different topological defects, so one must consider only

that is, all thermodynamical parameters can be written
as differences between the effective action computed at
some special field-theoretical configurations and those
associated to the vacuum of the theory. These special
field-theoretical configurations, within the semiclassical
scheme, are the defects associated to the classic solutions
to the Euler-Lagrange equations of the model.

The general structure of I [P,PD(x ) ] is

(2.12)

where I'"'(r, x, , . . . , r„x„) are the one-particle-irreducible Green's functions, PD stands for the fields associated to
the defect. If one uses the Fourier transform of I"'"', given by

j =1 n. = —ooJ

f d k n' I "'(co,k, , . . . , co„k„)exp i g (~,r, +—k, x()
(27r ) 1=1

(2.13)

where co& ——2~1@ ' and remembering that translational symmetry allows us to set

I'"'([~,k, ~)=P(2~)'n y~, fi-' yk, I'"'([,k, ~),

then, for static field configurations (those with which we will be concerned with in this paper), the general structure of
I (P, P ) is
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r(p, y, )=p g , g f d'k, y ( —k, )r '"'(Ik„ , =oj)n' y k,
n =1 j=1

(2.15)

The graphs that contribute to I '"' will involve sums over the discrete co. which, once performed, yield a term in-
dependent of temperature plus one which has the full T dependence. This separation can always be implemented if
one uses identities of the form

p
—i

n= —oo 2n7T
+Z

1 1+
2z z (e~' —1)

(2.16)

One can then split 1 '"' into two parts:

r'"'(tk. . . =Oj)=r.'"'(Ik, j)+r',"'(Ik, j,~, =o), (2.17)

where the second term contains all the T dependence. The general structure of this dependence can be inferred by
making a change in all internal momenta integration variables. This change is just a replacement p~p =pP. After
this scaling in the internal momenta one can predict, from pure dimensional analysis, that I' 'P'( Ik;, co; =0j ) have the
structures

r',"'(Ik, j,~, =o)= y T ""'G,
~n

(2.18)

where d(y„) is the superficial degree of divergence of a graph y„contributing to I" and G is dimensionless. Putting
~n

(2.15), (2.17), and (2.18) together, we have

r(p, y, )=r,(y )+ y ', ~ f d'k, y ( —k, )yT'""'G,
n=1 ' j=l ~n

6' gk (2.19)

where I o(PD ) is the effective action computed at the background field PD at zero temperature.
Using (2.9)—(2.11) and (2.19), the free energies of the various topological defects can then be written as

FD(p)=[r, (y ) —r,(y, )]

+ g, g f de ( —k)5 gk, gT "G

yn y Td(y")G 0 L 3

n! ~n
~n

(2.20)

where a is an index that, in accordance with
(2.9)—(2.11), runs from 0 to 2.

To get a formal series for the free energy from any
solution associated to a particular defect, we just intro-
duce it in (2.20). Just for the sake of completeness we
write the expression for the effective potential. From
(2.8) and (2.19) it follows that

I

III. PHASE DIAGRAM FOR THE MINIMAL SU(5) GUT

We shall consider the minimal SU(5) GUT at finite
temperature. Its Euclidean Lagrangian density is (in our
calculations, we are assuming that the coupling con-
stants are such that the phase transitions are expected to
be of second order)

V.s(4') =—[ro(4') — o(4' v ) ]
l. = ——,'Tr(G„G„)+,'Tr[(D„4) ]+V(—@), (3.1)

+ g (P"—Pi, )QT "G 0, —
n=1

n

where N is the Higgs multiplet belonging to the adjoint
representation,

V(@)=— Tr(@ )+ —[Tr(N )] + —Tr(4& ),
2 4 2

(2.21)

Once the general formalism is set we shall apply it to
our specific model: the minimal SU(5) grand unified
theory (GUT).

24 Ai 24

G„= QG„' —, IV„= g
i=1 2 i=1

'4 X' igD„4=d„4 —Tr[ IV„,@], —

(3.2)
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w
—— —tanh —x —, 8' "=0, (3.3)

and A,
' (i = 1, . . . , 24) are the generators of SU(5) in the

fundamental representation [normalized so that
Tr(A, 'A~)=25'J]. We also impose that b ~0 and
a & —

—,', b. The notation used is the one in Ref. 9.
This model exhibits two different topological defects:

domain walls and magnetic monopoles. The background
field describing a domain wall is

T

and the boundary conditions

: 1, q(r)

Let us exhibit the structure of the free energies of the
system under these background fields in the one-loop ap-
proximation. In the zero-loop approximation one has,
from (2.20),

W „'=0=/ ' for a = 1,2, . . . , 20, 24,

Wk '———E' ~ F(r) for (2, k =1,2, 3,2a 1 ak'+

g r
Q

2)(r)gv for a =1,2, 3,r

(3.4)

with A, =a+ —,', b. Note that this solution depends only
on one spatial coordinate, which we choose to be the x
one. The classical field configuration associated to a
magnetic monopole satisfies the ansatz'

8 4
——0 for +a =1, . . . , 24,

T[&(pD) —&((t V))
+(o)(~)= I Q

= kg[p) (3.5)

That is, in the zero-loop approximation, the free energy
of the topological defect is just the difference between
the classical action associated to the defect and the ener-
gy of vacuum. For the monopole, b, E(o~, defined in (3.5),
is its mass whereas for the domain wall De[0] is the mass
per unit area.

Within the one-loop approximation I (P, W„) will
have the structure predicted from (2.12) which, for the
example that we are considering, has the structure

r(y, W„)=S„(y,W„)+ + ~ ~ ~ + Q

+ 0 ~ ~

=S„(P,W„)——,X'"(T) f dr f d xP'P" —,II„' (T) f—dr f d x W„'W (3.6)

X'"(T)=
S„ is the classical action associated with the background field, and 2' ( T) can be represented graphically as

,
Q', (3.7)

whereas II",b(T) can be represented as

11:b(T)=

(3.8)

The wavy, solid, and dotted lines stand, respectively, for the gauge bosons, Higgs, and ghost fields (for the fiuctuations
we are working in the Landau gauge). II„', can be identified as the polarization tensor for zero external momenta. "
Following our earlier prescription (2.17) we can also write

gab(T) yab+y ab(n)( [k I ~ 0)

11„".(T)=11„' +rr„'„(T) .

(3.9)

(3.10)

First of all one notes, looking at (3.6), the appearance of ultraviolet divergences. These, however, can be treated, as
usual, by adding appropriate renormalization counterterms which are just the usual ones at zero temperature. This
means that the zero-temperature renormalization scheme suffices for getting a finite expression to free energies of to-
pological defects. Substituting (3.6) into (2.15), one can obtain the topological defect free energies of the SU(5) model.
For a wall one has

y 24, 24 TF,i((T)=b,EiV —
2( 2 f dr f d x[$ 24(&)4 24(x) 4 V ]+

0
(3.11)
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where Ae~ is the energy density of the wall taking into account quantum corrections at zero temperature up to one
loop; P z~(x) is given in (3.3), Pv=(p/V2A, )Az4, X ' (T) is given by (3.9), and the dots represent one-loop contribu-
tions not included explicitly in (3.11).

On the other hand, for the magnetic monopole one obtains

FM(T)=M ——X' (T) f dr f d x[P'(x)P (x)—Pv 5,~45„24]2I 0

—II„'„(T)f dr f d'x W„'(x)W', (x)+
0

(3.12)

where now M stands for the renormalized mass of the monopole at the one-loop level, X ' (T) and II„' (T) are given m
(3.9) and (3.10), the fields P' and W„' are defined in (3.4), and the dots represent contributions that are not shown in

(3.12).
One could go further and write down a similar expression for all the one-loop graphs for the topological structures

of the SU(5) model. However, instead of doing this explicitly, we will just analyze the high-temperature limit of the
free energy. In this limit, the form (2.20) is particularly useful, since the leading power in T of series (2.20) is easily
obtained. Property (2.18) permits us to identify these contributions, which are the ones with higher superficial degrees
of divergence. These contributions are precisely the ones we have written explicitly.

In the high-temperature limit, the graphs appearing in (3.7) and (3.8) yield

2
= —(26a+ ",,'b )—5

12

2T25ab
4

(3.13)

(3.14)

5 g T 5 5 for p v —1 2 3

—'g T 5' 5 „ for p and/or v=4,
(3.15)

= —
—,', g T 5' 5„ (3.16)

—'g T5'5 for@, v=123
——g T 5& 5 for p and/or v=4,

(3.17)

—g T 5 5 for p v= 1,2)3,

T 5'"5 for p and/or v=4,
4 PV

(3.18)

25 2 T25~b5
PV

(3.19)

From (3.13)—(3.19), (3.7), and (3.8) we have the asymptotic expressions for X'"(T) and II„',(T):
T2X' (T)= — [5 '+ —'(26a+ "'b)]5'—
4

11 cd
( T) 35 g 2T2ficdIi fi&4PV 12 p4

One obtains from (3.11)—(3.21) the high-temperature behavior

T2
F u(T)=be + [5g + ~~(26a+ 282b)] f dx few (x) Pv ]

(3.20)

(3.21)

(3.22)

T2 24

F~(T)=M+ [5g + —,'(26a+ —",,'b)] f d x g P P Pv + 5g T f d " X W4W—
8 a =1 a =1

(3.23)

At first sight, the appearance of the term I d x(W4)
in the last expression could seem to be a problem: (3.23)
is not explicitly gauge invariant with respect to gauge
transformations of the background fields (we have just

I

fixed the gauge for the fluctuations ). At this point we
are forced to adopt a "physical" gauge with respect to
the magnetic monopole degrees of freedom or generalize
our calculation to include a Jacobian for the ghostlike



36 TOPOLOGICAL DEFECTS AT FINITE TEMPERATURE 3091

degrees of freedom associated with the magnetic mono-
pole. ' When considering the background (3.4) for the
magnetic monopole we have decided for the former stra-
tegy, since this background satisfies 8'4 ——0. Therefore,
in this gauge we have for the monopole

poles, in the high-temperature limit, for the minimal
SU(5) model. The temperatures in which these free ener-
gies vanish indicate the occurrence of phase transitions.
These critical temperatures, for the minimal SU(5) mod-
el, are

2

FM(T) =M+ [5g + —,'(26a+ —",,'b )]

24

X f d'x X O'P' —0y' (3.24)

2 60P—"'g'+ 13(15a +7b)+ SOb
(4.1)

a=1

The substitution of (3.3) into (3.22) leads to
T 2= 8M

[Sg + —,'(26a+ ",,'b)]4—sruti, f dr r [1—r) (r)]

T2 2
(3.25) (4.2)

whereas the substitution of (3.4) into (3.24) implies

2

FM(T)=M — [Sg + —,'(26a+ —",,'b)]

/4m r dr & 1 —g r
0

(3.26)

IV. CQNCLUSIANS

As is well known, one way of characterizing the phase
transitions in the Ising model is by studying the spon-
taneous magnetization as a function of the temperature.
At temperatures smaller than the critical one (T, ) the
spontaneous magnetization is nonvanishing, indicating
that the symmetry spin up ~~ down is spontaneously
broken. For temperatures above T„ this symmetry is re-
stored since the magnetization vanishes.

The effective-potential method in field theory imple-
ments an approach similar to the one above. We evalu-
ate the thermal expectation value of the field ( P ) r
which allow us to classify the phases of the system since
(P) r is nonzero for spontaneously broken symmetries,
while it vanishes when the symmetry is restored.

On the other hand we can also draw the phase dia-
gram of the Ising model by analyzing the inhuence of
boundary conditions on the properties of the system.
At high temperatures there is no long-range order so
that the boundary conditions are irrelevant. However,
at low-temperatures (below T, ), the existence of long-
range order implies that the properties of the system will
depend upon the choice of boundary conditions.

This procedure for characterizing the existence of
phase transitions can also be applied to field theory. ' ' '

This is accomplished by studying the free energy of the
topological defects that can occur in the system. As we
have shown, the computation of this thermodynarnical
parameter is related to the effective action for the field
configuration associated to the topological defect.

We exemplified how this method works by computing
the free energy of domain walls and magnetic mono-

where we have taken for b,err in (3.2S) its classical
values bFii, -beo ——(2&2/3)p /A. .

Since we evaluate the topological defect-free energies
[(3.25) and (3.26)] in the one-loop approximation we
should pay attention to the reliability of this perturba-
tive skin. As is well known, perturbation theory breaks
down at high temperatures. However, from the study of
the effective potential, we know that the one-loop ap-
proximation is a good indication of the underlying phys-
ics of the problem. Certainly, higher-order corrections
modify the results [(4.1) and (4.2)] but corrections are ex-
pected to be of order A. T„where T, is the critical tem-
perature obtained by using the effective potential
method. %'e used only the one-loop approximation in
our examples since the evaluation of higher-order
corrections is beyond the scope of this paper.

T~ has a simple interpretation, as pointed out in Ref.
4. The point is, since the minima of the effective poten-
tials at T~ enter into the region in which the effective
potential develops an imaginary part (see Appendix 8
for this), this temperature is just the highest one for
which the description of the system in terms of perturba-
tive constant field configuration makes sense (and conse-
quently the perturbative eff'ective potential). In Appen-
dix B we show further that if the phase transition is of
second order, then one cannot avoid the perturbative
effective potential becoming complex at the minimum
for temperatures sufticiently high.

Moreover, at T~ the functional integral for Z starts to
be dominated by the configurations associated to the
domain walls (or bubblelike configurations) since they
have the least free energy. Therefore at temperatures
greater or equal to T~ the restoration of symmetry
occurs since

(P) = f dx PD(x)=0 .

It would be interesting to know if T~ and TM are equal
or which one is smallest. If these temperatures are not
equal it is important to know how to evaluate the free
energy of a given topological defect in the presence of a
condensate of the other. (We met before this kind of
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problem in the determination of the phase transition for
the Z„-symmetry spin and gauge theories. '

)

From the study of the defect-free energy, we can draw
the following physical picture. At low temperatures, to-
pological defects are scarce since the free energy changes
significantly when a defect is forced into the system by
imposing appropriate boundary conditions. On the oth-
er hand, at high temperatures, there is an abundance of
defects since the introduction of an additional defect
does not much affect the system.

Therefore, for sufficiently high temperatures we expect
the system to be in a new phase which is characterized
by a condensate of topological defects. The existence of
this phase may have far-reaching consequences to
cosmology. For instance, the existence of a magnetic
monopole condensate is usually accompanied by electri-
cal charge confinement which radically changes our view
of the early Universe. Moreover, relics from a primordi-
al condensate of topological defects might be responsible
for the generator of the contrast density, and conse-
quently, the large structure of the Universe. '"
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APPENDIX A

In this appendix we will justify expressions
(2.9)—(2.11) that give the (Gibbs) free energies with
respect to three different backgrounds. Although, within
the one-loop approximation, our expressions given re-
sults that are by now standard and can be found in text-
books, ' we present this derivation due to the fact that
it is fairly general and is just an extension, to finite tem-
perature, of the background-field method. '

Assume that Po is a generic field configuration and let
us compute the thermodynamical properties of the sys-
tem in the presence of such a background field. This
should be inferred from the functional Z [J,Po] defined
by

Z [J,go]= f D[P]exp —S[P—Po)+ f dr f d x J(x)P(x) (A 1)

By means of a change of variables one can write

Z [J,go]=Z[J]exp f dr f d xJ(x)go(x)
0

(A2)

do=0 —(t'o .

If one substitutes (A7) into (A5) one then obtains

(A7)

From (A2) it follows that

W [J,p ]=W[J]—p ' f dr f d'x J(x)p (x), (A3)
0

where W (W), Z (Z) stands for the thermodynamical
functions evaluated with (without) the background field.

By using the definition (2.4) it follows that the Gibbs
free energy in the presence of the background field (Po)
is given by

ro[y, , y, ]=—Wo[J, y, ]

5 W

r (po, 4'o)=W[J] —p ' f dr f d x J(x)p(x)
0

—= r(y) =—r(y, +y, ) . (A8)

Expression (A8) is well known within the context of
the background-field method; that is, the generating
function for the theory in the presence of the back-
ground can be obtained from the generating functional
without the background field computed just making the
replacement P~Po+Po.

The free energy in the presence of the background

where go=5(PWo)/5J.
By substituting (A3) into (A4) it follows that

r'(4o 4o) = W[J]
—P ' f dr f d'x J(x)[(() ( )o+x(() ],o

0

(A5)

consequently if one derives (A5) with regard to J one ob-
tains

cZ

5W
5J =4'o+4o . (A6)

Being W [J] and 1 [P] the generating functionals in
the absence of the background field one gets, from (A6),
the relationship

FIG. 1. V„(P). The region between the dashed lines is the
one where V,'~ &0.
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Vm t rp

FIG. 2. The solid {dashed) line stands for V,ff [{V,ff)M]. The
region between the vertical lines is the one for which V,'] &0.

FIG. 3. The solid {dashed) line stands for V [(V,ff)M]. The
regions between the vertical lines are the ones for which
V" (0.

Our starting point is

Z(J)= f D[P]exp —f dr f d x(L —J{{))

field is

F (13)= lim W [J,Py]J~O

= lim I (P,P )+13 ' f dr f d x J(x)$0
J~O 0

(A9)

(A 10)

that is,

4'o=4. =0 (A 1 1)

then in the limit J~0 (Al 1) leads to $0=0. Under this
circumstance it follows from (A9) and (AS) that

F(P 4, )=l [4, 1
' (A12)

i.e., the free energy of the system in the presence of the
background field P, satisfying the classical equation
(A10) is given by the effective action computed at this
configuration. If I is computed at the zero-loop level,
(A10) corresponds to the classical Euler-Lagrange equa-
tions. This is precisely the situation that we are interest-
ed in the semiclassical approximation.

APPENDIX 8

Usually one evaluates perturbatively the effective po-
tential in order to know the different phases of the mod-
el. However, the perturbative effective potential exhibits
some problems such as nonconvexity (and imaginary
parts). ' Although these problems can be solved at
zero temperature by means of a Maxwell construc-
tion, ' this is not always true when one works at finite
temperature, as we shall show. If the phase transition is
expected to be of second order or very weak first order,
then one cannot avoid the effective potential becoming
complex at the minimum for sufticiently high tempera-
tures.

Finally, one notes that if $0 is a particular solution of
the classical equation

v ff({t ) for 1{t' I +4M
(83)

V ff(QM ) for

where ( V,ff )M is the Maxwell construction for the
effective potential, V,z is the result that one obtains
when just the global minimum of V,&

—Jp is considered,
and {tM is the positive of the minimum of VGff (see Fig.
2). At temperatures low enough pM is outside the region
where V,", & 0 and ( V,ff)M is real. However, for
sufficiently high temperatures, pM lies in the region of
V,'I &0 and (V,ff)M is complex. Since {{)M goes to zero
continuously, ( V,ff)M becomes complex before pM van-
ishes. Thus, one cannot trust the perturbative effective
potential when the phase transition is expected to be of
second order.

For strong first-order phase transitions, the situation
is completely different since V differs a lot from V,&. In
this situation $2 ——0 is a local minimum (if T is high
enough) as shown in Fig. 3. The Maxwell construction
for the effective potential yields'

v ff(4) «r 1{t I &4M
( VGff )M = '

V,ff(&M) «r 1&1 &WM

As the temperature is raised, pM jumps to zero
without passing the region of V" &0. Therefore ( V,ff)M
is always real, and so, reliable.

(B4)

where L is the effective Lagrangian for the field P; that
is, we have already integrated all the other degrees of
freedom. For high temperatures L can be written as'

L =-,'(&„P)'+ V(P) . (B2)

Let us, initially, analyze the case in which the phase
transition is expected to be of second order. In this situ-
ation, V(P) is well described by V,&({{)). Without loss of
generality we are going to consider the minimal SU(5)
model and evaluate the effective potential for fields
@=/diag(1, 1,1,——'„——', ). In this case V,&({t ) is shown in
Fig. 1.

The Maxwell construction for V,ff(p) is obtained by
considering the contribution of all the local minima of
V„—JP to Z (J) (Ref. 17). This procedure yields
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