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The Lehmann-Symanzik-Zimmermann reduction formulas consistent with the use of asymptotic
coherent states to model external fields are developed for the case that the in-state external field

differs from the out-state external field. It is shown for the specific choice of coherent state con-
sidered that the reduction formulas deviate from the standard forms presented in textbooks. The
coherent states are not reduced directly but instead are incorporated into the perturbative repre-
sentation of the time-ordered product. An effective potential created by the coherent state is

found which self-consistently determines the form of the asymptotic field. An application is made
to the case of nonrelativistic quantum electrodynamics in a laser pulse.

I. INTRODUCTION

In the Lehmann-Symanzik-Zimmermann' (LSZ)
reduction technique the spectrum of the scattering ma-
trix is constructed from the large-time or asymptotic
form of the interacting field O' . In textbook presenta-
tions it is assumed that the asymptotic field obeys, at
least in the weak limit, a free-field equation. Particle
states are then defined by smearing the asymptotic field
with a suitable wave packet and allowing this operator
to act on the Fock vacuum associated with the free field.
Once reduced, the time-ordered product of fields is then
given a perturbative representation in terms of the same
free-field spectrum.

It is another standard assumption that the asymptotic
states being reduced possess a definite number of parti-
cles. It is the intent of this paper to examine the case
that the asymptotic states possess an indeterminate num-
ber of particles and to formulate the reduction formulas
for such a case. To be specific, it will be assumed that
the asymptotic states are coherent states. These states
are realized by a (pseudo)unitary operator acting on the
Fock vacuum to create a Poisson distribution in the par-
ticle number. The standard form for such a state is

~ f, t) =& '(t)
~

0)

= exp i I d x[f—(x, t)P (x, t)

field develops a nonvanishing expectation value asymp-
totically, as in the case of either the vector potential of
electrodynamics in the presence of an external field or a
nonlinear field in the presence of a soliton. In addition,
squeezed states, a variant of coherent states, are of
current interest in quantum optics.

It is also possible to define states with a lower bound
on particle number by applying the operator V to a stan-
dard Fock state of fixed particle number. Such a state
takes the form

(1.4)

so that the Poisson distribution of particles is shifted by
n of the field quanta associated with the fields of the
theory.

Asymptotic states of the form (1.4) will be given an
exact definition and reduced in the next section. Only
coherent states of Bose fields will be considered. Matrix
elements of such states will be given a perturbative rep-
resentation and it will be shown how such a perturbative
representation leads to a natural self-consistency condi-
tion for the spectral decomposition of the asymptotic
fields in the presence of the coherent-state operator. In
Sec. III an application of the results of Sec. II will be
made to nonrelativistic electron scattering in the pres-
ence of a laser pulse to calculate both the cross section
of laser-electron scattering and the change in amplitude
induced on the incoming field by the scattering.

—f (x, t)P (x, t )]
~

0), (1.1)

where

[P (x, t), Pts(y, t)]=in g (x y)— (1.2)

(f, t
~ P (x, t)

~ f, t) =f (x, t) . (1.3)

Property (1.3) is ideal for modeling systems where the

and
~

0) is cyclic with respect to the algebra of the field
The exact nature of the field p and the restrictions

on the function f will be made explicit in the next sec-
tion. The state (1.1) has the property that

II. REDUCTION FORMULAS

=i[H[%],% ], (2.1)

where H is the full Hamiltonian written in terms of the
interacting field. The weak asymptotic limit of the in-
teracting field is written

For the sake of clarifying notation and reminding the
reader of the salient features of scattering theory the
LSZ formalism will be brieAy reviewed. The interpolat-
ing or full interacting field 4 is assumed to obey the
equation of motion
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w-lliil ( 4 —&Z P(;„)(,„,) ) =0
t ~E+

(2.2) P;„(x)= f d k[u(k, x)b;„(k)+u*(k,x)b;"„(k)] . (2.6)

where the subscripts in and out correspond to the
respective time limits t and t+, which lie in the remote
past and future, while Z is the wave-function renormal-
izgtion constant. The in and out fields are used to con-
struct asymptotic particle states. These states are then
reduced by one of the standard LSZ techniques, the
choice of which depends on the generic type of field
quantum being considered. The in and out fields are re-
lated by the S matrix V,„,(r)= exp i 1 d x(fp,„, f(t),„,)— (2.7b)

The limit (2.2) allows the definition of incoming and
outgoing coherent-state operators. From now on sub-
scripts on the fields will be suppressed for notational
simplicity. The coherent-state operators are written

C

V;„(t)= exp i f d x(fP;„fP,„)— (2.7a)

so that P;„and P,„, coincide only in a trivial theory.
It is a standard textbook assumption that P;„possesses

a known spectrum, so that P;„can be related to some
field whose structure is known. The standard assump-
tion, discussed in the Introduction, is that P;„obeys a
free-field equation. It will be assumed in this paper that
the asymptotic field satisfies a linear homogeneous equa-
tion of motion which determines the modes of the field.
For a relativistic Bose field P this takes the general
form

where, for simplicity, ~;„, the momentum canonically
conjugate to p;„, has been assumed to be p;„. In the case
of the photon field in electrodynamics there are gauges
where this will not be true. In that case the proper form
for r;r„sho uld be substituted for P;„. In terms of the nor-
mal modes of the theory the operator of (2.7) takes the
form

V;„(t)= exp f d k[f(k, t)b;„(k)—f'(k, t)b;„(k)]

(2.8)

() P,„(x)+V (i(x)P~(x)=0, (2.4) where

where V &(x) is some self-adjoint potential. It is an as-
sumption of this paper that V & is such that the solu-
tions of (2.4) constitute a complete basis of the space of
functions which are integrable and at least piecewise
continuous, and that these possess nondamped time
dependence. A similar statement may be made for the
Fermi fields of the theory. In the nonrelativistic case
this corresponds to solving the Schrodinger equation for
the modes of the field, while in the relativistic case an
equation similar to (2.4) may be obtained by iterating a
Dirac equation with a spinor-valued potential. Normal-
ly, in order to yield a sensible theory, V

& is assumed to
be a static self-adjoint potential so that (2.4) may be re-
duced to a Sturm-Liouville problem for the eigenmodes
of the theory. However, some time-dependent potentials
may yield a sensible spectrum (see Sec. III), and so such
a possibility will not be a priori excluded.

Once found, the complete set of functions can be used
to expand the fields in a manner which allows the canon-
ical equal-time (anti)commutation relations to be
satisfied in the same way the plane waves are used in the
absence of a potential. For the sake of simplicity the
complete set of eigenfunctions in the scalar case will be
denoted [u(k, x)I, so that it is assumed that no bound
states are present. A discrete (perhaps denumerably
infinite) set of bound-state solutions to (2.4) could be in-
corporated just as easily if they are found to exist.
These functions are assumed to be orthonormal. In the
relativistic case this means that

f d x[u '(k, x)u(p, x)—u*( , k)xu(p, )x] i5'( =k p) . —

(2.5)

The scalar field is then expanded as

(2.9)

The f(k, t ) constitute the "Fourier" transform of the
function f with respect to the complete set of functions
solving (2.4). For the remainder of this paper it will be
assumed that the function f (x ) is such that

(2.10)

so that the function may be expanded in terms of the
eigenfunctions of the field P;„ in such a way that V,„ is
manifestly time independent. This is guaranteed if f(x)
is chosen to satisfy the same linear equation as P;„. The
spectrum of the in field P,„will still be referred to as a
Fock spectrum.

The asymptotic particle states of the theory, as dis-
cussed in the Introduction, are given by applying the
coherent-state operator V;„' to the Fock representation
associated with P;„. The in and out states are thus writ-
ten

(2. 1 1)

The in and out states are constructed from different
functions, f and g, to allow the incoming external field
and outgoing external field to differ. Such a situation al-
lows a calculation of the probability of beam scattering
in the case of electrodynamics or the decay rate of an
unstable vacuum structure. The sequence of operators
in (2.11), i.e., that the coherent-state operator lies to the
left of the Fock operators, is essential to maintaining a
complete set of states. The state

I
a&'F"„„ is understood

to be a state of fixed particle number constructed from
the spectrum of the in field P;„by acting on the Fock
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vacuum, and therefore has no manifest time dependence.
It is important to remember that the asymptotic vacuum
(no particle state as opposed to ground state)

~

0) of the
theory is the Fock vacuum associated with P;„, and is

therefore cyclic with respect to the algebra of the in field
and the out field.

The LSZ reduction procedures consistent with (2.11)
can now be developed. A possible approach would be to
expand the coherent-state operator in a functional power
series, and reduce it term by term. However, the more
straightforward approach is to reduce only the Fock
state appearing in (2.11) and to leave the operator V in
place on the Fock vacuum

~

0), later incorporating its
effects into the perturbation series representation of the
S-matrix element.

It is clear that only those particles which do not com-
mute with the coherent-state operator V;„could differ in
their reduction formula. As a result, only Bose particles

—u(k, x, t )P;„(x,t )], (2.12)

where u (k, x ) is a solution to (2.4). Using the standard
LSZ trick

a
lim = lim — dt

a
(2.13)

and the assumption that f (x ) satisfies

a'f+ v(x)f =o,
it follows that

(2.14)

of the type constituting the coherent state wi11 be
affected. For the sake of simplicity the case of a single
species of scalar particle will be considered. For that
case the creation operator 6;„ takes the form

bt„(k)= i —f d'x[u(k, x, t )P;„(x,t )

.„,( A
~

T[+(,) ] ~
k, B ),„= ' f d' (k, )[8'+ V( )].„,( A

~

T[+( )~(, )
. ] ~

B ),„~Z

+,„,( 2 —k
~

T[%(x, )
. ] ~B );„+i,„,( A

~

T[ II(x, ) ]
~

B );„

x f d'xl u~(f g) —u~(f——g)]. (2.15)

Clearly, the first term on the right-hand side is the usual
reduction formula for a scalar particle, while the second
particle is the standard forward-scattering term, which is
usually suppressed. The third term is new, and in effect
represents a forward-scattering term created by the pres-
ence of the coherent states. It appears because the b;„
must be commuted past V;„'[f]and V,„,[g]. It is ob-
vious that if f and g coincide the third term will vanish.
However, the case where f and g differ is precisely the
central feature of this paper. It is also clear, for the as-
sumptions of this paper, that the spatial integral of the
third term yields a time-independent quantity. It is also
worth noting in passing that had f (x) been chosen such
that V;„had manifest time dependence the reduction
formulas would have been altered even further. Such a
possibility is not being considered in this paper, but
would be of interest to pursue elsewhere.

As a result of the reduction process, the S-matrix ele-
ment is expressed as a sum of time-ordered products of
the interacting fields of the form (2.15). Before giving a
perturbative representation to the time-ordered product
it wi11 be assumed that all additional particles beyond
those of the coherent state have been reduced. This
leaves a Green's function of the form

G —= (0
~

V,„,[g]T[%'(x, ) ]V;„'[f]
~

0) . (2.16)

The standard prescription for generating a perturbative
representation of (2.16) is the assumption that the bare
interacting field + can be related to the in field by the
unitary transformation

U(t)4(x, t)U '(t)=&ZQ, „(x,t) . (2.17)

Coupling assumption (2.17) with (2.2) implies

w-lim U(t)4(x, t)U '(t)=HZ U(t )P;„(x,t )U '(t )

=&Z P;„(x,t ),
so that, in the weak sense,

U(t )b',„'(k)=b,'„'(k)U(t ) .

Likewise,

(2.18)

(2.19)

w-lim U(t)+( tx)U '(t)=HZ U(t+ )P,„,(x, t+ )U '(t+ )

= V'Z P,„(x,t+ ),
so that

b,'~', U '(t ) = U '(t )b,'t' .

(2.20)

(2.21)

G=(0~ U '(t )V [g]T[U(t )%(x) . U '(t )]

x v,„'[f]U(t )
~

o) . -
(2.22)

Next, the coherent-state operators are split into two fac-
tors. Defining the operators

Z;„[f]=exp f d k f(k)b;„(k) (2.23a)

and

Inserting a factor of unity in the form U '(t+)U(t+)
and U '(t )U(t ) and using relations (2.19) and (2.21)
gives



3080 MARK S. SWANSON 36

Z,„'[f]=exp —f d k f(k)b;„(k) (2.23b) The Z;„are not unitary. Instead they have the property
that

and using the Baker-Campbell-Hausdorf relation it is
straightforward to show that and

z,„[f]Io&=z,„-'[f)Io&= lo& (2.26a)

I';.[f)=(Z;.[f])'Z;. '[f)e (2.24) (0
~
(z.„,[g])'= (0

~
(z.„,-'[g])'= (0

~

. (2.26b)

where

O(f)= —,
' f d k f*(k)f(k) . (2.25)

Using results (2.24) —(2.26) and the nature of time-
ordering allows (2.22) to be rewritten as (ignoring factors
of the wave-function renormalization v'Z)

(t+»in [g]T[ein«t) U(t+)U '(t )](Z;„'[f])U(t ) ~0&e (2.27)

It has been shown that
~

0& is an eigenstate of U '(t+ ) and U(t ). Denoting the eigenvalues as A, + and A, , respec-
tively, it follows from (2.26) that

(A+A, ) 'G=(0
~
(Z;„[f])Z;„'[g]T[P;„(x&) U(t+ )U '(t )](Z;„'[f])Z;„[g]

~

0&e

Denoting

W=(z;.[fl)'Z;. '[g)

and using the Baker-Campbell-Hausdorf relation again allows (2.28) to be written

G=A, 1+(oi WT[U(t+)U '(t )
. P;„(x, ) ]W' ' ~0&e

where

X(f g)= ——,
' f d k[f*(k)f(k)+g "(k)g(k) —2f*(k)g(k)],

(2.28)

(2.29)

(2.30)

(2.31)

so that X measures the functional "overlap" of the two coherent states. The operator 8 may be moved inside the
time-ordered product to yield

(A+X ) 'G =(0
~
T[[P,„(x,)+a(x, )] WU(t+ )U '(t )W' ')

~

0&e (2.32)

WP;„(x)W ' =P;„(x)+a(x), (2.34)

so that the field P;„ is everywhere translated by a func-
tion which is the algebraic sum of the negative-frequency
part of f and the positive-frequency part of g. It is obvi-
ous from the form (2.33) that a is not necessarily a real
function, so that real fields may be translated by a com-
plex function. It is also clear from (2.32) that the evolu-
tion operator for this system is effectively given by

where the function a(x) is given by

a(x)= f d k[g'(k)u(k, x)+f(k)u*(k, x)] . (2.33)

The function a is induced by the operator 8 in the sense
that

WU(t)U '(t')W '= i(H[P;„+—a, w,„+a]
—Ho[/;„+a, vr;„+a])

iHt[g, „,a],— (2.37)

where factors of the wave-function renormalization con-
stant have been suppressed. Iterating Eq. (2.36) gives
the result

E(t+, t ) = T exp i f dt —Ht(t) (2.38)

The final result is that the time-ordered product of fields
from the reduction process has the perturbative repre-
sentation

E(t+, t )= WU(t+ )U '(t ) W (2.35)

The evolution operator can be given a time-ordered rep-
resentation by noting that it solves the differential equa-
tion x e~'I"

X exp i f dt HI(t—)

(2.39)

at
E(t, t')=[WU(t)U '(t')W ')E(t, t') . (2.36

Using (2.1) and denoting Ho as the Hamiltonian which
drives the time development of it;„, it follow that

Clearly, the Dyson-Wick contraction scheme may be ap-
plied to (2.39) to generate a perturbative representation
of scattering processes in the presence of the coherent
states. Furthermore, the form of Hl gives a simple self-
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consistency condition for the form of Hp, and hence for
the form of the differential equation (2.4) which P;„must
solve. Perturbative stability of the spectrum of the fields
P;„requires at least no terms quadratic or linear appear-
ing in Hz. Hp must therefore be chosen to remove any
and all terms which are quadratic in the P;„. If terms
linear in the fields are necessary in the definition of Hp,
then the analysis of this paper breaks down. This is be-
cause a term linear in P;„appearing in Ho will perforce
cause (();„ to obey an inhomogenous linear equation. Un-
der such circumstances it is easy to see that the
coherent-state operator V;„will no longer be time in-
dependent and result (2.15) would no longer be correct.

In the next section an application of this section's
technique to laser-electron scattering will be made.

III. NONRELATIVISTIC QUANTUM
ELECTRODYNAMICS IN A LASER FIELD

A„ is the vector potential and 4, is a spinor electron
field. The theory will be quantized in the Coulomb
gauge, so that

a,-A, =0 (3.2)

and the equal-time (anti)commutation relations

[%,(x, t), 4b(y, t))+=5,b5 (x—y),
(3.3)

[~,(x, t ),Fko(y, t )] =i5 k (x y)—

are assumed to hold, where 6 k is the transverse 6 func-
tion. Ap is removed from the theory by demanding that
Gauss's law be satisfied:

The behavior of charged particles in a laser field is a
problem which continues to draw a great deal of atten-
tion. Nonrelativistic quantum electrodynamics is de-
scribed by the Lagrangian density

e 3 1A 0( xt)= f d y [+*(y,t)+ (y t)]4m fx —yi
(3.4)

L = ——'F„F"+ D; O, D;4,
2m

—eAp+,*4,—i +,*+, ,

F„.=a„A.—a.A„,
D =8 +ieAJ .

(3.1)

This form for Gauss's law is consistent with the use of
asymptotic coherent states only if the external vector po-
tential is sourceless, i.e., that 9 A p"' =0. The vector po-
tential for the in and out states will be that of a linearly
polarized plane wave. The external field is taken to have
the form

A~,„ii,„,~(x)=M(;„~(,„,~cos(1 x ut), co=
~

—I ~, I M(;„~i,„,) ——0 . (3.5)

The interaction picture/asymptotic fields p, and a, must be constructed to satisfy relations (3.3), and will be chosen
to obey the equations of motion

a'a, =O,
1 g &&s() + g ~"sg ~"I

y —jj. e e2

2m ~ m ~ ~ 2m
(3.6)

where A'-" is the average of the incoming and outgoing electromagnetic fields, so that

A J,„s
———,'( At„+ A 1„,)= —,'(M', „,+MJ„)cos(l x cot) =M.',„s—cos(I x cot) . — (3.7)

The reason for selecting forms (3.6) and (3.7) will become apparent when the effective interaction Hamiltonian, given
by the general expression (2.37), is derived for this case. The forms for a and (t, which satisfy (3.3) and (3.6) are

d k 1a (x)= f g [e (k)a&(k)e '""+e a&(k)e'" ] (3.8a)
(2~)' ' +2~„ i.=i

and

p, (x)= f d p b(p)h~(x), (3.8b)

[a (k), (t (p)] =5 5 (k —p),
2

g e'i(k)eg(k)=5, —k, k-

k.k

where coJ, =
~

k
~

. The commutation relations are satisfied by the conditions

(3.9a)

(3.9b)

k.ei(k) =0,
[b, (k), b, (p)]+ ——5„5'(k—p) .

(3.9c)

(3.9d)
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The equations of motion are approximately satisfied by selecting the form

1 &p-x —tE t
h (x)= e ~ exp

(2m. )
i

lm —p.M,„sin(l x cot—) — M,„[2(lx cot—)+ sin2(l x co—t )]
m co —p. l m 4m

(3.10)

where E =p /2m. The function h may be expanded in terms of generalized Bessel functions. However, in the limit
that the terms in (3.10) which are proportional to M„may be ignored, h may be written

1 oo ep ~avg
h (x) = g J„exp[i(p —nl ) x —i(E neo)—t],

(2~)3~2 „ tnt —I.p
(3.1 1)

where J„ is the ordinary Bessel function of integer order.
Approximation (3.11) will be employed in the remainder
of this section.

In this work the incoming state of interest contains a
single electron of momentum p, while the outgoing state
will possess an electron of momentum k and an addition-
al photon of momentum q and polarization A, . The
momentum of this additional photon is assumed to be
different from the momentum I of the individual photons
making up the incoming and outgoing laser beam. The
matrix element of interest then takes the form

and

1 . e e2
~x = ~j~j+ avg j+ a g a g2m m 2m ' Bt

(3.15)

Expression (3.13) may be given a perturbative repre-
sentation by the techniques of the previous section. It
follows that the function aj of (2.33) is a vector-valued
function and is given by

a'(x) =Mi„cos(l.x cot )—
S=,„,(k, b, q, l, , A,„, ~

p, a, A;„);„, (3.12)
+ ,'i(M~„, M—~„)sin(—l x cot) . —(3.16)

(3.13)

where

e((q)e (3.14)

and is readily reduced to give

S=i f d4x, d~x d4x, h„*(x, )h (x )fj (x )L„L„*6„

X (0
i V,„,T['Pb(x, )%,*(x~)A, (x3)]V;„'

~

0),

The imaginary piece of a will be suppressed since it will
be shown to be small compared to the real first term.
This will be true in the limit of a large photon number in
the beam, but not so large that the approximation (3.11)
is invalid. The physics represented by the imaginary
piece of e will be analyzed elsewhere. It is straightfor-
ward to show, by virtue of having chosen P, to obey
(3.6), that the efFective interaction Hamiltonian is given
by

Ht(t)= f d x
2 2

a~(d P,*P, P,*B,P, )+ —a aP,*P, + a

2

+ f d x d y P,*(x,t)P, (x, t) P (yb, t)Pb(y t) (3.17)

so that all terms linear and quadratic in the fields (again, suppressing the imaginary piece of a) have been removed by
the choice of equation of motion for the P.

The way is now clear to evaluate the matrix element (3.13). Using the Dyson-Wick contraction scheme the lowest-
order form for the matrix element reduces to

2

S=e '"' '"' i6,„ f d x f1 (x)[B h„"(x)h (x) —h„*(x)B h (x)]+ A,„(x)f (x)h„*(x)h (x)
2m m

(3.18)

where, for the moment, the evaluation of the overlap in-
tegral X( A;„,A,„,) will be deferred.

The evaluation of (3.18) is greatly simplified by choos-
ing p to be zero. In that case the first term in (3.18) van-
ishes. This is seen by substituting (3.11) into (3.18) and
performing the integration. The first term becomes

6 (q —p +k —(n n')l )—X
Q 4&et) I

&& 6(~~ +Ek E~ (n n')~ ), — ——(3.19)

—6., g J„(y„)J„,(y )[k +p —(n —n')l ].e~(q)
n, n = —oo
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where

ek M,„
3 k mao —k I

(3.20)

When p=O only the n'=0 term is nonzero in the sum,
and (3.19) becomes

OO (k n—l ) ek(.q)
5,„—g J„(r„) 5 (q+k n—l)

+4m cok

N,„=(N ),„=4m AM;„M;„.5 (0) (3.27a)

It is instructive to examine
~

S ~, interpreting it as a
probability, and find what values of M;„and M,„, max-
imize the probability. Evaluating the overlap integral is
straightforward. It follows from (2.8) that the average
number of photons in the incoming and outgoing beams
is given by

X5(co +Ek n—co) . (3.21) N,„,= ( N ),„,=4~ AM, „,.M,„,5'(0), (3.27b)

The 5 function in (3.21) yields the result that

(k —nl) ek(q)5 (q +k —nl)= —q ek(q)5 (q +k —nl),

(3.22)

which vanishes from (3.9c). Thus, the first term may be
ignored for the case p=0.

Substituting (3.11) into the second term of (3.18) and
performing the integration gives

QO M,„.ek(q)

where 5 (0) has the units of (length) . It is obvious from
(3.27} that N,„and/or N,„, can be large but finite and
remain consistent with the assumption that M;„and
M,„,~0. On the other hand, nonzero M;„or M,„, leads
to an infinite photon number. The overlap integral is
readily evaluated to obtain

X( A;„, A,„,) = —2m'co
i
M;„—M,„, i

5'(0) . (3.28)

By virtue of assuming the incoming and outgoing beams
possess the same plane of polarization, it follows from
(3.27) that

X(A;„,A,„,)= ——,'(QN;„—QN, „,)
—= ——,'rl . (3.29)

where

b, =53(p —k —q —(n ' —n —1 )l }

X5(Ek +co E —(n ——n '+ 1)co)

+53(p —k —q (n ' n+ 1——)l )

(3.23a) It is obvious from the form of (3.26) that, to lowest order
in N;„and Noot

~

S
~

~(QN;„+ "(/N, „,) e (3.30)

It is clear from (3.28) and (3.30) that
~

S
~

would vanish
for the finite amplitude case unless M t M For
finite N,„and N, „, expression (3.30) is maximized if

X 5( Ek +co E (n n—'——1 )co } .— (3.23b)
Nln =&OUt+1 (3.31)

For the case that p=0 expression (3.23) becomes
X(A „,3 „)

e3 " M s'ek(q)
lJ.+&(rk }+J.

m

X 5 (k +q —nl)5(Ek +co neo) . —

(3.24)

where the + sign occurs because the time-reversed pro-
cess, i.e., absorption of an external photon by the elec-
tron, is described by the same matrix element. Thus, the
additional external photon assumed to be present in the
outgoing state leads to a depletion of the outgoing
beam's intensity in a self-consistent manner.

Result (3.26) can also be used to calculate the total
cross section for laser-electron scattering in the event
that the electron is initially stationary. The total cross
section is defined

2nJ.+i(rk)+J. i(rk) J (3 k),
Xk

(3.25)

Expression (3.24) is simplified further by using the prop-
erty of Bessel functions that ~= f dn, „

q

d'k d3q I
S

I

16~'5'(0) „, N, F

(3.32)

so that

M,„ek(q)S=i6,b m r k "(/4rrco~

The integration and summation run over the phase space
of the scattered electron and the additional photon as
well as all possible spin polarizations. N, is the density
of initial electron states

X g nJ„(rk )5'(k +q —nl )
1

N, =
Sm

(3.33)

X 5(E„+co~ —n co ) exp [X( A,„,A,„,) ] .

(3.26)

and F is the incident flux of photons per unit volume of
space. F is obtained by calculating the average power in
the beam and dividing by the energy of an individual
photon in the beam. It follows that
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Inserting these into (3.32) the cross section becomes

(3.34) analysis is valid of

co &&10 ' rad/sec . (3.41)
oo e4 2

cr= g J d kd q g ~M,„.e((q)~
rrE A. = 1

n J„{yk)

2 2 24n coy& co M;„

X5 (k+q —nl)

X 5(Ek +coq neo )e—

Integrating over the 5 function in momentum gives

oo e4 2o= g jd q g ~M,„.ei(q)~
n= — m

A, =1

n J„(yq )

4~ coy co M;„

(3.35)

In the limit that ncolm =0, relation (3.38) reduces to

5(E„( q + coq n—cu ) 5(q neo —) (3.42)

so that the energy of the radiated photon will be a multi-
ple of the laser photon energy in this approximation.

The sum over photon polarizations yields

2

~
M,„.ei(q)

~

=M,„[1—sin Ocos (P —P()],
A, =1

(3.43)

cT = J dq dQ,
q [1—sin Ocos (P —P()]q 4~2m 2~@

where P( is the azimuthal angle of M,„,while O and P
are the angular coordinates of q. The cross section then
becomes

X 5(E„( + coq neo )e— X g n J„(y )5(q neo)e-
n =1

(3.44)

(3.36) For the limit in which (3.42) is valid, i.e., low-frequency
laser photons,

where the identity

Fnl —q Vq (3.37)

eqM gy g sinOcos(P —P() .
rn co

(3.45)

has been used. There is no loss in generality in picking I
to lie in the z direction. The 6 function for energy con-
servation reduces to

5(E„( +co —

neo�)

Performing the integral over q gives

i 4' m P„M;„
qn n co cosO
f/7 m

(3.38) X[1—sin Ocos (P P()]e—(3.46)

where 0 is the polar angle of q and

neo
2nco 1 ——

2m

1/2

where

neM„
sinOcos(P —P() .

rn
(3.47)

q„=(m neo cosO)—
neo cosOI 1—

rn

For the case that P„=O, i.e., the weak-field case of this
paper, it follows that

(3.39)

nh co

4~@
(3.40)

This places the restriction on frequencies for which this

Expression (3.39) demonstrates that n must be a posi-
tive number, which simply reAects the fact that stimulat-
ed absorption of laser photons is the mechanism which
drives the spontaneous radiation of the electron. It also
shows that the validity of the nonrelativistic structure of
the theory breaks down when

J„(P„)= ( —,'(33„)",

so that

4 2M,„o. = dQ
16m m Iin

X g n ( —,'P„) " [1—sin Ocos (P —P()]e
n =1

The differential cross section is therefore

{3.48)

(3.49)
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dcT

dQ

4 2
e Mavg

16m I M

&& g n ( —,'P„)" [1—sin Ocos (P —P, )]e
n =1

(3.50)

Using (3.27) and (3.29) it follows that

2
Mavg

M;„

(QN, „+QN.„,)'

4N;„
(3.51)

so that, in the limit of large photon number and restric-
tion (3.31),

which is identical to the result which is obtained by cal-
culating Compton scattering of a polarized photon in the
zero-frequency limit. It is now clear that the limit
represented by (3.52) is consistent with the suppression
of the imaginary term in (3.16). Result (3.49) also
reduces to the results first derived by Brown and Kib-
ble' for the case that 3;„=A,„„i.e., the case where
there are finite but small field strengths in the incoming
and outgoing states. For that case, because a plane-wave
representation has been used, the condition (3.31) has no
effect on the magnitude of the field strength, and no er-
ror is induced by maintaining them the same. In such a
case conditions (3.52) are exact, while the higher-order
terms in (3.49) correspond to the contribution of multi-
photon processes present due to the laser.

2M gvg =1
M;„

(3.52a) ACKNOWLEDGMENTS

and

(3.52b)

d(7

M„O dQq
X))1

4

[1—sin Ocos (P Pt)], —(3.53)
16m m

In such a limit the differential cross section becomes
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