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We investigate the manner in which anomalies enter the description of experimental data by
means of effective Lagrangians, with particular attention to the known result that §-function-type
contact singularities of Feynman integrals do not contribute to the S matrix. The development
uses the two-photon decay of singlet positronium as an example. We show that the anomaly be-
comes essential on replacing positronium effectively by a point particle; the anomaly arises au-
tomatically in the resulting effective Lagrangian as a remnant of the underlying QED structure of

positronium. :

I. INTRODUCTION

It is well known, at the present time, that anomalies
play an important, even decisive, role in many physical
contexts.! In this paper we will demonstrate that
anomalies properly belong to effective Lagrangian field
theories. By contrast, in renormalizable Lagrangian field
theory the existence of any anomalies is considered as a
sign of inconsistency; ’t Hooft,? for example, has given
conditions for anomaly cancellation. The main point of
the present paper is that the correct treatment of contact
singularities in a renormalizable Lagrangian field theory
ensures that no anomalies, in fact, exist. The central
point for this demonstration is the observation that the
essence of the equations of motion is to allow the calcu-
lation of the future development of a system from the
knowledge of the present state.® This is the meaning of
the Schrodinger equation (written in the Schrédinger
picture)

Yt +At)=y(t)—iAtH (t)Y(2) ;

given the wave function at time ¢, ¥(¢), we can compute
it at time ¢ +A¢. Thus, Eq. (1.1) can be integrated for-
ward in time.

On the other hand, if one wants to integrate backward
in time one must use instead the equation

Pt —A)=vY(t)+iAtH (e )(e) .

There is no difference between Eqgs. (1.1) and (1.2) if one
deals with simple functions, e.g., with fixed-particle-
number wave functions, as in nonrelativistic quantum
mechanics. In that case both Egs. (1.1) and (1.2) can be
written as

(1.1

(1.2)

0 .

5;1,b(t):—zH(t)z//(t) . (1.3)
However, one has to return to Eq. (1.1) or (1.2) when
dealing with singular quantities. Specifically, the
Schwinger-Tomonaga evolution operator U (#,¢,) is high-
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ly singular. Therefore one must write
U(t +At,ty))=U(t,t))—iAtH (1)U (t,1,) (1.4)

for integration forward in time. [In Eq. (1.4) H,(¢) is the
interaction operator in the interaction picture.] We now
rewrite Eq. (1.4) by the replacement t—t —At, and
t +At—t:

Ult,tg)=—iAtH,(t —At)U(t —At,t5)+ U (t —At,t,)
(1.4a)

which means that to compute U at time ¢ we need to
know the system at time t — Az. To continue, we express
U(t —At,t,) as

U(t —At,t))=—iAtH;(t —2A1)U (t —2At,t,)
+U(t —2At,t,) (1.4b)

and so on, to obtain

N —1
Ult,ty)=1—i 3 AtH (t —nAt)U (¢t —nAt,t,) ,

n=1

(1.5)
where
NAt =t —t, (1.6)
and where we have used the boundary condition
lim Ul(tty))=1, 1.7

t—»to

which yields the 1 in (1.5), and which requires the ab-
sence of the term n =N in the sum. The term n=0 is
absent in view of (1.4a).

We now can safely perform the limit N — o to obtain
the Schwinger-Tomonaga integral equation

)
Ult,tg)=1—i f(i;)dtlH,(rl)U(zl,m, (1.8)
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where (¢) indicates that the integral is to be taken over
the interval open at the limit of integration t,—t, that is,
one must use ¢, €(¢,,¢) rather than T, E[t(,¢]. In this
way, and only in this way, we retain the essential aspect

J

(1,
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of Eq. (1.5), which is required in order for (1.5) to be in-
tegrable, and represent a deterministic equation.

When iterating (1.8) to generate the Neumann series,
one finds

)
Ultytg)=1—i f(i;’)dle,(zIH(—i)z f(i;)dtl f“ ) e, H, (¢ )H,(2,)

X (1) ()
+(—l)3f dr, fu )
0

which also can be written as*

(ty)
dt f(zo)

t>t >t >t3> 0

dt H(t )H(t,)H (t3)+ - - -

(1.10)

The crucial point now is that the open interval of integration must be preserved when supplementing the “triangu-
lar” region of integration Thus, for example, for the second-order term,

Lian 1.

dzzH, DH(ty)=

1 (t)
2 (1,

The symbol @ means that in performing the integration
over the time-ordered product (7 product) the points
t,=t, are to be outside of the region of integration. We
denoted this by the notation @T [ in (1.11), and call it
an ‘“‘open integral of a time-ordered product.” Accord-
ingly, contact &-function-type singularities of the T prod-
uct do not contribute to the S matrix (see Appendix A
for some further remarks). The consequences of using
open integration for the Tomonaga-Schwinger equation
for QED were investigated in Ref. 3. Here we would
like to analyze the relation of the perturbation theory
anomalies to the contact singularities. Before embarking
on that task we should, however, make a few remarks.

The term ‘“anomaly” is at the present used in two
quite distinct contexts. The one context is in the context
of perturbation theory, where the prototype is the
Adler-Bell-Jackiw triangle anomaly.>® The discussion of
this anomaly will be the subject of the present paper.
The other case in which anomalies are employed is in
the context of effective Lagrangians.

There exist cases where the effective Lagrangian for-
bids certain reactions, which are permitted by the under-
lying more fundamental theory. (Also, the opposite situ-
ation is possible.) The appearance of terms in an
effective Lagrangian or Hamiltonian which violate some
basic symmetries of the complete theory is very well
known.

For example, elimination of a part of Hilbert space
renders complex the effective Hamiltonian which is valid
in the retained part of Hilbert space, resulting in a
nonunitary evolution operator—violating both energy
and probability conservation. This is well understood
and is a useful technique for treating complicated physi-
cal systems. Another example, of current interest, is the
effective Lagrangian of the [SU(3)] o model (“Skyr-
mions”). Witten’ has shown that this Lagrangian admits

dtZH,(

10 f“ dt, f“) dt, T(H,(t

f”d f( dtH,tz)H,()

)+ f“) tzf( ' de H (e, (1))

DH () . (1.11)

[

a larger symmetry than QCD, and he adds to the
Skyrme Lagrangian an anomaly term, removing the
unwanted extra symmetry. This type of anomaly, a term
added to remedy deficiencies in an effective Lagrangian,
will not be elaborated on here.

In Sec. II we reanalyze the structure of the axial-
vector-current triangle graph—both in position and
momentum space—and show that the associated anoma-
ly is due to a contact singularity. Thus, as discussed
above, the singularity lies outside the integration region
and does not contribute to the S matrix.

In Sec. III we discuss the example of positronium de-
cay. Section IV contains a summary and our con-
clusions. Appendix A gives some illustrations of the
contradictions one encounters when retaining the con-
tact singularity, while in Appendix B we sketch the
character of the contact singularities.

II. THE AXTAL-VECTOR-CURRENT TRIANGLE GRAPH

The characteristics of the axial vertex were carefully
analyzed by Adler.” We follow closely his presentation.

This triangle graph arises in the context of the stan-
dard spinor quantum electrodynamics, when considering
the time-ordered products

Jn={TW(x)j(0)P(»)),, 2.1
PP={T@Wx)j*0)dy)),, 2.2)
where
jz(x)=:1,l—i(x)7/“75¢(x): , (2.3)
=:10(x)ysp(x): . (2.4)

The anomaly arises when evaluating the triangle graph,
Fig. 1, where T is either y5 or y,ys. We assume that
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Yo

Yo
FIG. 1. Axial-vector triangle graph.

the calculation is done in the context of the S matrix,
that is, in the description of some physical process.
Then (2.1) and (2.2) must be evaluated by open integrals.
In position space we have (for '=y,ys replace ¢ by
@)

M=0de4x d*y d*z Tr[p(x)Sp(x —y)y,4°(y)
X Sg(y —z)ypAP(z)

XSp(z —x)T] (2.5)

J

1 y@ 1
v(r+p)—myg y(r+py)—m

A =fd4rTr ysy'!

The other terms satisfy the Ward-Takahashi identity.
Upon the shift of the integration variable » —r + ¢ in the
first part, one sees that the two parts of (2.7) cancel. Be-
ing associated with a more than logarithmically diver-
gent graph, such a shift “is not necessarily a valid opera-
tion.” Of course, it is a valid procedure for convergent
and only logarithmically divergent integrals.

We now demonstrate that the linearly divergent part
arises from a contact singularity and hence does not con-
tribute to the S matrix. That is, if one employs open in-
tegrals the singularity is absent in both (2.5) and (2.6).

We now re-do Alder’s analysis taking care to incorpo-
rate the open integration. The logic of our argument
will be as follows. (1) Logarithmically divergent and
convergent Feynman integrals are invariant under shifts
of the integration variables. (2) The anomaly contained
in Eq. (2.6) disappears; i.e., one recovers the
nonanomalous Ward-Takahashi identity when shifting
the integration variable in (2.7). (3) Hence, the anomaly
is associated with the linearly divergent part of (2.6). (4)
By considering the position space expression of this
Feynman integral, we show that the most singular part
of (2.5) indeed is a metadistribution and according to the
Jauch-Rohrlich theorem?® is ambiguous. It is linearly
divergent and has the form of a ‘“‘softened” vacuum-
polarization term of QED (multiplied by x and hence
linearly and not quadratically divergent), and it is of the
contact type, in the same way as is the QED vacuum-
J

-

Sp(x —y)=Sp(x —y)

iy#——ax —m
I

—rY

iyﬂgf—j:—m }:84(x —y) .

while in momentum space (for the meaning of open in-
tegration in momentum space see Ref. 3)

3 . 1 1
R-—@fd rTr y(r—q-kl)—myoyr—m
Xy, ————T 2.6)
y”y(r—kz)—m ’ )

which is, except for a numerical constant, Eq. (16) of
Ref. 5. From (2.6) one sees immediately that this graph
is “superficially” linearly divergent. (It is well known
that more than logarithmically divergent Feynman in-
tegrals are inherently ambiguous.s)

In Ref. 5 Adler has carefully analyzed this integral in
momentum space. The essential discussion centers
around Eq. (13) of Ref. 5. Using the momentum-space-
defining equation of the Feynman propagator, Eq. (9) of
Ref. 5, to rewrite (2.6), he shows that the anomaly arises

from the term
5.,(1) 1 (2) 1 (27)
Y(r+py+q)—my v(r+p,+q)—my

I
polarization term. (5) Since the contact singularity does
not contribute to the open integral, only the logarithmic-
ally divergent and convergent terms contribute. They
can be evaluated by shifting the integration variables in
the momentum-space expressions. (6) It has been shown
by Adler that the ambiguity associated with the linearly
divergent part can be employed to manipulate the mag-
nitude of the anomaly. As this part does not contribute
in view of the open integration it remains to be shown
that the other parts are anomaly-free; i.e., that the
anomaly originates in the contact singularity.

We perform the analysis of the triangle graph in posi-
tion space. Writing

D=y’+A%x |y,2), (2.7a)

r=y,I°, (2.7b)
we have
A(x | 3,2)=7sSp(x —y)y,Sp(y —2)73Sp(z —x) . (2.8)
Here the Ward-Takahashi identity demands

(7,8/3x ,)A5(x | p,2)=2im A} (x | y,z) . (2.9)

We now check whether Eq. (2.9) holds for the triangle
graph. To that end we recall the defining equation of
the Feynman propagator:

(2.10)
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By means of this equation we can evaluate the four-divergence of y ,,Az;ﬁ

3
Yué*le\ix(x |y,2)=—y;

0
'}/u axﬂ SF(x “‘y)

Y Sp(y —2)73Sp(z —x)+75Sp(x —p)y Sp(y —2)7;

3
X =SEE =X T
u

=2im A3 (x | p,2)+iys8*(x —y)y Sp(y —2)y;Sp(z —x)+iysSp(x —p)y,Sply —2)7,;8%z —x) .

(2.11)

The last two terms in (2.11) violate the Ward-Takahashi identity. They seem not to contribute since

Trysy-xy,yxy,=0,

(2.12)

and formally the Ward-Takahashi identity seems to be satisfied. However, this result is not necessarily true owing to

the linear divergence of the graph.

We now show that the linearly divergent part of the graph arises from a contact-type singularity. To that end we

define B} (y —z) by
A¥(y)=AYz)+(y —2)*Bi(y —2z) .

(2.13)

Herewith we obtain (for the pseudoscalar current omit y, and the derivative on ¢)

fd“x d*y d*z[3,6(x)]y A (x |y,z)AV(y)A*<z)—>fd4x d*y d*z[3,6(x)]y ,A\(x | »,2) 47(2) 4 X(z2)

+ [d*x d%y d*2[3,8(x0) 1y A (x 9,2y —2)*BY(y —2)AM2)

=I+1II.

This way we have isolated the linearly divergent part
of the graph in the first term; the second term is only
logarithmically divergent. We now continue with the
first term. There we can perform the folding over d*
using the identity

fd4y Splx =y Sely —2)=ilx, —2z,)Sp(x —2),
(2.15)

which is the position space form of the well-known iden-
tity [see, e.g., Eq. (8.52), p. 167 of Bjorken and Drell’]
arising in the context of the Ward-Takahashi identities,
to obtain

Tr [ d' v, A (x | 3,2)
—Trysy  Sp(x —2)(x —z), ¥ Sp(z —x) . (2.16)

Ignoring for the moment the ¥ matrices, both for the
pseudoscalar and the pseudovector case (2.16) has the

J

I

9 s
Yugx_p.l\vl(x ly’Z)II=ylt ax#

(2.14)

[

analytical form of (x —z)II(x —z), where II(x —z) is the
vacuum-polarization tensor of QED. It has been shown
in Ref. 3 to have a quadratically divergent contact singu-
larity at x —z=0 which is of the form
8(x,—z, )8(x#—z*)8%x —z). (Since it contains the
square of a & function it is not a distribution; it was
called a “metadistribution” in Ref. 3, see Appendix B.)
The factor (x —z) changes the quadratic to a linear
divergence, but it does not change the character of being
a contact singularity. Hence this term does not contrib-
ute to the open integral, for both the pseudovector and
the pseudoscalar interaction. [A change from the con-
tact to a noncontact type would require the appearance
of a derivative operator; e.g., ¥ -3Il(x —z) would not be
of the contact type and would contribute to the open in-
tegral.]

We now show that the logarithmically divergent term
II satisfies the Ward-Takahashi identity. We have, using
(2.10),

[7sSp(x —y)Sp(y —2)y —2)y,Sp(z —x)]

= —2imySp(x =y Sp(y —2)(y —2)*y,Sp(z —x)—iy8*x —p)y Sp(y —2)(y —2)%y,Sp(z —x)

—iysSp(x —y)7,Sp(y —2)(y —2)*y, 8%z —x) .

(2.17)
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The last two terms do not contribute owing to Eq. (2.12).
Here, however, in contrast with Eq. (2.11), this result is
believable since the expressions are only maximally loga-
rithmically divergent and hence give unambiguous re-
sults.

The above analysis is based on the validity of Eq.
(2.15). This equation is an identity. However, the limits
y—x and y—z seem to pose problems. Folding is a
“benign” operation in that it “softens” the singularity

character. Recall that in position space we have, for
small |x |,
Sp(x)= i 2yx m 1-2myx

47? | (x2—ie)? 2 x’—ie
(2.18)

Thus, the Feynman propagator has the singularity struc-
ture of a distribution. Hence the folding (2.15) with
measure d*y is perfectly well defined and leads to an
unambiguous result, as long as x —z=£0. Indeed, the
highest singularity of (2.18) is ~1/|x [*vs 1/]x [? of
(2.15). Tt is exactly the point x =z (with measure d*x)
which yields the linear divergence. Omitting this point
in the open integral validates the use of the result (2.15),
and in consequence (2.16).

This way we have seen that the breaking of the
Ward-Takahashi identity is a very subtle effect indeed.
Considering (2.11) we see that the Ward-Takahashi-
violating terms arrive as the indefinite product 0X o,
where the zero is the result of the trace operation, and
the « the linear divergence. A similar remark could be
made with respect to the momentum-space expression
(2.7). However, we must reemphasize that this term
with all its inherent ambiguity is present in the expres-
sion of the triangle graph. It is only in the context of
the S matrix that it does not contribute in view of its
character of being a contact by singularity.

We would like to conclude this section by a caveat:
the validity of the Fourier transform has been well estab-
lished for functions and for distributions. It is an open
question what are its characteristics when used for
metadistributions.

III. POSITRONIUM DECAY

A transparent example of the triangle anomaly arises
in the decay of the singlet positronium state into two
photons. This is the QED analogue of the two-photon
pion decay; the prototype anomaly. An effective La-
grangian in this case arises by replacing the (interaction
picture) “positronium field,”!®!! written in terms of the
(interaction picture) electron-positron fields

¢(X,§)=fd3pd3qei(px—!—qy)j?’(p’q)

Xv(plu(q)d(p)b(q)+H.c. (3.1)

by a local pseudoscalar field @(x), that is, by ignoring
the presence of the internal (relative) coordinate &.
(Note that actually no particle is located at X, which is
the center-of-mass coordinate.)

Formally, the difference between the ‘“‘fundamental”

3073

[in terms of ®(X,£)] and the effective Lagrangian [in
terms of @(X)] description will show up in the form of
the replacement of the “true” commutation relations of
the “positronium field” by local commutation relations,
in our example by the assumption (replacing X by x)

lo(x),¥(y)]_=[@(x),¥(y)]_=0.

This assumption of course contradicts the true com-
mutation relation which can be computed from (3.1).
We find, for example,

d’a z,t ]_— faB(x -*y)tzg(x,t)83(z —y) .

which is “canonical” only for large separations |x —z |
where f,z vanishes. The replacement of (3.3) by (3.2)
can lead to important differences in the evaluation of the
S matrix.

Owing to the smallness of the binding energy we can
safely use free Dirac spinors. Thus we can take, for a

(3.2)

[®(x,p,t (3.3)

positronium at rest,p . =—p _,

Y= [Fp)otp,up_)d’p (3.4)
and, since k| = —k, =k, we have, for the two-photon de-
cay (Fig. 1),

~ 1 1
M= [d* ] Al
1
Xy, Ay—————ulp_). 3.5
A —m 4P 3-5)
We rewrite (3.5) as
1 1
M =Trp(p) AY
pip yp——my“ Yvp—k)—m
1
Aj———— .

while the “effective positronium” decay would be given

by (2.6). In (3.6) we have introduced the direct product
(N=normalization)
p(p)=Nf(pu(p_)o(p,)
op,
—_ 1
N | (3.7)
= p op, op_ op_ .
2m 2m 2m

When writing p in terms of the y matrices and their
products, we recognize that it contains more than ys, or
Y.Ys and in addition, in contrast with (2.6), Eq. (3.7) is
burdened by a form factor f(p). At any rate, Eq. (3.7)
can be used to arrive at the familiar weak-binding (.e.,
nonrelativistic) result of the positronium decay.'?

A more complete description would be that of Fig. 2,
which yields the lowest-order form of the positronium
form factor, f(p), as

= (3.8)
pi—ie

With this form factor the ‘“triangle” graph of the posi-

tronium decay is actually ‘“‘superficially convergent,”
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&

FIG. 2. Lowest-order graph for positronium wave function.

since power counting yields fd4p /p°. The replacement
of this lowest-order f(p) by the “exact” f(p), i.e., by the
“positronium wave function,” will not introduce a quali-
tative change, since QED is a renormalizable theory.
Positronium decay is therefore anomaly-free.

IV. DISCUSSION AND CONCLUSIONS

In Sec. III we have demonstrated the manner in which
the structure of a pseudoscalar particle, here singlet po-
sitronium, enters in the expression for the two-photon
decay process. The central expression is (3.7) which
gives the structure of the “effective positronium-lepton
vertex.” If one were to describe positronium by a local
field ¢(x) with the commutation relations (3.2) one
would have the choice of (2.1) or (2.2) as “effective
positronium-lepton vertex.” Then according to the
Veltman-Sutherland theorem!? the photon decay of posi-
tronium would not take place. One sees immediately
that the reason for this is that the effective positronium
field @(x) lacks the internal coordinates, the relative
coordinate £ of (3.1), which is needed to describe the
internal structure of positronium. Hence, when working
with the effective Lagrangian, which lacks this coordi-
nate, one must add “by hand” an interaction term, in
essence the difference A=(3.7)—(2.1), which would then
allow the decay of positronium. This difference A can-
not be derived from the effective Lagrangian; it is the
“anomaly” needed to achieve agreement between theory
and experiment, if one insists on using the effective La-
grangian. From arguments based on Lorentz and gauge
invariance one can write down immediately a list of pos-
sible forms of A in terms of the fields ¢,E,B, the sim-
plest of which is

A~CgE-B, 4.1)

where the structural information (contained in the wave
function) appears in the guise of the constant C.

In formal terms, the effective Lagrangian would arise
by the replacement (3.1), i.e., by ®(x,§)—@(x). To
achieve that, one would have to rewrite the Lagrangian
as

L=L()+L(A)+L; (%, A)+L (@)

—L(@)+L;(@,¢)—Li(@,¥) . (4.2)
One would then have
H=HW)+H(A)+H;( A)+H'(p)
+Hj(@,¥)—[H'(@)+H(p,9)]
=H s—H' (4.3)
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which is still correct. The separation H 4 vs H' is, how-
ever, only symbolic—it is defined in terms of the matrix
elements. (For example, for the positronium decay it
would be given by (® | T |yy)—{@| T |yy), ie., by
the difference between the “exact” result and the result
obtained using the effective Hamiltonian.)

For the effective Lagrangian approach to be a useful
procedure one would require that for certain processes,
say, for low-energy processes, the matrix elements of the
corresponding Hamiltonians cancel, i.e., that for these
processes the matrix elements of H' are “‘small.” The
danger associated with the introduction of an effective
Lagrangian is visible in our example by the fact that this
graph which is finite in the full theory turns into a
superficially linearly divergent graph in the effective La-
grangian theory.

It is quite possible that the original Hamiltonian con-
tains terms which allow processes which are forbidden in
the effective Hamiltonian. In such cases one must retain
explicitly the appropriate terms from H' of (4.3), i.e., one
must “add them by hand” to H .

A case of this kind is the two-photon decay of the
pion. In the o model it is forbidden,!? in essence by the
Noether theorem. To achieve the two-photon decay one
thus must augment the o model by the addition of a
term of the form E-Bg, i.e., of the “anomalous term,”
to the effective Hamiltonian. And, once this term has
been included, the theory is consistent in that it can de-
scribe all processes which involve this anomalous in-
teraction.'

To summarize, we have seen explicitly how the
triangle-anomaly term in an effective theory for two-
photon fermion decay arises from eliminating internal
degrees of freedom. Similarly, the effective theory for
two-photon pion decay arises from eliminating QCD de-
grees of freedom. Generally speaking, such elimination
of degrees of freedom results in terms which cannot be
written as local Lagrangian interactions, and can best be
expressed topologically. An example is the Wess-
Zumino-Witten anomaly”!> for SU(3) Skyrmions which
is expressed as an integral over a five-dimensional mani-
fold whose boundary is Minkowski space.

A general way of introducing anomalies has been
given—albeit from a different point of view—by Wess
and Zumino.!> On the other hand, there may exist
theories which at the present time are rejected because
of the putative presence of perturbation theory
anomalies. This circumstance itself is, however, no
reason to reject the theory since such anomalies in fact
are not present in the .S matrix. It is reasonable to con-
jecture that all anomalies arise as terms in effective
theories resulting from simplifying a more general
theory.
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APPENDIX A

We give here some illustrations of the difficulties
which arise if one includes the contributions from the
contact singularity. Recall that the Tomonaga-
Schwinger equation arises from the Schrédinger equation
for the interaction picture state vector |S(¢)),

5‘37 1S (6)) = —iH, (1) | S () (A1)
by introducing the evolution operator U (t,t,) through
the defining equation

|S(£))=U(t,t,)|S(ty)) (A2)

and considering the equation obeyed by U. However,
one could instead solve Eq. (A1) directly. Specifically,
consider a stationary state, having the state vector
| S,(2)). Being a stationary state it has a time depen-
dence

d .

E | S (1)) =—iE,|S,(1)), (A3)
where E, is the energy including the shift arising from
the radiative corrections. This energy is well defined for
a suitably regularized theory. Using (A3), (A1) becomes
an eigenvalue equation which, in principle, can be
solved. The point of interest in the present context is
that the resulting eigenvalue equation contains the in-
teraction only as a single vertex—the solution is deter-
mined directly by H, and the commonly employed in-
teractions involve only well-defined operators, e.g.,
¥(x)¥(x)A (x). This is in contrast with the operators
arising in the higher-order terms of the time-
symmetrized Neumann series, e.g., operators of the form

T [d* d* $0w(x) A TP A (p) .

If one would not employ open integrals the contact term
P(x)(x) A (x)(x)P(x) A (x) would survive; this term is
highly singular and in general violates the symmetries of
the Lagrangian. Terms of this kind do not arise in (A3).
Another illustration is provided by the Tomonaga-
Schwinger differential equation
gat-U(t,to)Z—iH(t)U(t,to)
which is supposed to be obeyed by the Neumann series
(1.9). The difficulty one would generate by ignoring the
open integration, here, for example, expressed by replac-
ing the conditions (1.10) by the wrong conditions
t<t;<t,< -+, that is by inclusion of the contact
points, can be demonstrated as follows. Writing out in
detail, for example, the second-order term of (1.9) we
have

(A4)
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[t [dr,H,(t)H, (1))
= [dt, [at,[H(t DH (1) | i,
+W(t,)8(t,—1,)] . (AS)

Here the last term is the contact singularity. Performing
the time differentiation of (A4) for this term we find
d
o Yy=H,(t) [ dt,H (1) + W (1) . (A6)

The presence of the contact term W (t) indeed would
render the expansion (1.9) not to be a solution.

APPENDIX B

Consider the equation

x*f(x)=g(x), g(0)s£0 . (B1)
The solution of (B1) is (measure dx implied)
£ =PEEL L Ay (B2)
X

Here P is “principal value,” defined by the average value
of the integration along the path above and below x=0,

while A'?(x) is defined by
x2A?(x)=0 . (B3)

It contains, besides 8(x) and 8'(x), also the generalized
distribution (called ‘““metadistribution” in Ref. 3)

DP(x)= lim lim d, (x)d, (x),

ny—o0 Ny—>c0

(B4)

where d, (x) is a set of “good” functions'® which has the
limit

lim d,(x)=8(x) .

n— oo

(BS)

The general kth-order metadistributions arise as solu-
tions of an equation analogous to (B1), and obey a condi-
tion analogous to (B3), when x? is replaced by x*. The
prescription analogous to (B4) then contains k limiting
processes.

Owing to the several limiting operations in (B4) the
metadistributions are inherently ambiguous, in agree-
ment with the Jauch-Rohrlich theorem® concerning the
ambiguity of momentum-space Feynman integrals which
are more than logarithmically divergent. In fact, the
metadistributions arise as the position space form of
these integrals. Further details are given in Ref. 3.
However, the mathematical properties of the metadistri-
butions, in particular with respect to the Fourier trans-
form, are still largely unknown.
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