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&V=2 superconformal-invariant theories are studied and their general structure is analyzed. The
geometry of %=2 complex superspace is developed as a tool to study the correlation functions of
the theories above. The Ward identities of the global N=2 superconformal symmetry are solved,
to restrict the form of correlation functions. Advantage is taken of the existence of the degenerate
operators to derive the "fusion" rules for the unitary minimal systems with c&1. In particular,
the closure of the operator algebra for such systems is shown. The c = —,

' minimal system is ana-

lyzed and its two-, three-, and four-point functions as well as its operator algebra are calculated
explicitly.

I. INTRODUCTION

Recently there has been a lot of progress in under-
standing two-dimensional (2D) critical phenomena from
the quantum-field-theory point of view. ' A statistical
system at the critical point is scale invariant and, in two
dimensions, it has been proven that, under mild assump-
tions, it is invariant under the full conformal group
which is infinite dimensional. Belavin, Polyakov, and
Zamolodchikov laid the foundation of 2D conformal
field theory. Their techniques have been proven very
powerful in analyzing the structure of conformal field
theories, and in answering questions such as the follow-
ing. What is the representation content of a given
theory? What is its operator algebra? How can one cal-
culate exactly correlation functions?

Conformal theory in two dimensions also attracted a
lot of interest because it gives a nice natural framework
in formulating (super)string theories, which are supposed
to be candidates for a unified theory of nature.

Conformal invariance puts severe constraints on the
structure of a theory. By restricting the unitary repre-
sentations of the conformal group, one can classify all
possible anomalous dimensions that can appear in two-
dimensional critical systems. In particular, for c & 1 (c is
the anomaly of the conformal algebra), there exists only
a discrete list of values of c corresponding to theories
which are unitary (i.e., theories that do not have
negative-norm states in their Hilbert space ). The first
few of these theories have been identified as well-known
statistical systems, without continuous symmetries, the
Ising model (c = —,

' ), the Z3 Potts model (c = —', ), the tri-
critical Ising model (c =

—,', ), and the tricritical Z3 Potts
model (c = —,

' ). Knowledge of the structure of these
theories allows one to understand better the universality
classes of critical behavior.

This subset of conformal two-dimensional field
theories contains some special representations (the so-
called degenerate representations), the presence of which
renders the theory exactly solvable, in the sense that all

correlation functions satisfy linear differential equations,
so that, in the worst case, it is up to a reasonable com-
puter to evaluate them.

A natural extension of conformal invariance, inspired
by attempts to construct fermionic string theories, has
been its extension to include supersymmetry. Supersym-
metry, so far, although having appealing theoretical ad-
vantages, has been elusive, despite a lot of both theoreti-
cal and experimental efforts to give some clues support-
ing its existence.

It was surprising that the first example of supersym-
metry observed in nature came from a two-dimensional
critical system, the tricritical Ising model, realized ex-
perimentally by adsorbing helium on krypton-plated
graphite.

Superconformal invariance proves to be very fruitful
also in the formulation of (super)string theories, where
superconformal techniques are indeed valuable, making
a lot of problems, which otherwise are difficult to tackle,
almost elementary. ' '

A natural extension of N =1 superconformal invari-
ance is to include an extended supersymmetry, thus giv-
ing rise to N =2 superconformal invariance. There has
been considerable activity recently on this subject.
The Kac determinant has been calculated by several au-
thors and it was used to study the irreducible unitary
representations of the N =2 superconformal algebra. ' ''
The characters of the algebra have also been calculat-
ed. 13

One might wonder about the utility of an extended su-
perconformal algebra. There are various reasons ex-
plaining why there is such an interest.

First, the N =2 superconformal algebra is the gauge
algebra of the U(1) string, ' which, despite its phenome-
nological insignificance, is a good toy model to try tech-
niques pertinent in string theories, both first and second
quantized. From the point of view of superstring
theories there is a need for N=2 superconformal invari-
ance in the associated nonlinear o. model on a compact
Ricci-flat manifold, to ensure N =1 supersymmetry in
four dimensions. ' We need supersymmetry to be exact
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after compactification and nonperturbatively stable.
There is a serious hope that N =2 superconformal tech-
niques will provide useful tools in disentangling various
questions pertaining to the nature of different possiblecompactific

ation

.
Another reason is that N =2 invariance might be

relevant in some critical statistical systems. Such an ex-
ample has been given in Ref. 16, where it was shown
that the O(2) Gaussian model (XY model) is N = 2 super-
conformal invariant for a specific value of the radius (see
also Ref. 17). A specific radius corresponds to a specific
point on the critical line in the phase diagram of the
generalized Gaussian model.

In this paper we pursue our aim toward understanding
the N =2 superconformal field theory. We develop some
tools for doing complex analysis in N =2 superspace,
and we use them to solve the Ward identities for the glo-
bal N =2 symmetry, and find the general structure of
the correlation functions. The two- and three-point
functions in particular, are almost fixed. We derive the
"fusion" rules for the degenerate representations of the
N =2 algebra with c ~ 1, and we prove the closure of the
degenerate representation content of the unitary
"minimal" theories. The simplest minimal system, with
c = —,, is analyzed in detail. We calculate the four-point
function and we derive its operator algebra.

The structure of this paper is the following. In Sec. II
we introduce N =2 supersymmetry and we develop the
local analytic geometry of N =2 complex superspace.
We characterize the global N =2 superconformal group
OSp(2

~

2) and we give the explicit form of a general glo-
bal supertransformation. In Sec. III we analyze the gen-
eral structure of N =2 superconformal-invariant
theories. Section IV is devoted to the analysis of the
structure of the correlation functions, implied by global
N =2 superconformal invariance, and in the derivation
of "fusion" rules for the operator-product expansion of
the minimal theories and in particular the unitary
minimal models with c ~1. In Sec. V we discuss the
operator formalism in the Ramond sector and derive the
corresponding fusion rules. In Sec. VI the simplest
N =2 superconformal-invariant system with c = —,

' is ana-
lyzed. We compute its operator algebra and the four-
point function. Section VII contains our conclusions.
In Appendix A we give a justification of the "fusion"
rules, through the construction of the unitary degenerate
representations with c (1 using free fermions. In Ap-
pendix 8 we construct the primary fields of the c =

3

theory as vertex operators in the Gaussian model, and
we explicitly check some of the results of Secs. V and
VI.

II. W =2 SUPERSYMMETRY AND
THE ANALYTIC GEOMETRY OF N =2

COMPLEX SUPERSPACK

0 =0 ={0,0]=0. (2.1)

A point in superspace will be denoted by z:—(z, 0,0).
A superfield is an analytic function in z defined

through its power-series expansion in the fermionic coor-
dinates:

4(z)—:P(z)+Bi/(z)+0/(z)+00g (z) . (2.2)

The two supersymmetry transformations can be written
as

(z, 0, 0)~(z —e0, 0+e, 0), (2.3a)

(z, 0, 0)~(z —FO, O, 0+F), (2.3b)

where e, e are anticommuting variables which are the pa-
rameters of the transformation. Under the two super-
symmetry transformations [(2.3a),(2.3b)], a superfield
transforms as

N =2 supersymmetry is a natural extension of N =1
supersymmetry. In this case we have two different su-
persymmetry generators (supercharges), as well as an
O(2) [or U(1)] current which manifests the symmetry of
the theory under an O(2) rotation of the two supersym-
metries. The natural space to define the fields of the
theory is N =2 superspace [or more precisely (2,0) super-
space]. In a theory with (super)conformal invariance the
left and right sectors of the theory completely decouple,
so that the structure of the theory is that of a tensor
product of the left and right sectors. From now on we
will restrict ourselves to the left sector only, keeping in
mind the previous remarks.

(2,0) superspace includes, apart from the complex ana-
lytic coordinate z, two other fermionic coordinates, 0
and 0 corresponding to the two supersymmetries:

@(Z,0, 0)~N(z —EO, 0+E, 0) =$(z —EO ) + ( 0+E )ll//(z —EO ) +01((z —EO) + ( 0+ 6)Og (z —EB )

=y( )+~q( )+O[~a,y( ) eg( )+q( )]+Op—( )+00[g( )+~a, 1(( )], (2.4a)

4&(z, 0, 0 )~@(z —FO, 0, 0+e) =$(z —EO) +0$(z —e0) + ( 0+ E )l/l(z —EO ) +0( 0+F )g (z —EO)

=y(z) +&q(z) +0[1/ (z) +~d, y(z)+ eg (z) ]+0$(z) +00[g (z) —e&, i/(z) ] (2.4b)
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which implies the following transformation laws for the
component fields:

5+(z) =of(z), 5+(z) =eP(z),

5,$(z) =e[B,Q(z) —g (z) ], 5,$(z) =0,
5 Q(z)=0, 5—Q(z)=E[a, y(z)+g (z)]

5~(z)=~a, q(z), Sg(z)= —~a, q(z) .

(2.5)

It is easy to verify the global supersymmetry algebra:

[5„5,]=2ee, [5„5,]=[5,5,]=0 . (2.6)
—a

The covariant derivatives in superspace are defined by

D:— +0, D:— +0
—8 — 0 8

Bz QL9 Bz
(2.7a)

D =D =0, [ D, D I
=2

Bz
(2.7b)

We introduce here the notion of a chiral N =2
superfield, as a superfield satisfying one of the following
conditions:

z'= fp(z)+Of, (z)+Of, (z)+00f2(z),

0'=gp(z)+Og, (z)+Og, (z)+00g2(z),

0'=hp(z)+Ohi(z)+Ohi(z)+00h2(z) .

(2.13)

A natural definition for an extended superanalytic trans-
formation is one under which the covariant derivatives
transform homogeneously. Under (2.13) the covariant
derivatives transform as

D =(DO')D'+(DO') +[Dz' —(DO')0']
00' az'

(2. 14a)

It is the generating algebra of N =2 superanalytic trans-
formations in N =2 superspace. We should, at this
point, define what we mean by an extended superanalytic
transformation. The most general coordinate transfor-
mation in N =2 superspace has the form
( fp f2 g i g i h i h i are commuting functions, whereas
f, ,f, ,gp, g2, hp, hq are anticommuting ones)

D @(z)=0 =-4(z) =P(z) +20/(z) —OOB, Q(z),

DC (z) =0=- C (z) =y(z)+20'(z)+00a, y(z) .

(2.8a)

(2.8b)

D =(DO')D '+(DO'), +[Dz' —(DO')0']
ao az'

(2.14b)

The Grassmann integration is defined through the usual
standard rules:

Consequently the conditions for (2.13) to be a superana-
lytic transformation are

f dOdO= f dOd00= f dOd08=0, f dOd000=1 DO' =DO '=Dz' —(DO')0 ' =Dz' —(D 0 ')0' =0 . (2.15)

(2.9)

If we call the generators of the two supersymmetries
G ized, G ized then Eq. (2.6) is translated into

IG, ~2, G, q~I = IG,n, G, q2I =0,
(2.10)

[In fact, even if we demand that D transforms in general
as D =(DO')D+(DO')D ' we end up at (2.15). There is
a dual requirement, D =(DO')D ' which gives conditions
conjugate to (2.15).] Solving (2.15) we arrive at the most
general form of an extended superanalytic transforma-
tion,

2G„—: [L G —in)n+1
(2.1 1)

—in
L

&
being the usual translation operator on the complex

plane. The full superconformal symmetry is generated
by the usual Virasoro generators L„, the supersymmetry
generators

z'= fp(z)+Ogi(z)hp(z)+Oh i(z)gp(z)

+00[gp(z)h p(z) ]',
0'=gp(z)+Og, (z)+00gp(z),

0 '=hp(z)+Oh i(z) —00h p(z)

along with the supplementary condition

(2.16)

G„—: [L„,G, z2 ], r =n ——,',n+1
and the U(l) current generators J„,which implement the
U(1) symmetry, under which the two supercurrents are
in complex-conjugate representations. The full N =2 su-
perconformal algebra then takes the form

[L,L„]= (m n)L +„+——(m —m )5 ~„p,

[L,G ]= ——r G +„[L,G )= ——r G +„,2 +" ' " 2

[J,J„]=cm5 +„p, [J,G„]=G „,[J,G„]=G
[G„,G, ] = [G„,G, I =0, [L,J„]= nJ +„, —

[G„,G, j =2L, +, +(r —s)J„+,+c(r ——,
' )5„+,p .

dz'—= (DO')dz, dz'—= (DO')dz . (2.18)

(The bar over dz should not be confused with the an-
tiholomorphic coordinate z; it denotes an independent
Abelian differential. )

The superconformal tensor fields are defined by the

fp(z) =gp(z)hp(z) —gp(z)h p(z)+g i(z)h i(z), (2.17)

where in (2.17) and on the left-hand side of (2.16) a
prime means differentiation with respect to z.

In particular, the global supersymmetry transforma-
tions are special cases of (2.16) with fp(z)=z, gp(z)=E,
hp(z)=0, g, (z)=h, (z)=1, and fp(z)=z, gp(z)=0,
hp(z) =F, gi(z) =h, (z) =1, respectively.

We define the two Abelian N =2 superdifferentials
through their transformation properties under analytic
superconformal transformations:
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condition that

e(z)(dz) +~ (dz)

is an N =2 superconformal-invariant quantity, where
E, Q are the dimensions and charge of the lowest com-
ponent field. They are the primary superfields generat-
ing the highest weight irreducible representations of the
N =2 superconformal algebra. Globally defined tensor
superfields must have dimensions and charges which are
integers or half-integers. They can be constructed as
composite operations from locally defined fields. The
Cauchy integral formulas can be extended in super-
space. ' The N =2 superanalytic transformations are
generated by the energy-momentum superfield, which in
component form can be written as

5,J(z) = [8,v]J(z)+ v B,J(z)+ —,
' [Dv]D J(z)

+ —,
' [Dv]D J(z)+ —8, [D,D]v, (2.23)

v being an infinitesimal N =2 superfield.
The change in the energy-momentum tensor under a

finite superconformal transformation is given by

J(z) =J'(z')[DB'][D8 ']+—S (z, z'),
2

(2.24)

N =2 superfield has c= 1. Equation (2.22) corresponds
to a change of the energy-momentum tensor under a su-
perconformal transformation

J(z)—:J (z)+ i 86(z)+i 8G (z)+ 288 T (z) . (2.19)
where the N =2 super-Schwarzian derivative is defined
through

The Fourier modes of the generators are defined in the
usual way S(z,z )= BDO '

DO'
aDO ae ae
D8' (D8')(D8')

(2.25)

J„ L„J(z)—= g, , T(z)—:g
n&Z Z n&Z Z

(2.20)

It satisfies the composition law

S(z»z3) =S(z»zz)+(D8q)(D8z)S (zz, z3) (2.26)

n+1 a
n = n+1

2 BO

G(z)—= g, , G(z)—= Q
nEZ Z nEZ Z

These generators are represented in the space of
superfield functions in the following way:

On the sphere for a vector field to be globally defined,
it must have a vanishing "anomaly;" that is, under an
infinitesimal transformation generated by it, the anoma-
lous part in (2.23) must vanish: B,[D,D]v =0, which
gives an eight-parameter family of globally defined vec-
tor fields on the sphere

v(z)= v &+vpz+v]z +8(u ]gp+u&ypz)
2

Jn =Zn t9 —t9= ~ -a a
ao ae

(2.21)

+8(u &zz+u~zzz)+qp88 . (2.27)

G»2 =z —0 +nz" 60
aZ

nGn»2:Z 6
gg BZ

—nz" '00
ae

J(zi )J(z~) = ~12
DJ(z~)—

Z12

12— 1212
D J(zz)+2 z J(zz)

Z12Z12

12~12, C+2 J'(z~)+
Z12 2

Z12
(2.22)

where the anomaly c is normalized, so that a free scalar

It is straightforward to check that the generators in
Eq. (2.21) satisfy the N =2 superconformal loop algebra
[as in (2.14) with c =0], which is the algebra of N =2 su-
perconformal transformations over S '. The explicit rep-
resentation (2.21) will be useful later on in this paper, to
analyze the correlation functions of N =2
superconformal-invariant theories.

The energy-momentum tensor has an operator-
product expansion with itself:

These vector fields generate the global N =2 super-
conformal algebra, osp(2

~

2). [In fact they generate half
of osp(2

~

2), its holomorphic part. ] The global N =2 su-
perconformal algebra is the maximal, finite-dimensional,
subalgebra of the N =2 superconformal algebra. It con-
tains the generators of the ordinary projective transfor-
mations, L, , LO,L, , the supercharges G+»2, G+1&2,
and the zero mode of the U(1) current. It is easy to
check using (2.14) that this set of generators closes into
itself, and it contains as a subalgebra, the N = 1 super-
conformal algebra osp(2

~

1). Since the Schwarzian
derivative transforms as in (2.26), the fact that it van-
ishes for infinitesimal global N =2 transformations con-
tinues to be true for finite transformations belonging to
the identity component of the group.

The OSp(2
~

2) group transformations can be found ei-
ther by exponentiating the generators of the algebra
given in (2.21) or using the general form of superanalytic
transformations (2.18), and some analyticity argu-
ments. ' Another way is to solve the equation
S(z,z')=—0. There are three parameters associated with
the subgroup SL(2,C), four supersymmetry parameters
(Grassmann), e„&p, e(, Ep, and a parameter q associated
with the zero mode of the U(1) current. The group
transformations are
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az +b (1 —2E1E2)E1Z +E2(1+ 2E2E1) (1+ 2E1E2)E1Z +(1—,'—E1E2)E
+eqe +e q8

cz +d (cz +d) (cz +d)
[2d E1E1—2c (E1E2+E2E1)]z +d (E,E2+ E2E1)—2c E2E2

+
(cz +d)

e]z +Ep 1 + 2 ( E2E1 —E1E2) '+
~ E1E1E2E2 —E1d —E2C

0t + q0 +00
cz +d cz +d (cz -+d)

(2.28a)

(2.28b)

eiz +E
cz +d

1+ 2 (E2E1'—E1E2)+ 4 E1E1E2E2 'E2c —E1d
q0

2 4 +00
cz +d (cz +d)

(2.28c)

The X =2 superconformal vector field generates the
group of N =2 superdiffeomorphisms on the circle,
DifF(S ). The Schwarzian derivative is the globally in-
variant generator of the second cohomology group of
DiIF(S'). It generates a nontrivial transformation on the
energy-momentum tensor viewed as a connection on
moduli space.

As can be seen from (2.14), the subalgebra does not
have an anomaly even if c&0. This is of crucial impor-
tance in a superconformal theory as we will see later. It
implies that all correlation functions are invariant under
OSp(2

~
2), constraining, in such a way, their form.

Along with some supplementary constraints on the
correlation functions, present when the theory has de-
generate representations, it helps to determine the corre-
lation functions completely, rendering the theory exactly
solvable.

III. THE GENERAL STRUCTURE OF N =2
SUPERCONFORMAL THEORIES

An N =2 superconformal field theory is a field theory
invariant under the N =2 superanalytic transformations
described in the previous section, which form the X =2
superconformal group. The infinitesimal transforma-
tions are generated by an infinitesimal local superfield
u(z):

v (z) —=vo(z)+8u1(z)+8u, (z)+88v2(z),
z'=z +u (z)+ —,'[(Dv)8+(Dv)8],

0'=0+ —,'Du, 0'=0+ —,'Du .

(3.1)

(3.2)

5„@(z)= — pc dz' v (z')Jlz')N(z),
4mi

(3.3)

where the contour C, surrounds the point z in the com-
plex plane.

The variation (3.3) is determined by the singularities
of the operator-product expansion (OPE), of the energy-

The function u, , u, are Grassmann functions anticom-
muting among themselves and with 0, 0, whereas uo, vz

are the usual meromorphic functions. The superconfor-
mal transformations are generated by the superenergy-
momentum tensor, see (2.19). Using the Cauchy formu-
las of the previous section we can write the change of a
local superfield under a superconformal transformation
as

momentum tensor with the superfield. In particular a
superfield function transforms under an infinitesimal
transformation as

5,+= u BN+ —,
' Du D N+ —,

' Du D N . (3.4)

It is usually convenient to use radial quantizations go-
ing (through a superanalytic transformation), from the
cylinder to the plane: (lnz, z '~ 8,z '~ 8)~( ~+io, .

8, 8).
The fermionic fields on the cylinder can have two pos-

sible boundary conditions: periodic or antiperiodic. On
the plane, this is translated to G, G(ze ')=+G, G(z),
the corresponding subspaces of the full Hilbert spaces
being the Neveu-Schwarz (NS) and Ramond (R ) sectors.
In the NS sector G(ze ') =G(z) whereas in the R sector
G(ze ') = —G(z); that is, the fermionic fields are double
valued on the plane.

The operator-product expansion for the energy-
momentum tensor was given in (2.22). The germs that
appear in (2.22) are the most general terms that are al-
lowed in a Euclidean N =2 supersymmetric quantum
field theory, satisfying the standard constructive-field-
theory axioms. The proof of Ref. 2 can be extended
easily in our case, to guarantee (2.22) provided the
theory has scale invariance and global N =2 supersym-
metry. Using the mode expansions (2.20) we can derive
(2.14) from (2.22). The energy-momentum tensor must
be a Hermitian operator, implying some Herrniticity
conditions among its components:

L„=L „, J„=J,, G, =G, G, =G (3.5)

We define the in vacuum
~

0) of the theory at time
r= —oo (z =0), to be OSp(2

~

2) invariant. This means
that it is annihilated by I„, n & —1, J„, n )0, G„G„,
r) —

—,
' (NS sector) or G„,G„, n )0 in the R sector. In

the same way the out vacuum is defined at z~~. The
vacuum state belongs to the NS sector and it is the
ground state of the theory. The unitary irreducible rep-
resentations of the N =2 superconformal algebra are
generated from highest-weight vectors (HWV's), by the
action of the lowering operators of the algebra,
L„,J„,G„,G„,n, r & 0.

In the NS sector the HWV's are generated by the ac-
tion of primary conformal superfields on the vacuum
state. Their defining relations are their transformation
properties under superconformal transformations encod-
ed in their OPE with the energy-momentum tensor:
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6 12~12
J(z& }@(zz)= 2b,

z 4(zz)+2 5'(zq)
Z12 Z12

Under a finite transformation @(z) transforms as

4(z)=4(z')[D8'] +~ [D8'] (3.8)

Z12 Z12

~12 12— QN(z, )+ D4(zp) — D4(z~)+
Z12

where (b„Q) are its dimension and U(1) charge. The
HWV in the NS sector are characterized by their eigen-
values under the zero modes of the algebra:

(3.6)
Lo

I

@& =~
I
~'&, Jo

I

@& =Q
I
@& (3.9)

Using (3.3) and (3.6) we can derive the transformation
law for a primary superfield operator: Being HW states they must be annihilated by the rais-

ing operators of the algebra:
5„4(z)= 5(B,u)N(z)+u8, 4(z)+ —,'[Du]DN(z)

L„
I

4&& =J„
I
@&=G„

I
N&=G„

I

4&&, n )0 . (3.10)

+ —,
' [Du]D &(z ) ——

[ [D,D ]u ] @(z) . (3.7) The OPE (3.6) can be written also as commutation rela-
tions which will be useful later on:

[L„,C&(z)) =z"+' 4(z)+(n +1)z" b, + —8 +8 4(z)+ n(n + 1)—z" '884(z),
az 2 ag ag 2

[J„,4(z))=z" Q+8 —8 4(z)+2nM" '88@(z),
ae a6

[G„,4(z)] =z" ' —8 4(z) (r + —,')z" '— (2b, +Q)8+88 4(z),a a —a

Be

(3.11)

[G„@(z)]=z"+' —8 C&(z) —(r + —'}z" '~ (2A —Q)8 —88 @(z) .
a6 az ' ae

In the R sector the zero modes are Lp, Jp, and Gp Gp,
their eigenvalues characterizing HWV's. There are two
kinds of HWV's,

I
b„Q ~ —,

'
& +, '

L p I
b„Q + —,

'
& g b,

I
b„Q + —,

' &+,——

Jo
I

~ Q+-,' &~=(Q+-,')
I
~,Q+ —,

' &+,
(3.12}

which satisfy an additional HWV condition with respect
to the supercharges:

Go
I

5 Q+ ~

& —=0~ Go Ib~Q ~ &+=0. (3.13)

G(z)e (co)= —,'u~
e+ (co)

(z —~)
(3.14)

where a+ ——1, a =b —c/8. This happens in order for

Consequently there are two kinds of representations:
R *. The two representations are isomorphic under
charge conjugation (G„~G„,J„—+ —J„).

From now on we will restrict ourselves to one of
them, say R+, our statements being valid for R as
well.

In the R sector, the ground state is not unique. There
are two ground states degenerate in energy (i.e., having
the same dimension):

I

e+ & and Go
I

e+ &—:
I
8

They are generated from the vacuum
I
0 & (which be-

longs to the NS sector), by primary fields e—(z), much
like the spin fields of the N =1 superconformal theories.
The spin fields have double-valued OPE with the
energy-momentum tensor: for example,

the spin field to be able to change the boundary condi-
tions of the fermionic parts of the superfields. We can
view the spin fields as opening and closing cuts on the
cylinder. The states in the R sector are generated by or-
dinary conformal superfields acting on the Ramond
ground states. The generators of global N =2 supersym-
metry transformations in the R sector are Gp, Gp.

Unbroken N =2 supersymmetry is implied by the ex-
istence of a ground state which is annihilated by the glo-
bal X =2 supersymmetry generators. The state

I

e+ & is
annihilated by Gp because of Eq. (3.13). Applying
[ Gp, Go ] to it we obtain

[Gp Gp] I
e & =GpGp

I
8 & =(2Lp — /4)

I

e+

=(2S—c/4)
I

e+& .

(3.15)

Consequently, in order for Gp to annihilate
I

e+ &, its
dimension must be b, + ——c /8. The operator [ Gp, Go ] is
a Hermitian positive operator; thus, any dimension in
the R sector has to be )c/8. This is the reason that the
vacuum

I
0&, the lowest-energy state must belong to the

NS sector. In the same way Go
I
e & =0 implies

=c/8. Therefore, the existence of a state in the R
sector with A=c/8 implies unbroken N =2 supersym-
metry on the cylinder. On the other hand, if such a
state does not exist in the theory, one supersymmetry
out of the two is broken.

So far we have been discussing the two sectors of the
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N =2 superconformal theory that parallel the situation
in ordinary N =1 superconformal theories. In the N =2
case though, unlike the N =1, there is another sector
present in general due to the fact that N =2 superfields
contain two fermionic components, so there is also the
possibility of choosing periodic boundary conditions for
one of them, and antiperiodic for the other one. This
can be seen easier if we write the algebra (2. 14) in an
O(2) basis:

G„+Gr 2 Gr —G„
(3.16)

In this basis the algebra (2.14) becomes

[L,L„]=(m n)L—+„+—(m —m)5 +„o,

[L,G„']= ——r G' +„, [L,J„]= nJ—+„,2
(3.17)[J,J„]=cm 5 +„o, [J,G,']=is'~G' +„,

J(z) —=J (z)+ e'JH'G'(z)+c'~8'HJT(z), (3.18)

where 9' is an O(2) doublet of Grassmann coordinates.
A twisted superfield

N(z) =P(z)+ e'Jg'P(z)(z)+ ,' e'~0'O~g (z—) (3.19)

has antiperiodic boundary conditions for P(z) and g (z)
and periodic boundary conditions for g (z) and 1('(z), on
the cylinder, that is P and P' are Z2 twisted. Again
here, Go is a Hermitian operator. Its square, acting on a
primary state must give positive eigenvalues, which im-
plies that all of the dimensions in the T sector satisfy
A&c/8. In particular, it implies that if there is a state
with 6=c /8 this is then the ground state, and it is dou-
bly degenerate since this state

I

H+ ) and
I

H )
I

[G„',GJ) = 25"L,+, +is"(r —s)J„+,+c(r ——,')5'J5„+, o .

The twisted (T) N =2 algebra is defined by choosing in-

teger modes for G ', L, and half-integer modes for

G„,Jr choices, compatible with the commutation rela-
tions (3.17). In the O(2) basis the energy-momentum
tensor becomes

:=Go
I

H+ ), have the same energies. One of the two su-

persymmetries, namely, the one generated by Go, is then
unbroken, since Go annihilates the ground states:

(Go)
I

H+ ) = —,
' )Go, Go ] I

H+ )

= (Lo —c /8 )H+ ) =0,
(3.20)

Go IH )=(Go) IH+)=0.
The global supersymmetry generated by G 1&2 is bro-

ken since G 1&2 fails to annihilate the ground states.
This is obvious since in order for 61&2 to annihilate a
primary state, its dimension has to be zero, and as we ar-
gued above, stages with zero dimension do not exist in
the T sector. Thus in the T sector we have at most a
remnant N =1 supersymmetry. The ground states are
generated from the NS vacuum by the "twist" fields
H —(z), the presence of which induces cuts on the com-
plex plane such that P(z) and g'(z) are double valued
around the point where the twist field lies. In the T sec-
tor there is a parity operator ( —1) which commutes
with L,J and anticommutes with G' . In particular,

( —1)F
I

H+
& =

I

H+ )

(3.21)

In the R sector the two-spin fields are nonlocal with
respect to each other. Their operator-product expansion
contains square-root singularities in the complex plane
which induce nonlocality when we project to Euclidean
space. The same is true in the T sector. In order to ob-
tain a local theory we must suitably project out one-
fermion parity, the same way as in the N =1 case.

Unitarity, as in N =0, 1 conformal theories, puts
severe constraints in the representation content of an
N =2 superconformal theory. A basic tool for studying
unitarity is the Kac determinant. It has been derived in
Refs. 10—12. We will include the main results, since
they will be useful later on, in this paper.

In the NS sector HWV's are labeled by their dimen-
sion h and charge q. Any secondary state is then
characterized by its level (eigenvalue of Lo —h) and rela-
tive charge (eigenvalue of Jo —q). The Kac determinant
at level n and relative charge m is given by

detM„(c, h, q) = g [ f, , ]
1(rs & 2n

s, even
k EZ+1/2

Ns PNs(~ — k, m —sg~(k);k)
(3.22)

F =2(c —1)h — — r HZ+ s &2Z+rs= & — —q —
4

+
4

gk =2h 2kq+(c —1)(k ———,'), k CZ+ —,',
(3.23a)

(3.23b)

while the NS partition functions are defined by

g PNs(n, m)z "w
n, m

(1+z" '~ w)(1+z ' w ')
(1—z )

(3.24a)

g PNs(n, m;k)z "w
n, m

=(1+z ~ ~ w's"'"') ' g PNs(n, m)z "w, (3.24b)
n, m

where z, w are formal complex variables. Equation (3.22)
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implies that whenever there is a vanishing of f„, , there
exists a HWV at level rs/2 and relative charge zero.
When gk =0, there is a HWV at level

~

k
~

and relative
charges sgn(k). For c & 1 unitary representations exist
only for the discrete series of values for c:

c=l—2
m =2, 3,4, . . . . (3.25)

Their dimension and charges are given by (we employ
the notation of Ref. 10)

4jk —1

4m
j —kq= j,k EZ+ —,',

(3.26)
0&j,k,j+k &m —1 .

Representations belonging to this class (NSO) are degen-

NS ~ NS
8n 0~ Rn +sgn(n) &

f12)p for some n EZ+ —,
'

(3.27)

They are also degenerate.
(b) NS3 The representation in this class are charac-

terized by gn &0, Vn EZ+ —,'. They contain degenerate
representations when g„=0 for some n EZ+ —,'.

In the R —sector HWV's are characterized by their di-
mension h and charge q+ —,'. They satisfy also the sup-
plementary HWV conditions (3.13). The Kac deter-
minant at level n and relative charge m is

crate. For c &1 there are two other classes of unitary
representations.

(a) NS2. These representations are characterized by
the condition

($)~[f21]Pg(n —rs l2, m)+[21]PR(n — k I, m —sgn(k);k)
t t

1(rs &2n keZ
s, even

(3.28)

f„,=2(c —1)(h —c/8) —q -+, r EZ+, s E2Z+,

gk ——2h —2kq + (c —1)(k ——,
'

) ——,', k EZ,

(3.29a)

(3.29b)

=w +w (1+z w)(1+z w )

k=1 (1—z")

g P„(n, m; )kz "w
n, m

(3.30a)

where the Ramond partition functions are defined by

g P21 ( n, m )z "w
n, m

(b) R3. These representations are characterized by
g„&0, Vn EZ.

They contain a subset of degenerate representations
corresponding to g„=0 for some n EZ.

Finally in the T sector the HWV are characterized by
their dimension I1 and fermion parity ( —1) . Each level
contains two equal subspaces of opposite fermion parity.
The Kac determinant for the T algebra is

( 1 +2 I"
I w sgn1k1) —1 g p (n, m )z nw m (3.30b) detM+o ——1, detM" o ——h —c /8, (3.33a)

n, m

sgn(k) =1, k ~0, —1 for k &0, and sgn(0) =1 ( —1) for
the R+ (R ) algebra, respectively.

A vanishing of f„", signals the existence of a HWV at
level rs/2 and relative charge ——,'. %'hen gk ——0 there is
a HWV at level

~

k
~

and relative charge sgn(k)——,'sgn(0). For c & 1 unitary representations exist only
for the values given in (3.25), the respective dimensions
and (1) charges being

detM „(c,h)=(h —c/8) + [f„,]
1 & rs (Zn

s, odd

(3.33b)

f„,=2(c —1)(h —c/8)+ ', s &2Z+ —1,

(3.34)

(3.35)

h =—+, q =sgn(0)
c jk j —k
8 m' Pl

j,kEZ, 0= &j —1, k j+k &m —1 .
(3.31)

For c & 1 unitary representations exist again for the
values (3.25), all being degenerate, with dimensions given
by

R R R
gn =0» gn +sgn(n) &0» f 1,2 + 0

for some n EZ. They are also degenerate.

(3.32)

This class of representations (Ro ) contains only de-
generate representations. For c & 1, there are again two
classes of unitary representations.

(a) R~2. The representations in this class are charac-
terized by

c (m —2r)
8 16m

m =2, 3, . . . , rEZ, 1&r &m/2 .
(3.36)

For c & 1, we have another class of unitary representa-
tions, T2, with h & c/8. None of them are degenerate.

The degenerate representations belonging to the class
NSO, 8 o, To, have been proven to be unitary through an
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explicit unitary construction of their Hilbert space.
The question about the unitary of Rz and NSz is still
open.

IV. CORRELATION FUNCTIONS
AND OPERATOR ALGEBRA OF THE

UNITARY DEGENERATE REPRESENTATIONS.
NS SECTOR

As mentioned earlier in this work, the invariance of
the vacuum under the global X =2 superconformal
group OSp(2

~
2) turns out to be very useful towards the

evaluation of the correlation functions. From now on

F:(0
~

ei(zi)e3(zp)43(z3) e (z )
~
0) (4.1)

satisfies the Ward identities

we restrict ourselves to the NS sector. Similar tech-
niques, however, apply to the R* sector as described in
the next section.

Using the commutations relations (3.11), derived in
the previous section, we can write the %'ard identities
for global superconformal invariance. Their derivation
is obvious. For example, I 1 annihilates the in vacuum.
But we can move it to the left using (3.11), so we end up
with a di8'erential equation for the correlation function.
Thus the n-point function

n

F„=O,
i=1 i

a 1 a — al., : g z, +b., + —0, +0,
g

F„=O,

L+, . g .z, +2z, b, , +z, 0, +0, +Q, 0, 0, .F„=O,

Jo. g Q +0; —0; F„=O,a a (4.2)

6—1/2 ~ 6 —1/2
a — a " a

g0 -'~. '=& ~0
—0, F„=O,

— a
Z

a aGn. g z, —0,
— a—(2&;+Q; )0; —0, 0, F„=O,' 'ao,

a — a
a0 'a

i =1 l l

a—(2&, —Q, )0, +0, 0, F„=O,' 'a6,

where b,;,Q; are dimensions and charges of the various fields appearing in the correlation function (4.1).
A superfluid operator in terms of components has the form

&P(z) —=P(z)+0/(z)+0/(z)+00g (z) .

The two-point function is completely fixed by the Ward identities, up to an irrelevant normalization constant:

—(&)+&2) ~1212
(0

~
N, (zi)42(z3)

~

0) =ziq ' ' exp Q2 6L3 +(3 O5~ ~

(4.3)

(4.4)

It is a function of the supersymmetry invariant distances in superspace, z1z ——z1 —zz —0102—L9102, 012 ——0& —02,

0iz ——0, —0z. The three-point function depends on nine independent variables (z;,0;,0;). Since OSp(2
~

2) has eight
generators we can fix at most eight of them, so there must be a unique combination invariant under OSp(2

~

2). This
is a commuting combination which turns out to be nilpotent:

012012

Z12

~1313 ~2323 z '=0.
Z13 Z23

(4.5)

So, for any particular solution of the Ward identities, we can obtain the general solution by multiplying it with

(1+aR ), a being an arbitrary commuting constant. Solving the Ward identities for the three-point function we ob-
tain

I9,- 0,
(0

~

C&, (z, )@ (z )+3(z3)
~

0) =C g z~ " exp g A,J 5Q +Q +Q o,
l (J i&j lJ

where the constants

(4.6)
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3

g AJ= —Q;. (4.7)

It is easily seen from (4.7) that the equations defining the constants A," are not fixing all of them because of the
charge neutrality condition, for the correlation function. In particular, if A," is some solution of (4.7) then A l2+a,
+ 3 ] + (x + p3 +~, is also a solution. Of course this is expected. It corresponds to multiplying the three-point function
by the OSp(2

l
2) invariant (1+aR ). For the three-point function to be nonzero, the OPE of the operators C&l, @2

must contain the family N3. Then the normalization constant C of the three-point function is the Glebsch-Gordan
coefficient for the decomposition [@l]@[@2]~[42].In the N =2 case, like the N =1, there is another operator-
product coefficient to be determined, namely, one of the A,J, due to the existence of the OSp(2

l
2) invariant R.

In general OSp(2
l
2) invariance constrains the n-point function to have the form

~J~J(0
l
@,(z, )@2(z2), . . . , N„(z„)

l
0) —g [zj ']exp g A;, F( xlx 2, . . . , x&„s)5+.

l (J i(j iJ

(4.8)

~ij =~ji ~ g A; = —Q;, +EJ=2b,;, (4.9)

0—:(0
l
@l(zl)@2(z2) ' @„ l(z„ l)

l
X)

=&0l @l(zl)@2(z2) + —l(z —1)o
l

~ Q) . (4.10)

Moving the operator 0 to the left using the commuta-
tion relations (3.11) we end up with a superdifferential
equation for the correlation function. Solving these
equations we can determine all the correlation functions
that the degenerate family is participating in. An in-

where x, , i =1,2, . . . , 3n —8 are the combinations of
the coordinates, with dimension zero, invariant under
OSp(2 2). They are functions of the invariant dis-
tances, z;j 0'j 0 j All the nontrivial information about
the theory is encoded in the functions F„. In most cases
they are determined by the specific details of the theory.
In certain cases though, that we will discuss below, they
can be evaluated, just by knowing the representation
content of the theory. So let us focus on these interest-
ing situations where there are more constraints on the
form of the correlation functions.

Consider a HW unitary irreducible representation of
the N =2 superconformal algebra. It is generated by a
HWV,

l
A, Q), the primary state, satisfying the usual

HWV conditions. The full representation is obtained
from

l
b, Q ) by applying the lowering operations of the

algebra. In some special situations it may turn out that
one of the secondary states satisfies the HWV conditions.
That means that the representation generated by l

b, Q )
is not irreducible, but there is another representation
(the one generated by the secondary vector) embedded in
it. The secondary HWV,

l
X), has the interesting prop-

erty that it is null [i.e., (X
l
X)=0] and orthogonal to any

other state in the Hilbert space. We may thus con-
sistently set

l
X) to be equal to zero, a condition that

decouples all its family from the correlation function of
the theory. In fact this condition will generate con-
straints on the correlation functions, of the primary state

l

b. , Q). To see how such constraints arise we have to
remember that I) is given by some operator 0, con-
structed out of the lowering operators of the algebra,
acting on

l
b, Q ); thus,

teresting set of theories are those that contain only de-
generate representations, the so-called "minimal"
theories. They contain a discrete (in general, infinite) set
of primary operators. A subset of them are unitary and
their content has presented in Sec. III according to the
results of Refs. 10—12. They contain a finite set of pri-
mary fields. Such theories are exactly solvable in the
previous sense. Unitary minimal theories are known for
systems realizing conformal, ' ' or superconformal in-
variance. ' The "fusion" rules in the X =0 case were
derived in Ref. 1. In the 1V =1 case they were partially
derived in Ref. 22 and in full generality in Ref. 24.

A necessary and sufficient condition for the existence
of such systems is the closure of the operator algebra of
a set of unitary degenerate representations. In fact we
will show that the operator algebra of the unitary degen-
erate representations of the N =2 superconformal alge-
bra, with c &1, does close. We will derive also the
"fusion" rules for the operator algebra.

Consider the OPE of two primary operators:

@l(z)C&2(0)=g 4;(0)z ' (4.11)

where the notation in the right-hand side of (4.11) is
symbolic, meaning the product can be written as a sum
of primary operators and/or their descendants, and the
(z, 0, 8) dependence can be easily substituted back. What
we want to know is which irreducible representation can
appear in the operator product of two given representa-
tions. There is a simple criterion for representations
which are not allowed, and this is the vanishing of the
appropriate three-point function.

The strategy is to use the superdifferential equations
stemming from the degeneracy of the representations to
derive selection rules for the operator-product algebra.
Let us consider a concrete example. Take a representa-
tion which has a null vector at the first level. Such a
representation is, for example, one with b. =(m —2)/2m,
Q = —(m —2)/m, when c =1—2/m, m =2, 3, . . .
The null vector at level one is given by
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l X])=[(Q —1)L 1
—(2&+ I)J

+G —1/2G —]/2f l
~ Q& (4.12)

It is easy to verify, using the commutation relations
(2.14), that

l X] ) satisfies all the HWV conditions. Con-
sider now the n-point function where this state is partici-
pating. We have mentioned already that such a correla-

tion function is identically zero:

0—= & 0
I
+](z])~2(z2) @n(z. )

l
&] ~

o
l
c'](z])c'2(z2) ' ' 04(0)

I
o (4.13)

Commuting 0 through to the left we arrive at the fol-
lowing superdifferential equation:

2A;
0;0;

~l

+X X
i =1 j=1

—0;
vo,

'
az,

.(0
l
e(z, ) e„(z„)e(0)

l
0) =o . (4.14)

We will specialize (4.14) to the three-point function
(0

l
@](z])42(z2)4&3(z3)

l
0), where 0&3 is the degenerate

operator mentioned above.
Doing a translation and two global supersymmetry

transformations [we have the freedom to do that, thanks
to the OSp(2

l
2) invariance of the correlation function],

we can write the three-point function in the form
(0

l
4](z])42(z2)43(0)

l
0), where

—0; (0
l
@](z]) C&„(z„)4(0)

l
0) =0— a

(4.18)

~ 13 ~13 ~ 23 ~23 (4.19)

which for the three-point function in particular implies

Z]:(Z] Z3 0]03 0]03 0] 03 01 03)

z2 = (z2 —z3 —0203 —0203~ 02 —03, 02 —03 )

(4.15)
Solving (4.16) and (4.19) we obtain

2~] =Q] 2~2=Q2 ~]=~3 ~2 . (4.20)

The state mentioned above happens to be also degen-
erate at level —,

' and relative charge —1, the null vector
being

I&1/2. ~ G —]/21~ Q & .

In the same way we derive another equation:

(4.17)

Using the form of the three-point function found ear-
lier, in (4.14) we arrive at the following set of conditions
for the dimension 6;j and the constants A;'

A]3(Q3 1 )+Q](263+ 1 )+ A, 3 +A]3 —0

(b, ]2 —A, 2)( A ]3+6]3)=0,
( ~]2+ A 12 )( A 13 +~]3)

(Q3 —1)A, 3
—2b, ](263+1)

+(A]3 A ]3+ 1 )(A]3+ A ]3 )=0, (4.16)

(2~3+ )(~]2 A]2)+(~]3 A 13 ~23+ A 23

(2~3+ 1)( A]2+~]2)+(~23 A 23)(~]3+A]3)

Consequently in the operator product of +2, with
2b, 2 ——Q2, and %3, only fields with 2b ] =Q], and
6 1

—63 A2 Can appear.
As was mentioned in the previous section, the unitary

irreducible representations in the NS sector with c & 1,
exist when c =1—2/m, m EZ+ —[1I and their dimen-
sions and charges are given by (3.26). It can be shown
that for the family (j,k), there are three independent
null HWV embedded in it, one at relative charge zero
and level m —(j+k), another at relative charge 1 and
level k, and another one at relative charge —1 and level

j (for more details see Ref. 13). Consequently the corre-
lation functions of (j,k) satisfy three superdiff'erential
equations of orders j,k, m —(j + k) simultaneously. The
existence of three null vectors renders the N =2 case
qualitatively different from the 1V =0, 1 cases.

The "fusion" rules coming from the consideration of
the two charged null vectors at levels j1,k1 of the family
(j],k] ) are (in Appendix A we present another heuristic
justification of the fusion rules based on the unitary con-
struction of these representations using free fermions)

(j],k])S(j2,k2) =
j& —1/2

n =1/2 —k&

(j]+n, n j2+k—]+k2), j ]+k])j2+k2, (4.21a)

(j] k»(j2 k2)=
j I

—1/2

n =1/2 —kl
(j, +n, n —j, +k, +k, ), j, +k, &j,+k, . (4.21b)
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The strategy to derive the fusion rules in their general
form, Eqs. (4.21), is parallel to the one used before in the
N =0, 1 cases. The operator families ( —', , —,') and ( —,', —', )

are the shifting up and down operators and the following
relations are easily checked using the superdifferential
equations 3/2 — ~

(-,
' o)

c= 2

( —', , —,')s(j, k) =(j,k —1)63(j+ l, k),
( —,', —,')(j, k)=(j —I,k)e(j, k+1) .

(4.22a)

(4.22b)
(o,o)

1/2 — ~

( —,', +-,' )e(0,0)-(0,0),
( —,', +-,')e(-,', +--,')-(0,0) .

(4.22c)

This system, is somewhat special and it will be ana-
lyzed in more detail in the next section.

The c = —,
' system has the representation content

shown in Fig. 2. Its fusion rules are

Then (4.21) is proven by taking various products of
the shifting operators and using the commutativity and
associativity properties of the OPE. [We have indepen-
dently checked (4.21) up to level —,

' using the relevant
superdifferential equations. ]

As mentioned above, the family (j,k) is also degen-
erate at relative charge zero and level m —(j+k). The
extra conditions from this new null HWV have the effect
of truncating the sums in (4.21) into the bounds, 0&j,
k, j+ k &m —1, where (j, , k, )(j2, k2)-(j, k). This
truncation phenomenon is known already to happen in
the analogous minimal theories of the N =0, 1 algebras.
Thus it is consistent to built N =2 unitary minimal sys-
tems, with c & 1, where there is a finite number of repre-
sentations, all degenerate, and all the correlation func-
tions calculable.

We present the two explicit examples of the operator
algebra of the first two nontrivial theories with c=

3

(m =3), c = —,
' (m =4). In the c = —,

' theory the represen-
tation content of the NS sector is shown in Fig. 1. The
operator algebra is

l

1/2
l

3/2 5/2 j
FIG. 2. Operator content of the c = —' minimal system (NS

sector). Notation same as in Fig. 1.

( —,', +—,')e ( —,', + —,')-(0,0),

( —,', +—,
'

) ( —,', 0)—( —,', +—,
' ),

( —,', +—,
'

)ot ( —,', 0 ) —( —,', + —,
' ),

( —,', 0)e( —,', 0)-(—,', 0)e(0,0) .

(4.23)

We should remind the reader that the "fusion" rules
we have derived give the maximum possible set of opera-
tors that can appear in an operator-product expansion.
To determine exactly which of them contribute and to
evaluate their Glebsch-Gordan coefticients one has to
evaluate the four-point function. This is what we will do
for the c = —,

' system in the next section.
It is worth saying a few words here about the situation

for other values of the central charge. We consider
again the set of primary fields with dimensions and U(1)
charges given by

,'(jk ——,')(1 c—), Q = —,'(j——k)(1 —c), j,k E.Z+ —,
'

(4.24)

-=1C= 3
~~ (b, ,Q)

For any c there are charged null vectors one at level k
and relative charge sgn(k) and another one at level j and
relative charge —sgn(j). If c is irrational there are no
other null vectors. But if c is rational, then it can be
written in the form

3/2 — ~

c=1—,p qEZ,2p
(4.25)

0/2 — ~

1/2
I

3/2

FIG. 1. Operator content of the c= —,
' minimal system (NS

sector) (the first entry is the dimension of an operator and the
second its change). Circles represent operators belonging to
the R sector. The solid circles indicate the N =2 subsystem of
C= 3.

and there is an infinity of null vectors including also neu-
tral ones. '

The derivation of (4.21) used only the conditions stem-
ming from the charged null vectors; thus, it remains true
for every c. When c =1—2p/q then the existence of the
neutral null vectors implies the truncation of the infinite
set (4.24) to the finite subset 0&j, k,j+k &q/p —l.
The latter case is of interest because otherwise operators
with negative dimensions occur in the theory. Thus
N =2 minimal theories exist for c =1—2p/q, p, q HZ
and contain a finite set of representations closed under
OPE.
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V. THE OPERATOR FORMALISM
IN THE RAMOND SECTOR

——ANS+ 2QNs+ Bc, Q~ —=QNs+ 2c (5.3b)

G (z) =e ""G(e 'z), G(z) =e "G(e 'z),

0&a&1, (5.1)

a =0, 1 correspond to R ( + ) boundary conditions
whereas a = —,

' to NS. There is an automorphism of the
algebra, that relates algebras with different a's given by

In Sec. III we gave a brief description of the Ramond
sector and its ground states. We will continue this dis-
cussion and develop in a parallel way the structure that
we outlined in Sec. IV for the NS sector.

The ground state that preserves N =2 supersymmetry
has b, =c/8. The rest of the primary states are generat-
ed from the ground state by the action of NS superfield
operators. Since primary operators are labeled also by
their charge there is a nontrivial question to answer:
What is the charge of the ground state? To find a
reasonable answer we will use a piece of knowledge per-
taining to the N =2 superconformal algebras.

The algebra given in (3.17) can be consistently defined
by a general choice of the periodicity properties of the
two supercharges:

From now on we will focus on the R+ sector. (The R
sector is obtained by charge conjugation. )

It is natural to consider as the in ground state
~
R+ &

of the R sector the state which is the image of the unit
operator in the NS sector under the automorphism (5.2).
It has dimension b, =c/8 and charge Q = —c/2, as it
can be seen from (5.3a). The out ground state (R
then must have charge Q =c/2. The states

~
R+ & and

~

R & being HWV's of the R+ algebra satisfy, among
others, the following HWV conditions:

Go ~R+ &=Go ~R &=0. (5.4)

Go IR+ &=G-i IR+ &=Go ~R- &=0. (5.5)

We define the correlation functions in the R sector as

The representations corresponding to
~
R+ & and

~

R
are also degenerate. By looking at the Kac determinant
in the R sector (3.29) we can easily verify that

~
R+ & is

degenerate at level zero, relative charge 1 as well as level
one, relative charge —1, while

~

R & is degenerate at
level zero and relative charge 1 (for special values of c
there are additional degeneracies). The vanishing condi-
tions for the null vectors mentioned above are

n n ~n 0~ Gn+a n

2

2

(5.2a)

(5.2b)

F„(zi,z , 2. . . , z„)

~
@](z[)@p(z2) @ (z )

~

R

(R

~g+ ~NS pgNS+ SC~ Qg+ QNS 2
(5.3a)

This shows that algebras with different a's are in fact
equivalent. In particular, the NS algebra is equivalent to
the R* algebra. The relations (5.2) imply a relation
among dimensions and charges of NS and R —represen-
tations:

(5.6)

where 4;(z, ) is a NS superfield. Then the correlation
functions (5.6) satisfy Ward identities due to (5.4) and
(5.5) which parallel the global X =2 Ward identities in
the NS sector:

Q +e, —e, F (z, , . . . , z„)=0,— a a (5.7a)

z, +9+—e; +e;1 a — a F„(zi, . . . , z„)=0, (5.7b)

n

Qz, —e,
1 — a

(2b, ; +g; )e;+e;e;
2+z, ' ' ' ' 'ae, F„(z,, . . . , z„)=0, (5.7c)

a — a~' ae -'a.
i =1 l

(2b„—Q; )e; —e;e;
a F„(z„.. . , z„)=0, (5.7d)

—e; + — (2A; —Q;)e; —e;e;
— a — a

zc 2z; z;
F„(z,, . . . , z„)=0, (5.7e)

where b, ;,Q; are the (NS) dimensions and charges of &5;.

Equation (5.7) can be used to constrain the form of the
correlation functions in the R sector. We will work out
as an example the constraints on the two-point function:

(R
~
4&(z&)42(z2)

~
R+ &

F2(z, , zz) =
(R R+ )

Equation (5.7a) implies that Q, + Q2 ——0 and

(5.8)
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F2(z»z2)= fo(z]»2)+8]8]f](z»z2)

2 2fz ], 2, 2f~(z»z2)

+8]82f4(z],zq)+8]8]8z82g (z],z2) . (5.9)

(2b. + 1)u

(u —1)

2
fp(u) .

(2b. —Q] + 1)u

Q —12

(5.11c)

fo(u) g(u)fp(u, u)=, g(u, v)=

f;(u)
f;(u, u)=

U

i =1,2, 3,4.
(5.10)

The rest of the equations are solved by
2b, —Qi

fp(u)= f](u)=
(

2 1)26, '

2(~ —Q] )f4( u ) = ~ f (pu )
u —1

b, —(b, +Q])u
fp(u),

u (u —1)
(S.1 la)

We define the variables, u =Qz]/zz, u =Qz]z2 in or-
der to split the dimensional dependence. Equation (5.7b)
implies

The two-point function is asymmetric due to the
asymmetry in the charge assignments of the in and out
ground states. The two-point function with

~
R+ )~

~

R ) is given by (5.11) with the following sub-
stitutions made: fp~fp, g~g, f]~ f, , —f2~ f2, —
f&~f4, Q, ~—Q]. In a similar way higher correlation
functions can be constrained by (5.7).

Let us now discuss the fusion rules in the R sector. It
is important to note that the automorphism (5.2)
preserves the structure of the Kac determinant [the rela-
tions (5.3) have of course to be taken into account].
Consequently it preserves the form of the fusion rules
derived in the NS sector. Consider the set of HWV's of
the R + algebra,

~
b„Q ——,

' ) with dimensions and
charges given by

b, =—+ (1 —c), Q = (1—c), j k EZ . (5 12)
c jk j —k
8 2

'
2

bu +Q] —b,
f2(u)= — ufo(u),

Q —1
(5.11b)

Using (5.3) we can establish the correspondence

NSH(j, k)~(j + —,', k ——,')ER+, j,k EZ++ —,
' (5.13)

2b, u —(2b, —Q] )
f3(u)=2 2 fp(u)

u —1

which along with (4.21) implies the following fusion
rules in the R + sector:

j2 —1

(j ],k] )gl(jp, kp)= y (j ]+n, ]] +k]+k2 —j2+1), j]+k])j2+kp,
n= —k2

jl —1

(j„k])e(j„k,)= g (j,+]],]] +k, +k, —J, +1), j, +k, &j,+k, ,
n= —kl

(S.14a)

(5.14b)

where j&, j2, k &, k2 are integers.
In the case c =1—2p/q, p, q being integers, the ex-

istence of the neutral null HWV's implies again the trun-
cation of (5.14) in the interval 0 &j—1, k,j +k & q /
p —1. The unitary minimal models (p = 1, q =m,
m =2, 3, . . . ) also belong to this class. What we have
discussed so far for the R sector is illustrated explicitly
in Appendix B for the c = —,

' model.

VI. THE 5= 3, N =2 SUPERCONFORMAL
THEORY

This theory has the simplest operator content com-
pared to the other unitary minimal N =2 theories. It is
a1so the only member of the N =2 discrete series which
has the same central element with a member of the
N =1 discrete series. The authors of Ref. 11 identified
some operators in the NS and R sector of the N =2,
c

3 system with corresponding operators in the c =
3

N =1 system. In Ref. 13, the rest of the operators of the

N =2 system were identified and a rigorous proof of the
decomposition was given using character formulas. The
correspondence is as follows (subscripts indicate
N =1,2). The unit operator (0)2 decomposes into (0)]
and a primary field (1)] in the NS sector. The energy-
mornentum tensor and one of the supercharges are con-
tained in (0)], whereas the other supercharge and the
U(1) current are contained in (1)]. The NS representa-
tion (h, q) =( —,', +—,

'
) decomposes into ( —,'), in the NS sec-

tor. In the R sector, ( —', , 0)z decomposes into ( —', )] in the
R sector of the N = 1 system whereas ( —,'„+—,', +—', )

decomposes into ( —,
' )] in the R sector. Finally ( —,', )2 in

the twisted sector of the N =2 theory decomposes into
( —,', )] in the NS sector of the N =1 theory. Thus the
c 3 N =2 system is a subsector of the c =—', ,N = 1 sys-
tern, as is shown in Fig. 3.

The general discussion of the previous section can be
specialized in this situation. The model contains the
unit (superfield) operator and a conjugate pair of pri-
mary operators, representing the b, = —,', Q =+—,

' states of
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the model. We will denote by N+ and No the corre-
sponding superfield operators. The two-point function is

(0
i
4+(zI)@ (z2)

~

0) =z12 exp
—1/2 1 12~12

3 Z12

1 /3 1 2323=CZ23 exP
3 Z23

(6.2)

It implies the following operator-product expansions for
the component fields

(6.1)
where we suppressed the antianalytic part and we have
chosen a particular convenient normalization for the
two-point function. The only three-point function which
is nonzero is (0

~

@0(zI)@+(z2)4 (z3)
~

0). It is fixed
up to a normalization constant by the OSp(2

~

2) invari-
ance and the extra differential equations that it is satisfy-
ing due to the fact that it contains degenerate fields:

(0
~
e,(z, )e (z2)C (z, )

~

0&

I

'(1e)

'(ie)
I

I

I

' 4)
I

I

I

'

(yi)
I

I

I

'(~4)

I

,'(e)

I

'(1'e)--0- ——
I

I

I

( e)-- ~---
I

I

I

,'(i~)
I

I

I

I

I

I

FIG. 3. Operator content of the c = ~, N =1 minimal sys-
tem. Here squares represent operators belonging to the NS
sector. Other notation same as in Fig. 1.

level —,', relative charge one, and at level —,', relative
charge —1. The relevant superdifferential equations for
the four-point function F4(zI, z2, z3) are

@~(z)—=P+(z)+9/+(z)+8/~(z)+80g+(z),

0+0 -~ 0+g ——
—,'J 0 g+ ———,'J

0+0 - 'J 0+0 -- 'J g-+g-

(6.3a)

(6.3b)

3

g GIq2 F4(zI, z2, z3)=0,
i =1

3

g (L ', —J'I )F4(zI, z2, z3)=0,

(6.4a)

(6.4b)

which are determined up to an overall normalization
constant. The first nontrivial correlation function is the
four-point function. Its evaluation enables us to fix the
Glebsch-Gordan coefficient in the OPE in (6.3).

There are two ways to evaluate the four-point func-
tion. One is to solve the superdifferential equations that
it satisfies due to degeneracy of the operators contained
in it. The other is to use the Feigin-Fuks construction.
The only nontrivial four-point function is
(0

~

4 (zI)4+(z2)4 (z3)4+(z4)
i
0). The operator

N+(z) is degenerate at level 1, relative charge zero, at
I

3 . 3

g G 3/2 g (J'I+L', )G,n F4(z„z2,z3) =0,

(6.4c)

where the relevant differential operators can be read
from (3.11) and we have simplified (6.4b) using (6.4a).
The variables z; are the shifted variables we mentioned
in the last section.

Global N =2 superconformal invariance constrains
the four-point function to be

1 1414
F4(bfz1, z2, z3, z4) =C (z12z34) exp

3 Z14

t92424 ~34634+
Z24 Z34

G4(XI,X2,X3iX4) (6.5)

Z23

Z14Z23 Z13Z24
y2=

12 34 12

where x, , i =1,2, 3,4, are the four independent combina-
tions of the coordinates invariant under the OSp(2

i
2)

group. The obvious (dependent) invariants are

~23~23 ~3434 24~24
X1= +

Z23 Z34 Z24

12~12 2424 ~1414
X2= +

Z12 Z24 Z14

13~13 ~3434 ~14914
X3= + (6.6)

Z13 Z34 Z14

12~12 2323 ~13~13+
Z12

Since y1 ——x1+x2 —x3, y1 can be deleted. We have also
the additional relations

2 2 2 2XI X2 X3 Vl 0~ XIX2 (X I+X3)X2

X1X2X3=0
(6.7a)

(V2 V3+ I) V2XIX2 X2X3 V2XI 3
2

x1x 2
——y 3X1X3

(6.7b)

The relations above imply that in fact x1, x2, x3, and
x4 —=—V2 are independent invariants. Solving Eqs. (6.4) we
arrive at a four-point function of the form
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1/3x4+1
G4(xi, x2, x3yx4) C

X4

1
Xexp (y —x, +x4x, )

3 x4+1

(6.8)

where y =y& —y3+ 1.
The four-point function (6.8) is powerlike, something

to be expected since the primary fields of the c=
3

theory can be constructed as vertex operators of a single
c =1 scalar field (see Appendix B). We have performed
the same calculations using the vertex operator
method. We find the same result as in (6.8) (the hy-
pergeometric function obtained through this method
truncate to polynomials of the first degree giving a
powerlike four-point function). It is difficult though in
this method to obtain the result as a super meromorphic
function in N =2 superspace.

By factorizing over two-point functions we can find
that C =1. This implies that the OPE coefficient in (6.3)
is in fact unity. The full construction of the four-point
function, including its antiholomorphic part does not in-
volve any subtleties related to monodromy invariance
(locality in the Euclidean domain). We simply have to
multiply the holomorphic and antiholomorphic pieces
which have the same form. Knowledge of the four-point
function (6.8) is enough to determine any n-point func-
tion using the OPE coefficient for the degenerate opera-
tors.

Closing this section we shall remark again that the

3 N =2 superconformal theory describes a particular
point of the Gaussian model for a specific value of the
radius (see Ref. 16 and Appendix B).

VII. CONCLUSIONS AND PROSPECTS

In this paper we analyzed the general structure of
N =2 superconformal-invariant theories. We developed
the local analytic geometry of (2,0) complex superspace
and we constructed the global N =2 superconformal
group. The Ward identifies for the global N =2 super-
conformal symmetry were solved, which provided a par-
tial determination of the correlation functions. In par-
ticular, the two-point functions are determined up to an
irrelevant normalization, whereas the three-point func-
tion is determined up to two OPE coefficients.

We then specialized to unitary minimal theories with
c & 1. We derived extra superdifferential equations,
satisfied by all the correlation functions of the degen-
erate operators. Solving these equations for the three-
point function we derived the "fusion" rules for the
N =2 unitary minimal systems. In particular, we
showed that the operator algebra of the unitary degen-
erate representations with c &1 closes, which in turn
guarantees the consistency of N =2 superconformal uni-
tary minimal theories with c & 1. We analyzed in partic-
ular the simplest such system, that is the one with c = 3.
This system has been shown to be a subsector of the
c

3
N = 1 superconformal minimal system. "' We

calculated its four-point function by solving the relevant
superdifferential equation and we thus determined its
operator algebra. The c= —,

' system is realized at some
special point in the Gaussian model. ' We think that it
is interesting and important to search for critical systems
which realize the N =2 superconformal symmetry since
their structure seems to be very exciting.

Of course much more needs to be done in the context
of N =2 superconformally invariant theories. A unitary
construction of the degenerate representations with c ) 1

is still missing. Their operator algebra needs to be
found. (Work in that direction is in progress. )

This class of representations is very important since
they occur in N=2 nonlinear a models on compact
Ricci-Aat manifolds, arising in superstring
compactification. The existence of four-dimensional su-
persymmetry relies heavily on the N =2 superconformal
invariance of the respective o. model. ' N =2 supercon-
forrnal methods may turn out to be important tools in
understanding superstring compactification and low-
energy superstring phenomenology.

Note added. During the completion of this work we
received Ref. 27 where the analytic geometry of extend-
ed super Riemann surfaces was developed. We do agree
with the results of Ref. 27 concerning the local geometry
(since we have not dealt with global aspects). After the
completion of this work we received Refs. 9, 17, 18, 24,
and 28, where some related issues have been discussed.
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APPENDIX A

l (l + 1)—l3

n +2
213

n+2 (A 1)

The above are HW irreducible representations of the
aftine algebra and they are all integrable. Their

In this appendix we present a heuristic justification of
the "fusion rules" obtained for the NS sector in Sec. IV,
and we extend it to derive also the fusion rules for the R
and T sectors of the N =2 algebra. We make use of the
unitary construction of these representations using free
fermions.

In order to achieve this goal, n SU(2) doublets with
U(1) charge zero and an SU(2) singlet with U(1) charge
+1 are used. They are HW irreducible representation of
the SU(2)XU(1) affine algebra. The central charge of
the N =2 algebra constructed this way turns out to be
c=1—2/(n+2) and the U(1) current is given by
J (z) I (z), where I (z) is —the U(1) generator of the
SU(2)XU(l) affine algebra. The HWV are constructed
out of the modes g' &&2 of the fermions acting on the
vacuum, and we can multiply at most n of them so that
the SU(2) isospin of the generated states can take the
values l =0, —,', 1, . . . , n/2 while the third component
takes the usual values —l &l3 &l. The dimensions and
U(l) charges of the corresponding HWV's are
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operator-product rules are the same as in the SU(2) Lie-
algebra case:

In this system the N =2 superconformal algebra is real-
ized by T(z) and'

(l, , m) )(8)(12,m2)= g (l, m(+m3),
z=~z, —z, ~

(A2)

2
c j2
8 4(n +2) (A3)

in terms of the eigenvalues jz of Jz, n/2(jz (n/2.
To make contact with our notation in Sec. III we have

to identify 2j2 ——m —2r. The fusion rules for the T sec-
tor then are

[ri ][r2]=[r], (A4)

where r =r&+r2, if r]+r2 (m/2 or r =r[+r2 —m/2 if
r&+r& ~ m/2.

There is no rigorous proof that the above construc-
tions do indeed generate the HWV of the degenerate
representations. In that sense the derivation above is
heuristic.

where 1'=min(n /2, 1, +13), and the upper truncation is
due to the integrability requirements, see, for example,
Ref. 29.

Now in order to make contact with the parametriza-
tion used in Secs. III and IV we set m = n +2,
j =1+13+—,', k =1 —13+—,'. Then (A2) reduces to the
"fusion rules" (4.21). This "derivation" can be applied
to the R sector as well giving the same fusion rules as in
the NS sector.

In the T sector a similar construction can be made
using twisted fermions generating a twisted SU(2) XU(1)
affine algebra. Only J has integer modes and the di-
mensions of the HWV of the N =2 algebra are given by

J(z) =— (),P(z), G(z) —=3/2/3:e'
3

G(z) =&2/3:e -'~'~": .
(B4)

We can evaluate operator-product expansions of vertex
operators using the familiar formula

V (Z)v (W) (Z W)ab. cia/(z)+ibP(w) (B5)

by expanding the second exponential around z =w and
keeping the singular terms. Since

V, (w)
J(z) V, (w) =

v'3 z —w
(B6)

we can easily establish that T(z), G(z), G(z), and J(z)
satisfy the standard N =2 superconformal algebra (2.14)
or (2.22) with c = —,'.

Candidates for the lowest components of the primary
superfields P+(z) with dimension —,

' and charge +—,
' are

the vertex operators

( ) .e (i/)/ 3) ((()z).

.e —(i/)/3)P(z)

iZ/+( w)
G(z)P~(w)= +nonsingular, (B8a)

which by (B3) and (B6) have the correct dimension and
U(1) charge. We have now to find the superpartners of
P+. Using the relations (3.6) in component form we
have

APPENDIX B

In this appendix we construct the components of the
primary superfields of the c = —,', N =2 superconformal
system (NS sector) using a single c =1 scalar field. We
use these operators to give an alternative calculation of
the four-point function (6.8) which was computed in the
main body of this paper.

We consider a scalar field P(z) with a two-point func-
tion given by

i)/+(w)
G(z)P (+)w= +nonsingular .

Z —W

Applying (B8a) and (B8b) to (B7) we find

(z ) 0 iZ) ( z ) 3/2 /3 e ( E/ 23 )(b(z)

(z) =v'2/3:e' ' '~":, g (z) =0 .

Using then

G (z)(Z/+(w) =0, G(z)g+(w) =0,

(B8b)

(B9)

(0
~

(1(z)iI((w)
~

0) = —ln(z —w) . (B1) P+(w) (3 P+(w) g+(w)
G(z))Z/+(w) =(2h+Q), + +

(z w)3 z —w z —w

T(w)
+ +nonsingular terms .

z —w
(B2)

A vertex operator defined by V, (z) =—:e"~":has dimen-
sion 6, =a /2:

V. (w) a. V. (w)
T(z) V, (w) = ' + +nonsingular .

2 (z —w)3 z —w

(B3)

We define the standard energy-momentum tensor
T(z)= —

—,': B,JB,Q: satisfying

T( )T( ) — 1/2 2T(w)
(z —w) (z —M)

(B10)

P+(w) (3 P+(w) g+(w)
G(z)(Z)+(w) = (2b, —Q)

(z —w)2 z —w z —w

we find that they are satisfied if g+(z)=(),P+(z) and
g (.)= —a, y (.).

The fact that one of the fermionic components is zero
and the fourth component is a descendant of the first
component explains the group-theoretic result' that the
family (b, = —,', Q =+—,

' ) decomposes to the N =1 family
with 6=—,

' and half the apparent degrees of freedom.
This means, using our definition (2.8), that P+ are

chiral primary operators of opposite chirality. In fact,
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looking at (3.11) we can establish that any primary
super6eld, degenerate at no ——+—,', is chiral in the sense of
(2.8a) and (2.8b) and thus contains half the apparent de-
grees of freedom.

Computing correlation functions of @+ and N are
now trivial. Using

&0~ V. (z, )V. (z, ) V. (z„) ~0)

=Q (zi) ' '5 ga; . (Bll)

We can evaluate the different components of (6.8). Such
a correlation is nonzero only if g, a; =0; otherwise IR
divergences force it to vanish. Such a calculation has
been performed for the four-point function and as ex-
pected it agrees with the result (6.8).

Let us also illustrate the situation in the R + sector of
the model. We have two operators of dimension —,', and
charge +—,

' and two operators of dimension —', and charge
+—,'. The ground states can be represented by the 6= —,',

vertex operators:

) . (i /2V3 iP(zi.
( ) . —(i/2V3)P(z). (B12)

can be computed using vertex operator techniques, giv-
ing the result derived in Sec. V.

The operator of dimension —,'is represented by
:e—' '~".. It is easy to see that it is generated from
the R vacuum by the action of the 6= —,

' operators of the
NS sector due to the following OPE:

(i /+3)ttJ(z) .. (i /2+3)P(w).
~ ~

( ~)1/6[ e(ik3/2)P(wi +.g (z ~)]
(B13a)

:e —(i /&3)P(~) .. —(i /2;1/ 3)P(tel).::e

(z to)( /6[e(i&3 /2)$(w). ++(z to)]

(B13b)

The two-point function

(R ( ~ )4+, /, (z, )+,/6(z2)R+ (0) )
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