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In a recent Letter, we used "two-body Dirac equations" to make the naive quark model fully

relativistic. In this paper, we apply Dirac s constraint mechanics and supersymmetry not to a
string but instead to a system of two spinning particles to derive the two coupled Dirac equations
that govern the quantum mechanics of two spin-z particles interacting through world scalar and

vector potentials. Along the way, we demonstrate that our equations are compatible, that the sca-
lar and vector interaction structures contribute separately to compatibility when both are present,
and that compatibility persists even in the presence of relative-momentum-dependent interactions.
We show that extrapolation of supersymmetries associated with the ordinary single-particle Dirac
equation to the interacting two-body system eliminates spin complications and reduces the compa-
tibility problem to that of the corresponding spinless system. In addition, supersymmetry intro-
duces physically important nonperturbative recoil effects that contribute to the correct perturba-
tive spectrum while rendering nonsingular certain singular terms of standard semirelativistic ap-
proximations. This eliminates the need for singularity-softening parameters or finite particle sizes
in phenomenological applications. In order to make clear the underlying structure of our equa-
tions, we also derive the corresponding coupled Dirac or Klein-Gordon equations that govern a
system of two particles, one or neither of which has spin.

E. INTRODUCTION

In a recent Letter, ' we used two-body Dirac equations
(derived from Dirac's constraint mechanics and super-
symmetry ) to make the naive quark model fully rela-
tivistic. For two relativistic quarks interacting through
a system of world scalar and vector potentials, these
equations are compatible 16-component (or 4&&4 matrix)
Dirac equations that take the c.m. forms

~t0 Vs&[1'& (pi —A i )+m, +S,]/=0,
+20=1 52'/2 (p2 A2)+m2+S2] P

(la)

(lb)

where A; and S; are (spin-dependent) constituent vector
and scalar potentials. The spin dependence of the rela-
tivistic interaction between the spinning quarks arises
naturally from the relativistic potential structure and the
mutual compatibility of these two Dirac equations and is
not a patchwork of semirelativistic corrections inspired
by field theory. In applications to meson spectroscopy,
the relativistic structure of these equations permits a
one-parameter fit to the meson spectrum that is surpris-
ingly good.

The resulting wave equations constitute the first fully
covariant treatment of the quantum relativistic two-body
problem that simultaneously (a) includes constituent
spin, (b) regulates the relative time in a covariant
manner, (c) provides an exact reduction to four decou-
pled four-component equations, (d) includes nonpertur-

bative recoil effects in a natural way that eliminates the
need for singularity-softening parameters or finite parti-
cle size in phenomenological applications, (e) is canoni-
cally equivalent in the semirelativistic approximation to
the Fermi-Breit approximation to the Bethe-Salpeter
equation, (f) (unlike the Bethe-Salpeter equation) has a
local momentum structure as simple as that of the non-
relativistic Schrodinger equation, (g) is well defined for
zero-mass constituents (hence, permits investigation of
the chiral-symmetry limit as well as provides simplified
models of bound systems of massless particles such as
gluonium), (h) permits two diff'erent types of world vec-
tor interaction in addition to one type of scalar interac-
tion, (i) possesses spin structure that yields an exact solu-
tion for singlet positronium, (j) has static limits that are
relativistic, reducing to the ordinary single-particle
Dirac equation in the limit that either particle becomes
infinitely heavy, (k) possesses a great variety of
equivalent forms that are rearrangements of its two cou-
pled Dirac equations (hence, is directly related to many
previously known quantum descriptions of the relativis-
tic two-body system), and (1) is the canonically quantized
version of a sensible (pseudo)classical mechanics that is
described by coupled Lorentz and Bargmann-Michel-
Telegdi equations.

Other methods for including relativistic corrections
use a number of different approaches that fall roughly
into four categories. The first consists of those ap-
proaches that rely on semirelativistic corrections to the
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Schrodinger equation (e.g., slow-motion weak-potential
approximations involving p kinetic energy contributions
and Breit-inspired spin-dependent potential correc-
tions ). The second consists of those methods that
treat the kinematics exactly [e.g. , through

(p2+ F11 2)1/2+(p 2+m 2)1/2

the Breit equation, or truncations of the Bethe-Salpeter
equation' ' "] while employing spin-dependent correc-
tions to the potential inspired by perturbative quantum
field theory. Hence, these methods treat the potential as
though it were weak since the spin-dependent operators
are (usually illegal) quantum operators that can only be
treated perturbatively. The third category consists of
those methods that treat the kinematics exactly but dress
up the potentials abstracted from field theory with
smoothing factors so that the operators are quantum-
mechanically legal, ' ' effectively bypassing a weak-
potential limitation. The final category consists of those
relativistic schemes that treat the quark and antiquark
asymmetrically by using a single interacting Dirac equa-
tion for the quark while repeatedly treating the anti-
quark as a free particle. '

Our method is distinguished from all of those by the
fact that it exactly incorporates Dirac s relativistic spin
structure for each spinning particle in an interacting sys-
tem. Hence, our wave equations preserve an exactly rel-
ativistic nonperturbative structure naturally present in
the ordinary (one-body) Dirac equation that has been left
out of all of the other approaches for one or both spin-
ning particles.

We derive our wave equations by canonically quantiz-
ing a fully covariant version of classical mechanics given
by Dirac's Hamiltonian constraint technique. '

Discovered by a number of authors in the mid to late
1970s, ' ' this form of relativistic dynamics was initial-
ly a "toy" of interest primarily to specialists in relativis-
tic quantum mechanics. Subsequently, we and oth-
ers ' found that it was a useful phenomenological tool
for including relativistic two-body kinematical effects in
spin-independent treatments of the quark model. Re-
cently, by incorporating realistic interactions (with

dynamical recoil effects) into the formalism and by in-
troducing spin for both particles through the use of su-
persymmetries, ' we have brought this formalism to the
stage at which we have been able to use it to make a
realistic spectral calculation. ' At the same time, the out-
lines of multiple underlying relationships between this
method and the spectral methods of quantum field
theory have begun to emerge.

Initially, various authors became interested in the con-
straint method as a route around the Currie-Jordan-
Sudarshan (CJS) "non-interaction theorem, " which ap-
parently forbade canonical treatment of the problem of
X interacting particles in relativistic mechanics (and thus
a simple canonical transition to relativistic quantum
mechanics). In spite of this theorem, there existed suc-
cessful covariant treatments of the relativistic quantum-
mechanical two-body problem abstracted from quantum
field theory (e.g., the quasipotential equation ) for

which there were apparently no classical analogs. Rel-
ativistic constraint mechanics, constructed in accord
with Dirac s Hamiltonian constraint formalism' (with
one relativistic constraint for each particle), allows a co-
variant elimination of essentially relativistic variables
(such as the c.m. relative time and relative energy in the
two-body problem), reducing (covariantly) the number of
degrees of freedom to those of the nonrelativistic prob-
lem. In its classical version, this dynamics evades the
CJS theorem by introducing an extra degree of freedom,
the relative time, which it controls in a covariant
manner. When quantized, this structure automatically
eliminates quantum ghosts (relative-time excitations with
negative norms). One no longer has to exorcise them by
hand (e.g. , as done for the relativistic oscillator by Feyn-
man, Kislinger, and Ravndal ) or in an ad hoc manner
by setting the relative time equal to zero (as done in
effect in some treatments of the Bethe-Salpeter equation).
The resulting relativistic wave equations reduce for spin-
less particles to the older quasipotential equation, ex-
plaining its existence despite the classical CJS theorem.
However, the early versions of the constraint approach
were suitable for only the crudest phenomenological ap-
plications since they included neither spin nor dynamical
recoil effects.

We have found how to extend the constraint formal-
isrn to systems containing spin- —,

' particles. ' The essen-
tial difficulty is that the (pseudo)classical constraints or
the resulting quantum-mechanical wave equations (one
for each constituent) must be compatible. Our solution
to this problem is to insist that a hidden
(super)symmetry of the ordinary Dirac equation be
preserved by each spinning particle during interaction.
This ensures that the resulting "two-body Dirac equa-
tions" e6'ectively swa11ow up two one-body Dirac equa-
tions in a consistent way. The structures that such syrn-
metries dictate automatically introduce dynamical recoil
effects, permit rearrangement of wave equations into
convenient forms, and in one case of physical impor-
tance permit an exact 16-component solution to the cou-
pled wave equations.

The special features of the wave equations give the
constraint approach a practical advantage over the four
classes of alternate approaches for realistic spectral cal-
culations. Most importantly, the fact that our method
uses two simultaneous Dirac equations provides us with
a natural mechanism for reducing the equations (with no
truncations or positive-energy projections) to four decou-
pled four-component Schrodinger-like forms, in the
same manner that the one-body Dirac equation can be
reduced to two decoupled two-component forms. Since
the two-body equations have incorporated two ordinary
Dirac equations, their decoupled Schrodinger-like forms
inherit the nonperturbative structure of their one-body
counterparts as well. The decoupled upper and lower
component equations of the ordinary Dirac equation
have potential- (and energy-) dependent denominators in
Darwin and L S terms that reduce their effect in regions
of strong potential. The two-body equations produce
these as well as corresponding denominators for more
general spin-dependent recoil terms. If these denomina-
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tors were not present, certain singular potentials (e.g. ,
Coulomb-like potentials) could only be treated perturba-
tively. In two-body descriptions that lack such denomi-
nators, one is forced to resort to ad hoc smoothing pro-
cedures if one wishes to use strong potentials. While it
may turn out that quarks do have finite extension, one
should not be forced to tamper with the short-range be-
havior of the potential merely through lack of an ade-
quate wave equation.

Our two-body Dirac equations even inherit their
momentum structure from Dirac's one-body equation.
This means that in the c.m. frame the decoupled forms
have momentum dependence as simple as that appearing
in the nonrelativistic Schrodinger equation. Their kinet-
ic forms are quadratic rather than square root, while
their potentials do not necessarily need complicated
momentum structure to represent relativistic interaction.
Unlike what happens in many other approaches (e.g. ,
that used in Ref. 14), the potential in this one is not de-
rived from truncations of (16)& 16) matrix scattering
amplitudes. Those truncations generally contain
momentum-dependent factors that must be continued off
mass shell. ' The continuation produces operator-
ordering ambiguities not necessarily present in the con-
straint approach. Instead, two-body Dirac equations
take the off-shell structure automatically into account
through the potential-dependent matrix square-root"
mass-shell constraints that define our method.

Most interestingly, even though our equations are not
dependent on a field theory for their dynamical spin
structure, they plausibly extend Dirac's one-body spin
forces to the interacting two-body case. In fact, one can
see that they are canonically related to the familiar
Fermi-Breit approximation to the Bethe-Salpeter equa-
tion by unravelling their covariant form in a slow-
motion weak-potential expansion. This exposes the
correct perturbative spin-orbit, Thomas precession, ten-
sor, spin-spin, and Darwin interactions in just the same
way that semirelativistic expansion of the ordinary one-
body Dirac equation reveals the correct Pauli equation.
Viewed from the standpoint of early atomic theorists,
the twin successes of the one-body Dirac equation were
that it brought order to the patchwork of semirelativistic
corrections to the nonrelativistic Schrodinger equation
and that it provided the crucial (purely quantum-
mechanical) Darwin term producing the "correct"
2S ] y2 -2P i y2 splitting. The two-body Dirac equations
can be regarded as providing the same type of service:
coordinating the patchwork of semirelativistic correc-
tions abstracted from field theory, but in the framework
of a relativistic quantum-mechanical structure, so that
important quantum Darwin-like effects are automatically
included. Moreover, their utility is not restricted to the
domain of weak potentials and slow motion, the region
described by perturbative quantum field theory.

The covariant constraint approach yields a consistent
description of particles that interact directly through
effective mechanical potentials that are functions of the
relativistic particle degrees of freedom. Thus, the result-
ing dynamical system may be viewed as a purely phe-
nomenological model of relativistic interaction. In turn,

the mechanical potentials for a particular interaction
structure are given in terms of a set of underlying
Poincare-invariant interaction functions. For example,
we shall show that for scalar interactions and vector in-
teractions, the number of independent invariant func-
tions needed is three or less (in our quark-model paper'
we used just one —a nonunique relativistic extrapolation
of Richardson's nonrelativistic potential ). In phenom-
enological applications the forms of these interaction
functions need not be tied to a particular field theory, al-
though they may be motivated by one. On the other
hand, if one wishes to use the constraint formalism to
extract relativistic information from a quantum (or clas-
sical) field theory, one needs a systematic method to re-
late these invariant functions to that field theory. Since
the constraint mechanics is initially defined at the classi-
cal level, one can first match its relativistic structures or
semirelativistic expansions to those of classical fieldlike
dynamics such as the electrodynamics of Wheeler and
Feynman, then quantize. Or one may carry out the
relation of field-theoretic quantities to invariant func-
tions directly at the quantum level through a variety of
procedures. One method associates the system wave
equation produced by the constraint formalism with the
perturbative scattering matrix of quantum field theory
found through Todorov's inhomogeneous quasipotential
equation (a relativistic Lippmann-Schwinger equation
derivable from the constraint approach ). For con-
straints of the form p, +m, +4 =0, this leads to a per-
turbative determination of @ (Ref. 30). On the other
hand, Sazdjian has started from the field-theoretic
end —the homogeneous Bethe-Salpeter equation —and
derived a transformation between the Bethe-Salpeter
wave function and the constraint formalism wave func-
tion that simultaneously determines N in terms of the
Bethe-Salpeter kernel. '

In this paper, we shall not pursue the issue of how and
to what degree reduction of the two-particle sector of
field theory to the two-particle constraint approach takes
place. Instead, we conjecture that the practical features
of the constraint equation listed above will emerge sub-
stantially intact. Furthermore, we contend that any
such reduction of a gauge or scalar field theory ought to
preserve the "memory" of the gauge or scalar structure
underlying it by translating that structure into charac-
teristic forms of the effective potentials. Thus, we con-
jecture that the two-body system for vector or scalar in-
teraction looks just like that for two relativistic
"charged" particles interacting with a classical field (ex-
cept that the field seen by each particle has been re-
placed by an effective mechanical potential) introduced
through minimal substitution on the constituent four-
momenta, p;~p; —2;, and the mass-potential substitu-
tion m; ~m, +S, .

The main goal of this paper is to show how the
minimal momentum and mass substitutions lead in the
constraint approach to the compatible wave equations
(la) and (lb) with spin-dependent potential structure.
(For those readers who wish to go directly to the full
form of these equations [(170), (171), and (189)], we have
provided a summary (following the conclusion) with de-
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tailed results and definitions. ) As they stand these equa-
tions provide a consistent relativistic description of the
quantum-mechanical two-body system ready for the phe-
nomenological applications to be detailed in a future pa-
per. However, as becomes apparent in the applica-
tions, these equations contain especially important rela-
tivistic behavior for strong potentials (e.g. , at short dis-
tance) and light or zero-mass constituents that distin-
guishes them from the wave equations of other ap-
proaches. Such behavior results directly from the com-
bined e8'ects of the compatibility of the two Dirac equa-
tions that govern our system and the parametrization of
the invariant interaction functions that determine the
e6'ective potentials appearing in the equations. For
readers interested in the origin of these structures as well
as for readers unfamiliar with relativistic constraint
mechanics, we begin with a detour through the corre-
sponding treatment for two spinless particles.

In Sec. II of this paper, we use minimal substitutions
to derive two-body Klein-Gordon equations with simul-
taneous vector and scalar interactions. This section first
reviews some standard procedures used in the constraint
approach, starting from its derivation from classical con-
straint mechanics. Along the way, we encounter several
new results. First, we generalize our earlier treatment to
include relative-momentum-dependent interactions. At
the same time, we demonstrate that vector and scalar in-
teractions can be introduced simultaneously in such a
way that each separately leads to compatible constituent
wave equations, and that it takes no more than two in-
variant functions to specify the vector interaction and
two to specify the scalar interactions (only three of these
functions are independent, however). We require that
the constituent mass and energy potentials (M, and E, )

depend on these functions in a way that incorporates the
correct heavy-particle and nonrelativistic limits. An im-
portant consequence of the covariance of the constraint
approach is that these constituent potentials automati-
cally contain the correct semirelativistic limit [including
slow-motion and weak-potential effects of O(1/c )]. Fi-
nally, we give the quantum wave equations correspond-
ing to the classical constraints. We review previous ap-
plications of these equations, present some new results,
and indicate future applications. The primary role of
this section is to set up the proper spinless dynamics into
which we introduce spin in the next two sections.

The treatment of spin given in those sections starts
from the construction of a relativistic "pseudoclassical"
mechanics for spinning Dirac particles described by
Grassmann variables that are constrained by a "pseudo-
classical" version of the ordinary one-body Dirac equa-
tion. This approach to "pseudoclassical spin" results
from application of the correspondence principle to gen-
eralized quantum brackets (involving anticommutators
as well as commutators) associated with the ordinary
Dirac equation. In that case, canonical quantization of
the "pseudoclassical mechanics" leads back to the Dirac
equations. In Refs. 2 and 3, we found that we could
construct a consistent "pseudoclassical" mechanics for a
system of two relativistic point particles either of which
may have its own Dirac spin. There, we found that for

two particles interacting through a world scalar poten-
tial we could construct compatible Dirac-like constraints
by exploiting supersymmetries present in the "pseudo-
classical" correspondence limit of the ordinary Dirac
equation. Simply stated, we introduced those supersym-
metries into the two-body spinless constraint formalism
by replacing the two generalized mass-shell constraints
with two Dirac-like constraints, one for each spinning
particle. We found that these constraints became au-
tomatically compatible when we required each to remain
supersymmetric in the presence of mutual interaction, if
the corresponding spinless constraints were already com-
patible. That is, our use of supersymmetry reduced the
problem of compatibility of the spin-dependent dynamics
to that of the corresponding spinless system. After re-
viewing this procedure for scalar interactions of a spin- —,

particle with a spin-zero particle, we show that an analo-
gous treatment for timelike vector interactions also leads
to compatible constraints. We also find that when both
types of interactions are present simultaneously, the su-
persymmetries associated with each in isolation are bro-
ken. Nevertheless, the structures that enforce each su-
persymmetry in the limits that either type of interaction
vanishes are suScient to guarantee the compatibility of
the two Dirac-like constraints when both types of in-
teraction are simultaneously present. Both of these (bro-
ken) supersymmetries dictate a common mechanism for
the generation of spin-dependent interactions through S
and A, which are the same functions of a supersym-
metric position variable (x, —xz )i as the spinless 5 and
3 are of the relative position x, —xz. We show how
both forms are modified when an additional electromag-
neticlike interaction is introduced. This leads to compa-
tible constraints for a system of scalar, timelike vector,
and electromagneticlike vector interactions. Quantiza-
tion of the resulting constraints leads to a compatible
system of wave equations for an interacting spin- —,

' spin-
zero system.

In Secs. V and VI we derive a system of two coupled
but compatible Dirac equations for two spinning parti-
cles interacting through simultaneous scalar and vector
interactions. We find these "two-body Dirac equations"
by first constructing a compatible system of pseudoclas-
sical constraints in which each spinning particle is de-
scribed by its own set of five Grassmann variables.
Again, when either timelike vector or scalar interactions
(but not both) are present, we find that the two Dirac-
like constraints become compatible when we require that
the spinless interaction potentials for the constituent
particles S, and 3, be replaced by supersymmetric ver-
sions S; and 3; of the same functional form but with su-
persymmetric coordinate arguments. So too, when both
types of interaction are present, the broken supersym-
metries that become exact when either type of interac-
tion vanishes are sufficient to generate compatible con-
straints provided that the corresponding spinless system
is already compatible. Finally, we generalize once more
to arrive at compatible constraints containing simultane-
ous scalar, timelike vector, and electromagneticlike vec-
tor interactions. Because of the isomorphism between
pseudosclassical brackets and classical
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(anti)commutators, canonical quantization automatically
turns these constraints into two coupled but compatible
Dirac equations. Our use of supersymmetries to intro-
duce spin into a consistent spinless dynamics has impor-
tant physical consequences linked with its mathematical
consequence —compatibility. The extra terms induced
by dependence of interactions on supersymmetric posi-
tion variables turn out to be important spin-dependent
recoil terms. Furthermore, supersymmetry introduces
this extra spin structure without disrupting the correct
heavy-particle, semirelativistic, and nonrelativistic limits
that are built into our spinless potentials. The spin
structure imposed by supersymmetry merely guides these
limits into forms appropriate to the spinning system.

The most important consequence of the compatibility
of our two coupled Dirac equations that makes them
ideally suited for physical calculations is that they may
be rearranged in a consistent fashion into forms con-
venient for particular applications. These forms often
inherit especially simple structure from the original
Dirac equations. For example, repeated use of these
equations yields an exact reduction from the original two
coupled 16-component wave equations to four decoupled
four-component Schrodinger-like equations. None of the
couplings among the upper-upper, upper-lower, lower-
upper, and lower-lower components of a 16-component
spinor need to be truncated. Unlike what happens in
other approaches that have only one two-body equation,
in our approach the existence of two two-body Dirac
equations allows one to fold in the effects of all com-
ponents of the wave function. The resultant quasipoten-
tial contains familiar features including the expected
Darwin, spin-spin, spin-orbit, and tensor parts embedded
in new strong-potential relativistic structure.

II. RELATIVISTIC CONSTRAINT DYNAMICS
FOR TWO SPINLESS PARTICLES

UNDER MUTUAL VECTOR
AND SCALAR INTERACTIONS

We begin by conjecturing that the two-body system
governed by vector and scalar interactions resembles
that of two relativistic particles interacting via effective
potentials introduced through minimal substitution on
the constituent four-momenta and masses. In previous
work, we treated the interactions separately, showing
what restrictions are placed on them by the compatibili-
ty condition on the constraints. In this section, we show
that when both are present, the two parts of the interac-
tion (scalar and vector) lead separately to compatibility.
In this demonstration we also include relative-
momentum dependence of the interactions, not present
in our earlier work. We finally arrive at the system
Hamiltonians for scalar and timelike vector interactions,
scalar and electromagneticlike vector interactions, and,
thirdly, scalar with both timelike and electromagnetic-
like vector interactions. The compatibility condition re-
stricts the number of independent invariant interaction
functions to three in the last case and two in the first
and second cases. We show how the constituent mass

(M, ) and energy (E; ) potentials depend on these scalars.
Surprisingly, we find that the constituent mass potentials
depend not only on the invariant function associated
with the scalar interaction, but also on that associated
with the electromagneticlike interaction. Finally, we
display the quantum wave equations corresponding to
"stationary states. " These are the spinless versions of
the "two-body Dirac equations" (la) and (lb) that are
the fundamental results of our paper.

The mass-shell constraint on a free particle's four-
momentum is

gf =p +I =0
into which one introduces interaction with external vec-
tor and scalar potentials through the modifications

pP~~P pP A P m~M =m+S .

For a system of two interacting spinless particles we pos-
tulate that the corresponding generalized mass-shell con-
straints are

&, =sr, +M, =0, &2=vr2 +M~ =0,2 2 2 2- (3)

where ~", =p,~ —A,(" and M, =m, +S, . In this constitu-
ent potential approach, each particle appears to be in an
external potential with the other particle as source.
However, the A,I"'s and S,-'s are not fields but rather
effective potentials that are point functions of the parti-
cle coordinates and momenta. Eventually, the constitu-
ent A,l"'s and S, 's are identified with appropriate
quantum-field-theoretic potentials having the corre-
sponding transformation properties.

The Dirac Hamiltonian for this constrained system is
&=A, &&, +A,2&2, so that a sufficient condition for &&
and &z to be conserved in the single evolution parame-
ter r (i.e., &;= I&;,&I =0) is that the constraints be
first class:

(4)

The weak equality signs in (3) and (4) mean that the con-
straints are to be imposed only after working out the
Poisson brackets. Condition (4) then confines the motion
to the constraint hypersurface defined in (3). The left-
hand sides need only vanish on that surface but may
vanish identically (strongly). Condition (4) ensures that
the action of the constraints is compatible with the evo-
lution generated by the Dirac Hamiltonian governing
this system.

The fundamental brackets among the constituent vari-
ables are

IX/', P, I =g" 5,

The square of the total four-momentum,

~ =Pi+P2 2 2

defines the total energy w in the c.m. (P=0) frame. As
in nonrelativistic mechanics, we introduce canonical rel-
ative position and momentum variables defined by

1
X =X i

—Xp, P = (E2P i
—E pi)P

M
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The constituent momenta are related to the total and
33relative momenta by p, =e,P+p and p2 ——e2P —p,

where P=P/w (P = —1), while the requirement
[x",p ] =g" forces e;=e, (P ) and e, +ez ——ut. Since
[x",P ] =0 and the &; depend only on relative x, the
c.m. total energy ~ is a constant of the motion.

If we assume translation invariance of the system, we
can write the constraints in the forms 2 2e, —ez ——(m, —mz ) . (17)

then p =pi [=(O,p) in the c.m. system] so that p is the
covariant extension of the usual relative three-
momentum. This statement is supported by other conse-
quences of P p =0. First note that this condition fol-
lows directly from the constraint difference (13) if we
choose

~i=Pi +izzi +@i(xJz»Pz)=02 2

~2 Pz ™2++2(x 71~72 }
2 2

where

(8a) Then the variables e, are equal to —p, -P on the con-
straint hypersurface and, thus, can be interpreted as the
(conserved) c.m. energies of the constituent particles.
They are given by

4)——M] —m) +m) —p)
2 2 2 2

42 ——M2 —m2 +m2 —P2
2 2 2 2

(9a)

(9b)

e, =(w +m, —mz )/2w,

ez=(lD +mz —vz ( )/2w
(18)

In terms of these forms, the compatibility condition (4)
then becomes

2p, BC'z+2pz. B4,+ I4„4z}=0 .

If we choose'

(10)

where

xi' =(g""+P"P')x„, (12)

&,—&z ——2P p +(ez —e, )w +m, —mz =0 .2 2 (13)

then the equality in Eq. (10) is strong (the constraints in
this case are said to be strongly compatible). The reason
for this is that since the only independent nonzero in-
variants involving xi and x~ and xi p (=xi.pi), P. r}@
is proportional to P-x~:—0 and P p~ =—0.

Equation (ll) serves as a relativistic counterpart of
Newton's third law and leads to the interaction-
independent constraint

&z=2P p—. (19)

[A weak third-law form N, (xi,p „pz }—&Pz(xi,p, ,pz )

~P p =0 is still a sufficient condition for the compati-
bility condition to be satisfied (though weakly), since P.p
has zero brackets with 4, and 42. The compatibility
condition can also be solved if @,(xi,p, ,pz)—+z(xi,p&,Pz) is not weakly zero. We show in APPen-
dix A that it is still possible in that case to have (14} or
(20) below satisfied. ] Since

This procedure thus completely determines the canonical
variables. Because of Eqs. (11) and (16), two of the vari-
ables, the relative energy and relative time in the c.m.
system, have effectively disappeared. (Note that in the
nonrelativistic limit, p becomes (m zp, —I,pz ) /m, m z

[ =p(dr/dt) for free particles], the conventional nonrela-
tivistic expression for the relative momentum. This is a
property not shared by the choice (p, —pz)/2 unless one
works in the c.m. frame or with equal masses. )

Given the third-law condition (11), Eq. (17) implies

Using this constraint and e, +@2——ta, we can eliminate e;
in p; to obtain the system Hamiltonian

&,=&z=p —b (w)+(P p) +Q

~i =p —Ei +pt i + rP+ 2EiP p
2 2 2

2 2 2JVz=p —Ez +Viz +4—2ezP p
(8')

z b z(~)+(P 0 (14)

where p =pi —(P.p) and

b (w)=—[w —2w (m, +mz )+(m, mz ) ]/4w—

b(w, m, , mz )

4w

P.p =0, (16)

is the invariant square of the relative three-momentum
of two free particles in the c.m. system. The appearance
of the triangle function is a signal that these equations
display the correct two-body relativistic kinematics. In
particular, Eq. (14) implies pi =b when both particles
are on their respective mass shells (4=0). If in addition
to being canonically conjugate to x~, the relative
momentum is determined so that on the constraint hy-
persurface defined by (3) it is spacelike,

the remaining independent combination of the con-
straints (not involving P p) then becomes

&=——&,+—&z ——P b(w)+ @=&,—=&z=0,
W W

m&m2
(21a)

(20)

where the first two weak equalities result from P p =0,
Eq. (11), and the fact that Ei —m i

——ez —mz b(w). ——
Just as does its (weakly) equivalent form (14), the system
Hamiltonian Eq. (20) (which is also of the form of
Todorov's quasipotential Hamiltonian) ' not only con-
serves the constraint P p =0, but also incorporates the
correct relativistic two-body kinematics. In his quasipo-
tential approach, ' ' Todorov defines the other useful
variables



36 TWO-BODY DIRAC EQUATIONS FOR PARTICLES. . . 3013

2 2 2w —m i
—mz

(21b)

interpreted as the relativistic reduced mass and energy of
a fictitious particle of relative motion. In terms of
them,

bz ~ 2 m 2 (22}

reinforcing this interpretation. Using these variables, we
can rewrite (20) in an effective one-particle generalized
mass-shell or Klein-Gordon form if we define

PP —pP +e PP (23)

The resulting form of (20) is weakly equivalent to

P +m +4=0. (24)

=Mz —mz +~z —pz
2 2 2 2 (25)

When there is no vector interaction, ~, =p; and hence
C =M

&

—m, =Mz —m z, while when there is no sca-
lar interaction, M; =m; and +=~& —p &

' ——~z' —p z .
We assume that N has a unique "scalar part":

vs=—M, —m,2 2

=M2 —mz ——2m, S, +S, =2m2S2+S2, (26)

even in the presence of vector interactions. This as-
sumption together with (25) implies that 4 has a unique
"vector part":

~i —pi =~z —pz —=+~ = —2pi ~ i+ ~ i
2 2 2 2 2

2= —2pz Az+ Az (27}

In the special case in which the S; are assumed indepen-
dent of the relative momentum (p), it is necessary that
the third-law condition for the scalar part of N be split
off from the vector part since the vector part is p depen-
dent. However, we will assume that this division persists
even when the S; are p dependent. A consequence (see
below) of this assumption is that the parts of A, that
arise from scalar and vector interactions separately con-
tribute to compatibility. As also shown [see Eqs. (43a)
and (43b)], this division does not, however, prevent M,
and Mz from developing dependence on the strength of
the vector interaction. Our assumption (26) can also be
viewed as a statement about the overall independence of
the scalar and vector interactions in the general case.

Next we note that the constituent A,~'s can be written
in the form

A", =a@",+@@" (28a)

Note that, in the c.m. system, P"= ( e„,p ).
Beyond the dependence of the interaction on xz, the

compatibility condition (4) imposes further restrictions
on the m. s and M, 's of Eq. (3) through the "third law, "
Eq. (11). We shall find that the scalar and vector parts
separately lead to compatibility. To see this, first note
that the third-law requirement N& ——Nz can be written as

4=Mi —m i +mi —p )
2 2 2 2

~2=~e2+A i (28b)

An alternative collective parametrization, using the in-
dependent system variables P" and p", yields

~i=E&P ~+G&p

mz ——EzP "—Gzp

(29a)

(29b)

with the scalar functions E, and G; used instead of a;
and /3, . This parametrization is an interaction-
dependent version of the expressions for the constituent
momenta p, given below (7). In either parametrization,
each of the invariant functions is of the form
f( xip, ,p 2). With no interaction, E, =e; and 6;=1.
Notice that we have omitted terms proportional to x~
from (28) and (29) because they would produce unob-
servable gauge changes. By this we mean that such
terms could be removed by canonical transformation on
p/'~p/'+ 8"P, (x i ). In the quantum case such parts
(corresponding to xi.p terms) could be eliminated
through a scale transformation. Generalizing our earlier
work, we assume here that the scalar functions E, ,
G;, and M, may depend on the relative-momentum vari-
able p as well as on the total momentum P. The assump-
tion that 4, =N~, +Ns, ——Nz ——N~z+Nsz =—N~ +As,
implies that

I~i ~2I =(pi ++~++s p2 +@~++s)
=Ipi' —p2' +~++sI=0. (30)

Since +~ and Ns are each functions of xj, the scalar
and vector parts of the &; separately (and strongly) lead
to the compatibility of the constraints.

Equation (26) leaves us with just one independent
combination of S, and Sz. We choose to call it S.
Furthermore, Eq. (27) implies

E, e, 2P p—(G, E—
i
—e, ) —(G, —1)p

=E2 Eq +2P.p ( G—2E2 —e2) —( G2 —1 )p

so that E
&

and Ez are also not independent. The as-
sumption that Gi ——Gz is also equivalent to the state-
ment that the spacelike and timelike parts of N&, obey
separate third-law conditions. Equation (32) implies that
on the constraint hypersurface,

Ei —Ez ——e& —ez
2 2 2 2 (33)

If we take this condition as a strong one, it together with
the ansatz G, =Gz implies there are just two indepen-
dent scalar combinations of E„Ez, and G. We call

(31)

We take G&
——Gz —=G, giving us the simplest algebraic

solution for G, one that is independent of p ~ This re-
striction still leaves us enough room to encompass per-
turbative field-theoretic behavior of the effective poten-
tials. With this assumption, (31) becomes

E) —2GE, P.p —(E2 +2GE2P.p) =ei —e) —2wP p, .

(32)
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them A and V. We choose G = 6(A ), thus redefining
A instead of G as a basic unit in our potential. [A
necessary condition for (29a) and (29b) to possess the
correct free particle limit is that G(0)=1.] This choice
also implies that E, =E, (A, V), so that, in general, (29a)
and (29b) become

E, (O, V) =(e]—A, ) =e] —2e V+V
Ez(O, V) =(ez —Az) =ez —2e V+V

(38a)

(38b)

scalars V and S. In particular, (34a) and (34b) and
E'; —m, =e —m imply that E, and E2 are related to
the scalar V by

rr]] =E ] (A, V )P "+G (A )p ",
rr~z=E2(A, V)P "—G (A )p" .

If we define additional scalar variables A;(A, V) by

(34b)

while M, and Mz are related to S by

M, (A=0, S)=(m, +S, ) =m, +2m S+S
Mz (A=O, S)=(mz+Sz) =mz +2m S+S

(39a)

(39b)

G(e, —A, (A, V))=E;,—

Eq. (33) then becomes

2e] A, ——(1—G ) —A,
2

=2ez Az ——(1 —G ) —Az
2

(35)

Since G is a function only of A, its form can be deter-
mined [from (35)] by choosing V=O and
A, =Az ——V(A ), leading to

The equalities in (38) are weak because of (32). For
weak potentials and "weak binding"

(
~

w —m, —mz
~

&&m], mz),

1 1+
m

1

3
m2

the potential-energy term in (37) becomes 2p(V+S),
where p=m]mz/(m]+mz) in agreement with the non-
relativistic expression. We can further relate the invari-
ant scalars S and V to field-theoretic potentials by per-
forming an O(1/c ) expansion of (37). One finds

w = m &+m2+ +Y+S-P ( p2 )2

2p 8

G = 1

1 —2V(A )/w
(36) p2+ +2 VS+ +

m]mz 2(m, +mz) (m]+mz)

&=sr +M =p —(e —V)'+(m +S)
=A]=&2=0 . (37)

(Note that in the limit that particle two becomes
infinitely heavy, e ~e&, m ~m& and, thus, this equa-
tion becomes the one-body Klein-Gordon constraint for
a single particle in an external scalar and vector poten-
tial. ) Then comparison of this form with (3) allows us to
relate the energy and mass potentials (E; and M, ) to the

Having evaluated G, we note that the choice V(A )=0
(G =1) leads to a timelike A,]' [=A, (O, V)P "] and, as
shown in Ref. 4, the choice A ] ——A 2

——V(A ) =A (V=0)
leads to an electromagneticlike four-vector. Surprising-
ly, these two special cases turn out to have the same
classical dynamics. However, as shown in Ref. 4, Her-
mitian ordering of the corresponding quantum operators
leads to inequivalent quantum dynamics. For now, V
and A will be general. In this general case we will find
that the constituent scalars (S, ) depend on the strength
of the electromagneticlike interaction function A as well
as S.

Our aim now is to relate these scalar in variants
(S,V,A ) to the energy and mass potentials (M, , E, ).
These relationships merely lead to a parametrization of
E; and M; and have nothing to do with compatibility. '
We make one inAexible demand on these relationships:
that they lead to the correct static and nonrelativistic
limits. We first treat the special case of a combined sca-
lar and timelike vector interaction (V&0, A =0). If we
modify the free (4=0) form of the effective one-body
Klein-Gordon equation (24) through m ~M =m +S
and P"~n"=P' —VP", the system Hamiltonian (20)
becomes

pS
m

+ 1 S2
+

mz 2(m]+mz)
(40)

E; =E;(A, O) =G(e, —V(A )) . (41)

In this case, 2(E]+Ez)G =w and, thus, (32) and (33) are
strongly equivalent. In the absence of the scalar, &; is

n.
, z+m, '=G (p —[e, —V(A )]')+m, '

=G'(p' —[e, —9'(A )]'+m, '/G')

=G {p —[e„—V(A)] +m ), (42)

since e, —m; /w =e . The exact form of V(A) is not
completely arbitrary. In Ref. 4 we showed that a
semirelativistic expansion of (42) [one that includes
terms of O(1/c )] is given by

w = m, +m 2+ + 9'(A )—P ( p2 )2

2p 8

1+
m

1

3m2

+ p 9'(A ) V(A )+
m, mz 2(m, +mz)

in the c.m. system. In the nonrelativistic limit we must

Note that the scalar and vector potentials S and V give
distinctly different O(1/c ) contributions to the total
c.m. energy tLI. Those potentials can be then determined
by comparison with a corresponding field-theoretic ex-
pansion of w (see Ref. 4 and example of A given below).

The other special case, where V =0 and
A] ——Az ——V(A), gives At' that are not timelike, but
contain spacelike parts as well. With G as given by
(36), we find
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have p(A ) =A if we identify A with the potential ener-

gy. We also found that if we used this nonrelativistic
identification in the two O(l/c ) parts of the potential
at the end of the expression above and let A = —a/I,
then we obtained the standard Darwin Hamiltonian
(after a canonical transformation) with the last two
terms being replaced by

a 1 rr
p- —+, -p .

2&i it7l2 T p

vector potential in addition to that of the scalar. If 6
did not appear in these equations, then in the semirela-
tivistic limit the effective potential would contain an
unacceptable SA cross term. Since, however, 6 is
just an overall multiplicative factor in (42) (when
m ~m +S), the scalar dynamics is independent of A.
It contributes only in the spin-dependent case where sca-
lar spin effects turn out to depend on A.

In the most general case, both V and A. contribute to
the timelike part of the vector interaction, leading to

M, (A, S)=m, +G (2m S+S )=(m, +S, ) (43a)

M2 (A, S)=m2 +G (2m S+S )=(m2+S2) . (43b)

Thus, the individual S;*s depend on the strength of the

This correct semirelativistic limit is preserved by the
choice V(A ) =A[1+0 (A )]. In the remainder of this
paper we assume V(A)=A (Ref. 36).

When we put the scalar in as before (so as to give the
correct nonrelativistic and heavy-particle limits) using
the modification m ~m +S then, in place of (39a) and
(39b), we obtain

Ei (A, V)=G ((e, —A) —2e V+V2)

=G (e, —A, )

E2 (A, V) = G ((ei —A ) 2e—V+Vi)
=G (e2 —A2)

(44a)

(44b)

[This form has the virtue that it reduces to either the
timelike or electromagneticlike result if A =0 or V=0
respectively, and produces no VA cross terms in the ex-
pression for & (Ref. 35).] We still obtain M;(S,A)
given in (43a) and (43b), so that

+M; =0=&=G (p +2@ A —A +2@ V —V +2m S+S +m E)=—0 .

1
Wi

——G P "(e,—A, )+p"+—V" lnG
2l

(46a)

Note carefully that A and V do not appear in the form
of a sum.

In order to quantize the constraint formalism we must
construct the quantum versions of the gf, 's. We wish to
maintain the gauge structure in terms of Hermitian vr",

and M;. Classically, the underlying scalars A, V, and S
may depend on x~, x~-p, p, and m or x~, l, p, and
tc, where I =xi p —(xi.p) [=(r&(p) in the c.m. sys-
tem] is the invariant square of the relative angular
momentum. (Linear dependence on xi p can normally
be eliminated bg a scale transformation. ) The system
variables p and P are well defined if we restrict our space
so that P has only timelike eigenvalues. If we assume
that the E, [ =G(e; —A; )] are Hermitian, then the clas-
sical expression (34a) and (34b) suggests the Hermitian
forms

I

the single wave function,

%',P=(rr, +M, )/=0,
~,Q=(vr, '+M, ')/=0 .

(47a)

(47b)

In what follows, we assume that P is an eigenfunction of
the total momentum, so that P" becomes a c number.
Then the difference constraint (16) becomes

(48)

a differential equation in the relative variable x„(since
p"= —iB/Bx„ in the coordinate representation). Thus,
gz(x) =gz(xi ), with a possible norm given by' '

fWT(xi)0) (xi)d'xi

where d xi is the covariant measure o(P x)d x. The
quantum counterpart to the remaining independent con-
straint (45) is the system wave equation

&/=0 .

mz ——G P "(e2 A2) p" —V—"lnG- —
2l

(46b)

In Ref. 4, we treated the details of such a quantization
procedure. Suffice it to say that if we use the quantum
brackets

In the c.m. (P =ic, 8=0) system, this is explicitly
T

G p —(e —A) +2@„V V' +(m +S)—
+.—V lnG. p ——,'V lnG ——'(V lnG) /=0, (49)

[x~i,p"]=i(g" +P "P "),
then we can verify in direct analogy to the classical ar-
guments that the commutator [&,,&z] vanishes and
that the quantum version of the classical constraints
&, =0 become simultaneous compatible conditions on

where we have used the fact that (48) implies p g=p it
in the c.m. rest frame.

We assume that whatever additional Hermitian order-
ing is necessary may be performed. Notice that (49) will
not be local if its potentials have p dependence in addi-
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tion to x and 1 dependence. If we let P=Gf, then the
wave equation takes the simpler form:

tributed this to the fact that the V term is too attrac-
tive [it behaves near the origin like

p —(e —A) +2@ V —V +(m +S) (F, Fz) (6a/27) /r ln Ar,

+ —,'V'InG+ —,'(VlnG)' /=0 . (50)

Equation (50) describes two spinless particles under
mutual scalar, timelike vector, and electromagneticlike
vector interaction. The system wave equation has a
number of important properties (some new) which are
not shared by various truncations of the Bethe-Salpeter
equation. First of all, if there is no p dependence in V,
A, or S, then this equation has a momentum structure
as simple as that appearing in the nonrelativistic
Schrodinger equation. (In fact, this equation reduces to
the nonrelativistic Schrodinger equation with a potential
energy of 5+V+A. ) This simplifies calculations con-
siderably compared to the sum of square-root forms
[(p, +m& )' +(pz +m2 )' ] in the Salpeter approxi-
mation of the Bethe-Salpeter equation or semirelativistic
expansions (including p terms) in the Fermi-Breit ap-
proximation (the Darwin Hamiltonian) to the Bethe-
Salpeter equation. Second, this equation reduces to the
Klein-Gordon equation for a single particle in an exter-
nal scalar and vector potential in the static limit. (The
recoil Darwin terms at the end drop out since V'6 van-
ishes in this limit. ) Another important feature with
practical value arises from the two terms at the end of
this equation. They account for recoil effects in a non-
perturbative way and eliminate the need for singularity
softening parameters in phenomenological applications.
This feature is not shared by various semirelativistic
truncations of the Bethe-Salpeter equation or an ad hoc
relativistic sum of square-root forms. (In our equation,
the kinematics and dynamics are tied together; that is,
the potential terms are not added on in an ad hoc
fashion to the relativistic kinetic-energy forms. ) Never-
theless, Eq. (50) does have a semirelativistic form that
agrees with the Darwin-Hamiltonian form. However,
there is no advantage in reducing it to this form since its
simple momentum structure is lost if the covariance is
unraveled. In later sections, when we include spin, we
shall find that wave equations similar to this will appear
whose spin-dependent terms are an elaboration of this
underlying spinless structure. If one does not carefully
build in the correct semirelativistic and heavy-particle
limits in the spinless case, generalizations with spin will
give misleading information about both heavy- and
light-particle limits.

In an earlier paper we applied a special version
(A =0, S confining, and V a QCD modified Coulomb
potential) of Eq. (50) to quark model calculation of the
mesons with spinless quarks. Lichtenberg, Namgung,
and Wills performed a similar calculation (using the
same equations, but with a different choice for V) and
also applied them to the calculation of glueball masses.
Since (50) is a fully covariant equation it has no problem
handling zero-mass constituents, such as occurs in
semirelativistic approaches. Unfortunately, Lichtenberg
and Wills found no positive-energy ground state and at-

where for gluonium, F, .Fz, the color-SU(3) operator has
the eigenvalue —3 (as opposed to the value ——', for quar-
konium)]. We have found that using Richardson's po-
tential instead of that of Lichtenberg and Wills does not
change this result. However, if we assume instead that
V=O and A. is the QCD modified Coulomb potential
(since it is the A potential that is capable of describing a
gauge or electromagneticlike structure), then the extra
terms in (50) (the two repulsive Darwin recoil terms at
the end) give a positive-energy ground state. However,
it is much too small (about 300 MeV) for this model to
be seriously considered for the glueball candidate around
1440 MeV. We note that the absence of a ground state
in the work of Lichtenberg and Wills is of a different na-
ture from that of the Klein paradox that occurs when
the charge becomes too large for the point Coulomb po-
tential. In that case, the ground-state energy becomes
complex and the wave function becomes rapidly oscillat-
ing. In this case, the leading behavior of the wave func-
tion near the origin is exp(ao /1nk. r). It is not oscillat-
ing and gives a well-defined probability near the origin.

Other possible applications of the spinless equation in
two-body QCD phenomenology would be to compute
diquark-antidiquark bound states corresponding to exot-
ic rnesons and to spinless quark-antiquark bound states
that would result from the existence of supersyrnmetric
partners to the quarks.

III. RELATIVISTIC CONSTRAINT DYNAMICS
FOR A SINGLE SPIN- —' PARTICLE

In order to introduce spinning particles into relativis-
tic constraint dynamics, we use a generalized correspon-
dence limit of the Dirac equation in which Dirac ma-
trices "correspond to" elements of a Grassmann algebra.
In the resulting "pseudoclassical" mechanics ' the
Grassmann variables provide a semiclassical representa-
tion of spin. Canonical quantization of relativistic con-
straints that govern "pseudoclassical" spinning particles
then leads to systems of compatible relativistic wave
equations suitable for two interacting particles, one or
both of which have spin. The details of this procedure
were presented in Ref. 2 for scalar interactions. Here we
present a brief review of some of the more important re-
sults of Ref. 2 and then extend these results to timelike
and electromagneticlike vector interactions. To simplify
our treatment, we first deal with the structures that ap-
pear when only one particle in an interacting pair pos-
sess spin, then in the next section take up the more com-
plex case in which both particles have spin.

The Dirac equation for a single free particle is

(p„y"+m )/=0,
which can be written in the form
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SQ —:(p„8"+m 8s )$=0,
where

1/2

2

1/2

Y5

y5y", p =0, 1,2, 3,

satisfy

[%,8"]+= —siig"",

[8s,8"]+=0,
[8s,8s]+ = —fi .

(51)

(52a)

(52b)

(52c)

Thus, the nonvanishing brackets among the fundamental
dynamical variables become

[ 8",8"j =ig "",
[8s 8sj='
[x",p'j =g"" .

(58a)

(58b)

(58c)

0"8 +8'8"=0,
t958"+8"05 =0,

(59a)

(59b)

We assume that our classical 8's are real (as are x and p).
In ordinary quantum mechanics the correspondence

limit leads not only to the Poisson-bracket algebra, but
also to the c-number commutativity of x and p. In a
similar way, one finds (see, e.g. , Refs. 2, 41, and 42)

These anticornmutators, together with
Hq ——0; (59c)

and

[x",p "] =i Ag" (53)
that is, the "classical" 8's are Grassmann variables. In
this correspondence limit, the quantum Jacobi condition
becomes

[x",8 ] =0=[p",8 ], a=0, 1,2, 3, 5, (54) gg r[A, [Ap, A j j=0. (60)
define the algebraic properties of our dynamical vari-
ables. Equations (52)—(54) divide the basic variables into
two distinct classes: (a) those whose defining quantum
brackets are exclusively commutators (called even), and
(b) those that participate in fundamental anticommuta-
tors (called odd). Clearly, the (bosonic) x and p variables
are even, while the (fermionic) 8 variables are odd.

For dynamical variables A and A& that have well-
defined character (odd or even) we can write the general-
ized quantum brackets

[A, Ais] „=A Ap —ri pApA (55)

This implies that the product of an odd with an odd is
an even, the product of an even with an odd is an odd,
and that the product of an even with an even is an even.
Using the definition in (55), one finds that

[A, Az, A, ] „„=A [Az, A, )

where il &
——( —) s. The variable e is 0 if A is even

and 1 if A is odd. Thus, for two even variables, or one
odd and one even, —g &

———and the brackets represent
a commutator. For two odd variables, —g &

——+ and
the brackets represent an anticommutator. We define
the product quantum brackets such that the bracket of
A A& with A is

[A AIi, A~]

A differential realization of (58) in terms of x's, p's, and
8's is provided by

j
8

ax" ap„
a a . a a . a a

ap~ ax„'ay~ ae„'ae, at9,
+l +l

In terms of these pseudoclassical variables, ' the Dirac
equation (51) "corresponds to" a constraint on the
dynamical variables:

S=p 8+m8, =0. (61)

This is not the only constraint. Since S' is odd, use of
(58) allows us to find another constraint: the mass-shell
condition

—.[S,Sj =&=p'+m'=0,
l

(62)

which must be imposed on the pseudoclassical dynami-
cal scheme if it is to define a compatible system. The
Jacobi identity (60) gives us a very simple way to see
that these two constraints are themselves compatible in
the sense that

[S&j= i [eV, [S,Sj j
—=0 .

Thus, we obtain a closed canonical algebra of only two
constraints.

For a single spinning particle one would introduce in-
teractions with external vector and scalar potentials by
replacing (61) by

+Z, [A., A, ] „A~, (56) g=w 9+MOq (63)
together with an appropriate Jacobi condition.

Application of the correspondence principle to this
generalized bracket leads to the (pseudo)classical bracket

with ~"=p" A" and M=m+—S. The & constraint
then becomes

i 8i'8 F„.+M'+2—i gM. 88, , (64)

1 [A, Ap] „~[A,Apj . (57) where F„=a„A„—a„A„.
This capsule surnrnary would complete our treatment
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of the single spinning particle were it not for the fact
that important structures hidden in (63) and (64) play a
crucial role in the construction of compatible constraints
for the analogous two-body system. We fail to find com-
patible constraints for spinning particles if we naively
parallel the procedure used in the spinless two-body
problem. That is, if we simply assume that ~, and M,
are the same functions of x~ as appears in the spinless
case, and that these interaction functions appear in the
constraints S,=n, 9,.+M, 9, and &z ——~2 +M& (for a
spin- —, particle interacting with a spin-zero particle), we
fail to obtain a system of compatible constraints. We
must resort to a diA'erent procedure. We found a way
out of this difficulty in our earlier work on scalar in-
teractions through a study of the way in which a super-
symmetry of the free-particle dynamics generated by (61)
and (62) survives intact in the presence of external in-
teraction in the dynamical system governed by (63) and
(64). We found that the naive extension of spin-
independent interactions into spin-dependent free-
particle constraints destroyed this supersymmetry and,
with it, compatibility of constraints. If one correctly
built its interaction-dependent version into the dynamics,
however, the constraints 4, and &2 became compatible.
As we shall see, the extra terms induced by this pro-
cedure are physically important recoil terms. The struc-
tures in which they participated became even more ela-
borate when we took up the interacting system of two
spin- —,

' particles. In that case, careful maintenance of su-
persymmetries for each spinning particle led to compati-
ble classical constraints 4, and $2. We review here some
of the highlights of this approach to solving the compa-
tibility problem. We then show that we can easily ex-
tend our treatment of the scalar interaction to systems
governed by timelike vector interactions. We combine
these interactions and introduce electromagneticlike in-
teractions as well, eventually finding compatible con-
straints that are the pseudoclassical extensions of the
constraints &, =m, '+M, , &2 vrz'+M& ——appearing in
the spinless case. Canonical quantization leads ultimate-
ly to quantum wave equations that are the spin-
dependent counterparts of (47) and (50). The source of
the extra structure in these equations lies in the super-
symmetries of a free spinning particle.

The pseudoclassical and quantum descriptions of the
free spin- —,

' particle provided by the constraint (61) and
the Dirac equation (51) are invariant on the solution sur-
faces generated by (62) and the Klein-Gordon equation,
respectively, under the transformation

6O"= —~ cp",

0=p.9+ ~ —p 9& (66)

and is self-Abelian ([Q, Q]=0). Invariance of the dy-
namics under (65) then becomes the statement that

IsQ, gI =is&=0 . (67)

Since we have determined the generator of (65), we can
complete our set of supersymmetry transformations by
computing the action of 0' on the remaining canonical
variable x".

5x"= —
I sQ, x"

I
=s(9"—P "9&), (68)

where P"=p"/+ —p .
In Ref. 2 we determined the spin dependence for sca-

lar interactions by requiring that our interaction main-
tain the invariance of S under the supersymmetry trans-
formation generated by Q. This requirement was
satisfied through the use of a special supersymmetric-
invariant position variable. This variable for a free parti-
cle, '4

i O"85
x "=x"+-

Ul
(69)

satisfies

m ~M =m+S(x ), (70)

where

i 8"O5
x "=x"+

M(x )
(71)

Then using the Grassmann Taylor expansion (and the
fact that 9, =0), we find that

and

S=p.O+MO5 ——p O+MO5=0 (72)

&=—.IA', eVI =p +M +2iBM 99)——p +M =0 . (73)
l

Then using this constraint, we find that

I Qx "I= +—p —M —i 95
8" 2 . BMO

IQ, x "]=0,
with the equality a weak one because the result vanishes
with &. This suggests that supersymmetry may be
maintained in the presence of an external interaction if x
dependence of the interaction appears only through x.
We introduce scalar interactions through

595= —iE+ —p = —imam

6p"=0,
(65)

+p 95
1

p

where c, like O, is an odd variable. Under this super-
symmetry transformation the Dirac constraint (61) is
transformed into c times the Klein-Gordon constraint
(62) which already vanishes on the surface of solution.
The Klein-Gordon constraint itself is trivially supersym-
metric. The generator of the transformation (65) is

vanishes weakly. Thus, we have constructed in (71) an
interaction-dependent version of the free-particle vari-
able (69) which is invariant under the transformation
(65), but on the interaction-dependent solution surface
defined by the constraint (73). As an immediate conse-
quence,
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and

[Q, SJ =0 (74a) replace (77) by the supersymmetric variable

x i =(g" +P "P ")(x,—x2) (78)

[Q,&J =0, (74b) where, with M, —:M, (xi ),

so that our constraint system is completely supersym-
metric. (That these constraints are compatible follows
directly from the Jacobi identity. ) Note that, in the case
of a single spinning particle in an external scalar poten-
tial, although we have introduced interaction through
the use of x in order to preserve a supersymmetry, the
resulting spin-dependent interaction in (73) is nothing
but the standard one that we could have produced
directly by taking the correspondence limit of the square
of the ordinary Dirac equation with external scalar po-
tential. One of the benefits of our procedure is that its
new consequences appear only when we apply it to a
multiparticle system. It generates new two-body equa-
tions that really are consistent two-body extensions of
the Dirac equation.

IV. RELATIVISTIC CONSTRAINT DYNAMICS
FOR A SPIN- —', SPIN-ZERO,
TWO-PARTICLE SYSTKM

UNDER MUTUAL SCALAR
AND VECTOR INTERACTION

In order to extend our method to two-body pseudo-
classical systems that include one spinning particle, we
must simultaneously preserve the Dirac spin structure
connected with supersymmetries and satisfy the require-
ments of "third-law" restrictions that we encountered in
the case of two interacting spinless particles. Thus, we
expect that the conditions for compatibility of the result-
ing constraints will include those already encountered in
the bosonic system. (At the very least we must recover
the bosonic conditions in the "zero-spin" limit in which
the Grassmann variables vanish. ) We anticipate that the
potentials will be forced to satisfy

(M] —M2 )=m] —m2 (75)

and

M,. i=M, . 2(xi,p],p&)=m; +2m S+S (76)

where

x]i =(g""+P"P )(x] —xi)„. (77)

Equation (75) is the third-law condition that together
with the first equality in (76) ensured compatibility of
the spinless &, constraints. The second equality in (76)
is a parametrization that not only obeys the third-law
condition (75), but also leads to the correct nonrelativis-
tic and heavy-particle limits. In Ref. 2 we showed how
for the spin- —,

' spin-zero system, once supersymmetry is
satisfied, (75) and (76) are forced on us by the require-
ment of compatibility.

We introduce pseudoclassical spin in a way that
preserves supersymmetry for the spinning particle in the
interacting two-particle system. Thus, following the pat-
tern set by the ordinary one-particle Dirac equation, we

i 6'", 6'51
x "=x"+1 1

1

i16S1
1

=x"+
M1

For the fermionic particle, the odd constraint becomes

S,=p, 0, +M1051 ——p1 01+M10&1=0 .

The "squared" version of this constraint is just

~]=—[]]'„]]'][=p, +M, +2iBM] 8,8„=1 — 2 2

1

(80)

=p1 +M1 =0,2 2 (81)

Since particle two is spinless, it has no Dirac-type S con-
straint, but obeys only the supersymmetric Klein-
Gordon-type constraint

rv2=p2 +M ~ =p2 +Mi +2]Mi 8]85],2 2 2 2 ~ 2

M1

where

BM2
M2 ——M2+' '16'51

M1

(82)

(Note that both Mi and Mz are supersymmetric. ) Both
(81) and (82) can be written in the form
&;=p; +m; +4, , where @;=M, —m, . The third-
law condition, 4]——42 in the spinless case led to (75). In
Ref. 2, we showed how the more complicated spin-
dependent compatibility calculation also leads to (75).
What is remarkable about the supersymmetry require-
ment is that the spin-dependent interaction that it gen-
erates also makes (75) equivalent to the statement that
4, =42 in the spinning case. Thus, the supersymmetric
structure introduced by x has the virtue that it not only
requires the same third law that appeared in the spinless
case, but also reproduces a single effective relativistic in-
teraction (4) that appears in each mass-shell constraint
just as in the spinless case. Thus, (75) simplifies the
spin-dependent terms so that M, —M2 ——m, —m2 .2 2= 2 2

(75) also simplifies the form of &2 to

Jv~=p2 +M ~ =p2 +M2 +2]BM].8]85] .2 2 2 2 (83)

The dynamical system defined by (80)—(83), though an
interacting one, retains the supersymmetry of the free
case. Since only one of the particles has spin, we have
just a single supersymmetry generator of the type we
found for the single particle in (66):

~]=p] 8i+ "v —pi 8s] .2 (84)

where the last form follows from the Grassmann Taylor
expansion [with use of (59)]

(3M1
M1 ——M1+i 01851 .

1
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Its brackets with x, , xi, 4, , A, , and &i all vanish
(weakly). This makes it plausible that the three con-
straints 4, , &,, and &~ will turn out to be compatible.
We already know IS, ,A',

1
=0 (as a consequence of the

pseudoclassical bracket Jacobi condition just as in the
single-particle case). Next, we find by direct calculation
[with repeated use of the pseudoclassical analog of the
quantum product rule (56)] that (E, —E~ ) =e, E, +—.2(E, +E~ —w )P p, (92)

these additional interactions we first consider the time-
like vector interaction by itself. Our procedure will imi-
tate the steps from (75)—(91) in the case of scalar interac-
tions. From our work in the spinless case, we expect
that the potential will be forced to satisfy [see (32) with6= 1]

I+i,~iI =B(Mi —M~ ).Oi —2BMi.PHqi=0 . (85) where

The first term vanishes if we use (75) as does the second
term, since Mi depends on x only through xi (this in-
cludes dependence on xi and xi p =xi pi ).2

Thus, once we build in supersymmetry, the compati-
bility restrictions drive us not only to the third law but
also to the xi dependence given in (76) and (77). If we
use the same parametrization of M, (S) as we did in the
spinless case, we will ensure that our quantum wave
equations (arising from the squared constraints) will
have the same spin-independent terms as already ap-
peared in the spinless case. The one remaining compa-
tibility condition I &, , %~I =0 can be evaluated using
the Jacobi condition. We find that

E, =E; (xi,pi, p~)=E; —2e V+V (93)

P1 O]+m]Os1=&1P O]+P O1+m]Os] =0 (94)

with p the relative momentum variable (7). Hence, in
analogy to scalar interactions where this free Dirac con-
straint is replaced by the interacting form

g 1
—e 1P - O1+P - O1+M 1Oq] =0, (80')

we write the Dirac constraint with timelike four-vector
interaction as

We choose the timelike vector interaction to point in the
direction of P ", the only constant timelike vector intrin-
sic to the two-body system. In terms of it, we rewrite
the free Dirac constraint as

=2' I ~&, I $&,~&I I =0 . (86) 41 ——E]P O]+p -Oi+m]O51=0 . (95)

~1 ~p pl pp +mf mp =2P p=0 (87)

we can easily verify compatibility by a route other than
the direct calculation of (85):

= —2tM, H„,P pI
= —2am, .PO„=0 . (88)

&, and &z are weakly equivalent to each other and to

&=p b+@=——A, +—&,=0,
LU LU

(89)

This vanishes strongly since IS, ,&&I does. Moreover, if
we observe that (just as in the spinless case) the
difFerence of &, and &i is independent of interaction
(and spin),

~1E (pl + i ) ~1+pl i+ I 51
2 2 1/2 (96)

The transformation it generates when the interaction
is turned oft is

pl"6x —c O, —
2 2 «2PO

(pi +m& )

59"— ie[p" +—(p +m )' P"]

Os1= —imam], 6p+ =0 .

Whereas the scalar supersymmetry generator left invari-
ant the constituent x "; as well as the collective variable
x ~i, for the case of timelike vector interactions our su-
persymmetry generator QE will be one that generates a
supersymmetry transformation that only leaves invariant
a collective-coordinate variable. For our generator we
choose the self-Abelian form

where (with M, =m, +S, )

+=2m]S]+S, +2iBS, -O1051

=2m 2S2+S22+21 as] O1051 ~ (90)

Under this set of transformations, the variable

(X J )&
——[(X, )& —X& ]„(g" +P "P ')

with

(97)

Use of the efI'ective particle variables m, e, and P
defined in (21) and (23) turns (89) into

iO"P O
(x, )~~=x", —

E'
(98)

P +(m„, +S) +2iBM, Oig), =0 . (91)

We now wish to extend our results for the scalar in-
teraction to a system of a spinless and a spin- —,

' particle
interacting through timelike and electromagneticlike
vector interactions in addition to scalar interactions. To
see the role played by supersymmetry in the presence of

(X) )~ =X )

i B",O, -P

E
O", B, P

=x", —i (99)

is a supersymmetric invariant. When the interaction is
turned on, the corresponding supersymmetric position
variable is still as it appears in (97), but with [analogous
to (79)]
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where

~1M ~1 81+pl 81+ ~1 pl ) 851
2 2 1/2 (84')

Unlike (84), this generator resembles that of (96) in that,
although leaving invariant the supersymmetric collective
variable (xi ), it does not leave invariant the constituent
variables x";. The squared version of the Dirac con-
straint (95) is

~i= —[~i &i)
1

=p +m )
—E) +2iBE).0,0).P+2E, P p

Ei =Ei(«i)z p»pz)

is a supersymmetric potential. Note that an alternative
form of the scalar supersymmetry generator that is also
self-Abelian is

C i
—4 ~

——Ei E—2 —(Ei —e2 ) —2(Ei+E2 —w )P p
2 2

+2l
E2QE2

BE—, BB,.P .

In the scalar case, the third-law condition N, =+2 for
the spin-dependent &, and &2 led to the same condition
(75) as in the spinless case. However, for the timelike
four-vector interaction, the spinless third-law condition
(92) does not lead to 4i —42 ——0, but instead to

l
B(Ei+E2) BiBi PP.p =0 .

Ei

The supersymmetric system, thus, requires the third law
but in a weak form. As pointed out below (19), a weak
form of the third law is sufficient (along with xi depen-
dence of interaction) to ensure compatibility. Note that
the third-law expression (92) leads to

=p +m, —E, +2E)P p, (100)
gfi —&2— 2w+2i

B(E,+E2) .B,P 8, P p =0, (105)

where the last form follows from the Grassmann Taylor
expansion

aE,
E, =E, —i B,P-O) .

which, as in the scalar and spinless cases, is proportional
to the constraint P.p =0. Using this constraint, &i and

&2 in (100) and (104) can be compactly written as

If we use the definition

E P P+pP pP gP (101)

we may rewrite 4, and &, in (95) and (100) in the alter-
nate forms

&,=m.
, +2(E, E, )P p+—m,

2 2 2-=p +m& —E
&
=0,

—2(Eq E2)P p+m—
=p +m2 —E2 =0,2 2 2-

(106)

4, =m. , 8, +m, 85, ,

i 8",8;F,„—+m,

where

F,„,= [~,„,~,.) =(P„B~,—P„B„E,) .

(102a)

(102b)

(103)

&2=p +m2 E2 2EzP p— —

The spinless counterpart to (100) is &i ——p
+m i Ei +2E,P.p—. One may obtain (100) directly
from it (weakly) by replacing E, by the supersymmetric
invariant E

&
. The single constraint for the spinless par-

ticle (two) would take the form &2——p +m 2—E2 —2E2P.p if particle one were also spinless. To in-
troduce interaction with a spinning particle, we replace
E2 by the supersymmetric invariant form E 2, where

BE2
E2 ——E2-~

Ej

Then &z is given by

where S.", =E,P "+p and m.
z E2P "—p. ——

The construction of the &'s from 4, as well as the
verification of their invariance under the supersymmetry
transformations generated by Qiz in (96), parallel their
counterparts given in Eqs. (72)—(74) for a single particle
in an external scalar potential and will not be repeated
here. The check of compatibility is slightly more corn-
plicated than it was in the scalar case. Just as before,
the Jacobi identity leads to [4'i,&, ) =0. Using this re-
sult along with the difference (105), we see that the com-
patibility condition [4'„&2)=0 is also satisfied since

B(E,+E2)
[S,,&2) ——2 S„w+i B,P 8, P.p

1

(107)

which vanishes (at least weakly) because of the xi depen-
dence of 4, . Likewise,

B(E,+E2)
[&»&2) =2 &i, w+i .8 P Bi P p .

=p +m2 —E2 +2iE2 0)0, P —2E2P p .
E,

(108)

If we define @, and @2 by &, =p, +m, + 4&;, then

(104)
vanishes, since all the forms that appear in &i (including
BE, B,P.B, —:BE, .B,iP.B, ) have vanishing brackets with
P.p. Again, as in the scalar case, the requirements of su-
persymmetry and compatibility drive us to the third law
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~1M e'1 ~1+Pl |)1+(El Pl ) ~51
2 2 1/2

S,E=(p, +m, ) P.O, +p, .e, +m, e„2 2 1/2

(109a)

generate dynamical symmetries. In the presence of both
scalar and timelike four-vector interactions, these be-
come

and xl dependence given in (92) and (93). The weak
equality in (93) is consistent with (92) and also gives the
correct nonrelativistic and heavy-particle limits. If we
use the same parametrization that we did in the spinless
case we will ensure that our quantum wave equation will
have the same spin-independent terms that appear in the
corresponding spinless case.

As our next step we combine scalar and timelike vec-
tor interactions for the spin-zero spin- —,

' system. When
both interactions are turned off, the two supersymmetry
generators

(113b) can be absorbed into a new x definition. That is,
we can write

&1——p E—
1 +M 1 +2E,P.P, (114)

(115a)

i 0",0~, i B"E ) P .0,0„
( 1)M= 1+ M + M1 1

(115b)

This has no effect on the definitions of the generators
given in (110).

Q, M and 9'&z no longer generate supersymmetries of
the dynamical system when both interactions are
present. One can in fact show that 4

&
is supersym-

metric, that is,

where E, and M 1 are defined below (110), and in (111)if
the expressions in (112) are replaced by

—P P
i 0", O, .P i B"M,P 0,0p 1 1 51

(x 1 )E —x 1
— +

Ei

~1M ElP ~1+Pl ~1+(E 1 PJ ) ~51

&1E =(p, '+M, ')'"P e, +p, e, +M, e, l,
where

(110a)

(110b)
and

I ~1M&~l j 1~1 (116)

E, =E
1 ((x ~ )E—,p l,p 2 )

and

Ml Ml((xi)M P»P2}

and

I ~ 1E ~1 j =1'~1 =0 {117)

We will omit the details of the proof. The interested
reader may need the Grassmann Taylor expansions
given below in order to expand 9'

&M and Q &E
..

iBM) 0) 0„
M)

(Xl )E j (X 1 }E X2 il

(xl )M j(x1 )M x2ll

with

(1 1 la)

(1 1 lb) iBMi -B Ei+ 0).POq)
1

(118a)

0"0 .P
(x, )1E =x", i— 0",0, P

=X 1'aE, .61, „1'aE, a, M, .
E, =E, — P.O, + 0).PO„E, (118b)

i 0",05 i 0",05,
{x1 )M x

1 + — x
1 +t

M,
(112b)

The Dirac constraint and its square are

E,P 0, +p 0, +M, Os,

=F )P 0, +p 0, +M(O), (113a)

=p +M, —E, +2F,P p +2iBM, .0,0

+2iaE, 0,0, P —2i IE, , M, jo, Po„. (113b)

The last term in (113b) would be absent if the scalar and
vector interactions were both independent of the relative
momentum or dependent on it only through the angular
momentum l . The two preceding terms can be viewed,
just as when only one interaction is turned on, as coming
from the replacements of x ~ in E, and M, by
give»n (111) and (112). In fact, the last brackets in

One can show that each x variable is a supersymmetric
invariant under the transformations generated by the
corresponding 9: I Q,M, (xl )M j =0 and j Q, E, (x, )E j =0.
However, the facts that I Q, M, (xl )E j &0 and

(x J }M j &0 prevent the system from being com-
pletely supersymmetric. Thus, unlike 4, , &, is not su-
persymmetric invariant under the transformations gen-
erated by the 9's (Ref. 47). (One can also show that
I 91M, Q,E j &0.) Hence, when both interactions are
present, there is no overall supersymmetry (of the
type) in the sense that there was for scalar or timelike
vector interactions alone. Nonetheless, the spin-
dependent structures introduced by the (formerly) super-
symmetric position variables (xl)M and {xl )E are still
sufhcient to lead to compatible constraints. At the least,
they lead to a system of compatible constraints in either
limit in which only one of the interactions is left on.
Thus, when we combine the interactions, we obtain the
spin structure that we must obtain in either limit.
Beyond this, the x's lead to compatible constraints even
when both interactions are present because they are
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+1 ~1 Ol +M1O51 ~l Ol +M1O51

&)
——p +2E ) P .p E)—+M ) =Fr ) +M )

(119)

(120)

where vr, =E,P +p with M, and E, defined in (118a)
and (118b). For &2 we take

&~=p 2E~P —p Ez +M—2
=5.

~ +M ~ (121)

with 52 ——EzP —p, where, in analogy to (83), (118a), and
(118b),

iBM& Ol iBM& B El
M2 ——M2+ O51+ Ol -PO~1,

Ml Ml

GABE, O, „ iBE,-B,M,
E2 ——E2 — P Ol + O, -PO51 ~

E, El

(122a)

(122b)

suKcient along with the usual third-law conditions to
produce %, constraints whose difference is proportional
to P p.

With combined scalar and timelike vector interac-
tions„we have shown (see Ref. 46).

(118b), (122a), and (122b) can be readily generalized, so
that the resulting third-law requirement on the spin-
dependent 4; still implies the third-law requirement
found in the spinless case. These tilde forms are inferred
directly from the constraints themselves. The 4, con-
straint for the spinning particle, when electromagnetic-
like interactions are present, is

~1 =~1 O1 + 1O51 =~1 O 1 +M1OS1 (123)

+M, 2i 0",—05, {m.
,„,M, I . (124)

where m, =E1P"+Gp„and M, =m, +S1~ We will re-
strict our attention to the case when the p dependence of
the potentials is restricted to its appearance through l
with {xj,l I =O. Those potential forms E, , G, and S,
are the same as those defined in the spinless section.
The tilde variable will be left undefined for now other
than the required equivalence of the middle and right-
hand sides of (123). The quadratic constraint is

1
m, =—{Z„Z,{=~,—i0, 0tF,„.

I

Defining 4; as before, we find that

@,—q, =M, —M, —ml +m,2 2 2 2

E,'+E,'+e, ' —e,'+2(E, +E, u)P.p . —

The weak third-law requirement, 41=+2 plus the use of
the supersymmetric forms given in (118a) (118b), (122a),
and (122b), again lead us to the same spinless potential
conditions (75) and (93). The resulting form of &z im-

plies &, A& =P p, —so that proof of compatibility,

{4, ,&, ] =0, {$, ,&&I =0, {&„&2) =0, is straightfor-
ward and will not be given here.

In order to complete our discussion of this section, we

must include electromagneticlike interactions. From our
discussions above, we do not expect there to be an
overall supersymmetry generated by a 9-type
Grassmann form. Rather our motivation arises from the
tilde forms Fr, and M, that, combined with the third law,

have consistently led to conditions on the potential
forms M; and E; that are the same as those appearing in

the spinless case. These tilde forms reflect the partial su-

persymmetries that are sufficient to lead to compatible
constraints. In the case of scalar and timelike four-
vector interactions, the parametrization we used for both
parts of the potential were independent [M; =M;(S),
E; =E; ( V) ]. This allowed us to treat their supersym-
rnetric extensions separately. When the electromagnetic-
like vector interactions are included, the potentials are
correlated [M; =M, (S,M ), E; =E; (V,A. ), G =G(M )].
(This correlation has nothing whatsoever to do with

compatibility. It is a feature of our parametrization of
M; and E, .) Because of this correlation, we do not expect
separate supersymmetric extensions. Consequently, we
will not be using supersymmetries (of the 0 type) to con-
struct the spin-dependent extentions 5; and JM; of the
spinless potential forms. However, as we shall see
below, the spin-dependent extensions given in (118a),

and together with

{m („,M( I
= —GB„M)

leads to

&,=G p E, +M, +2—iGBG 0@ 0,

(125b)

+2iGaE, 0,J.0, +2iGaM, 0,0„+2GE,P.p .

(126)

This constraint takes the by now familiar form

&,=5, +M, =0,2 2

if we define

5. 11 =E,P "+Gp" +i O, -BGO",~,
BE)

E 1
——E 1

—iG B1P-O
1 1 E 1 1

1

iBM) Ol
Ml ——Ml +6 O~l ~

Ml

(127a)

(127b)

This Mi divers from that given by our earlier supersyrn-
metric form by the factor of G (which becomes 1 when
A =0, i.e. , no electromagneticlike interactions). Notice
that if we define

Note that the interaction term 0", O,F,„„is the pseudo-
classical analog of the o.", F,„ interaction that appears
in the quantum case. Unlike the case of (103), there are
8-like components of the field in the c.m. system arising
from recoil eff'ects (p and V'G dependent terms). Explic-
itly,

F,„„={n. ,„,n. , I

=G(P„d+, PB„E,)+G(p„—B G —p, B„G),
(125a)
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(x~)M ——x~+iGO(0g)/M,

then

M, =M, ((x~)~,p),p2) .

Likewise defining

(x~)~ =x~ iGO—,P.O, /E, ,

implies that

erators to go along with E, and M&, these generalized
tilde forms plus the spacelike spin-dependent
modification of p are sufticient to give compatibility and
covariant control of the relative energy. We can see the
physical significance of the extra terms more easily by
leaving out the timelike vector interaction. In that case,
this form for rr2 simplifies to [Ez ——G(e2 —A ) and
—G(BE / E, )=BG]

2
——E2P —Gp —0, .BG0,

E, =E, ((x~)z,pi, p2) .
=pz —A~=ezP —p —22 . (129)

These tilde variables, unlike earlier ones defined in the
case G = 1, are not supersymmetric. That is,

I ~1M~(xl )M I +0+ [ ~lE~(xi )E I

However, we retain the tilde notation to remind our-
selves of their supersymmetric forms as G ~1. Finally,
defining p =p+i0, VGB» we have 5., =E,P+Gp. For
the spinless particle there is no $2 S2, for Az we use the
form

&2=6 p E2 +—M2 +2iGBG.O@-0,

Hence, the vector potential has the Gordon decomposi-
tion of the electromagnetic current built in. In particu-
lar,

2 ~2=(e~ —E~)P —(1—G)p +i 0, BGO, . . (130)

Our quantum equation for the spin- —,', spin-zero sys-
tem with simultaneous electromagneticlike, timelike, and
scalar interactions are the following simultaneous Dirac
and Klein-Gordon equations:

BE2
+2iG .B,P 0, +2iGBM, .0,05,

S,Q=(rr, 0, +M, 0„)/=0,
&~/=(S~ +M2 )/=0

(131)

(132)

2 2—2GE(P-p =m.
2 +M 2

where

BE2
w2=E2P —Gp = Eq —iG 0)P 0] P

E,

(128a)

( with appropriately Hermitized vr operators [see Eqs.
(46a) and (46b)]). Problems with Hermitian orderings
are greatly simplified if the relative momentum depen-
dence in the interaction functions is restricted to I .
These are compatible wave equations since [S,, &2]
=0. The proof can be made isomorphic to the proof of
classical compatibility by using the product rule (56)
when necessary in place of its pseudoclassical counter-
part. Explicitly, then

M, =M, +
iGBM2 0,

0 (128b)
E,P.O, +Gp. 0, i 0, +M, O„—Q=O . (133)

~ BG
1

It is straightforward to show that this &2 is compatible
with gt', and 4, and that &,—&2-P p. Even though
there are no longer 0-like types of supersymmetry gen-

I

(This equation reduces to the Dirac equation for a single
spin- —,

' particle in an external scalar and vector potential
in the limit that mz becomes very heavy. ) Its squared
form is

&~/=[4~, $~]+Q=G p —(E~ —M, )/G +2E,P p/G —2iBlnG p —
—,'B lnG ——,'(BlnG)~

aE,
+2iB lnG 0@.0&+2i O, P.O, +Zi .

0&0&& /=0 .
G ' ' G

(134)

(This equation reduces to the squared Dirac equation for a single spin- —, particle in an external scalar and vector po-
tential in the limit that mz becomes very heavy. ) The quantum form of the spinless particle's constraint is

gzg=G p —(Ez Mz )/G —2E—zP.p/G —2iBlnG. p ——,'B lnG ——,'(B lnG)

EBE MOM
+2iBlnG Otp. 0, +2i .0&P 0&+2i 0, 05& /=0 .

E)G ' ' M)G
(135)

(This equation reduces to the Klein-Cxordon equation for a single spinless particle in an external scalar and vector po-
tential in the limit that m, becomes very heavy. ) The constraint P.pf=0 together with MzBMz ——M, BM, and
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on g implies that &, and &2 are equivalent to each other on g and yield in the c.m. system the
Schrodinger-like equation

G p —(e —A. ) +2F.„V V—+(m +S) + —VlnG p ——,'V lnG
1

QE, .yy r VM, .y——'(V InG) +i V InG yp. y i— +4 G G
(136)

The two off'-diagonal terms at the end of this equation are brought to diagonal form by using the Dirac equation (133)
to rewrite g as

Q=G(M, E,y—) '(p —iV lnG) yg . (137)

This procedure is the same as that used to reduce the one-body Dirac equation to quadratic two-component form.
One then performs the scale change Q=G+X, 4. This leads to the pauli form [see Eq. (50) for comparison]

p~ (p —~ )~+2p &—&2+(m +S)2—V in+&/2+(V lnX&) l4 ——Olney&IBrL 0'~
r

(138)

where X& ——(E&y&+M&)/G. This wave equation is a
spin-dependent elaboration of (50). Its spinless part is
the same as given in (50), including the VlnG terms at
the end of (50) buried in the VlnX, term above. Just as
with that equation, the momentum structure of (138) is
as simple as that appearing in the nonrelativistic
Schrodinger equation. Notice that the Darwin and
spin-orbit terms contain denominator forms that temper
their singular nature when the underlying potential is
Coulomb-like. This is a feature that Eq. (138) inherits
partly from our two-body spinless formalism and partly
from Dirac's equation itself. Equation (138) also has the
correct semirelativistic limit, although we shall not
display it here.

V. CONSTRAINT DYNAMICS FOR T%'O
INTERACTING SPIN-2 PARTICLES UNDER

MUTUAL VECTOR AND SCALAR INTERACTIONS:
THE TWO-BODY DIRAC EQUATION

We now come to the case of greatest physical interest
and greatest complexity —that of two spinning particles
in mutual relativistic interaction. We shall treat this
case using the same procedures that we employed in the
simpler case treated in the previous section. Just as hap-
pened in that case, we will find that the various super-
symmetries we introduce for each spinning particle (in-
cluding broken supersymmetries) drive us again to the
third-law condition that in turn simplifies the conditions
for compatibility to those that appear in the spinless
case. We will begin by introducing the scalar interaction
alone, then examine the timelike four-vector interaction
alone and in combination with the scalar. Finally, we
add in the electromagneticlike interaction and quantize
the resulting system. This leads to the two simultaneous
Dirac equations (la) and (lb) that are the most impor-
tant result of our paper. Before investigating the de-
tailed description of the dynamics of two spin- —, parti-
cles, however, we wish to remind the reader of some im-
portant results found in the previous section. We
discovered there that three independent invariant func-
tions describe the mutual scalar and vector interactions

I

between two spinless particles or between one spinless
and one spin- —,

' particle. The interactions are local func-

tions dependent on xz, I (becoming nonlocal if addi-
tional p dependence is present). They are the conse-
quences of the compatibility dictated by constraint
mechanics. When only scalar interactions or timelike
four-vector interactions were present, we were guided in
finding compatible constraints (and as a consequence
compatible Dirac and Klein-Gordon operators) by
demanding, in addition to the requirements of spinless
compatibility, that the interacting systems have the same
supersymmetries displayed by systems of free particles.
Associated with each type of interaction was an x~ vari-
able that was supersymmetric and that replaced the spin-
less variable x~ in the potential-dependent mass (M) or
energy (E) functions. The x~ dependence generated
spin-dependent corrections of M, or E, that in turn led
to compatible constraints.

When both types of interaction were present at the
same time, there was no overall supersymmetry although
the E; and M, parts of the interactions were each invari-
ant under its associated supersymmetry. These partial
supersymmetries were nevertheless sufticient to generate
compatible constraints. As we saw in the case of two
spinless particles, the various parts of the interaction can
be made separately compatible. In the case of one spin-
ning particle, the mechanism that guaranteed compati-
bility was the presence of supersymmetries in each limit
when only one of the interactions was turned on. With
the addition of electromagneticlike vector interactions,
we encountered the added complexity of constituent sca-
lar interactions dependent on the vector interaction in
addition to the underlying scalar. Thus, the structure
induced by various x~'s, associated with difterent parts
of the interaction, became mixed. Nevertheless, the tilde
forms 5; and M; derived from x~ expansions with just
scalar and timelike vector interactions readily general-
ized in the presence of electromagneticlike vector in-
teractions. The generalizations were determined by the
requirement that the &, constraint (derived from 4, ) be
expressible entirely in terms of Fr& and Mi. The most
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important new feature introduced by electromagneticlike
interactions was that the transverse part of m, must in-
clude Grassmann corrections. This in turn induced ap-
propriate changes in both the mass potential M1 and the
longitudinal (or timelike) part of 5, . The importance of
the tilde variables was that they allowed a construction
of n2and . M2 that led to an &2 constraint compatible
with 4', . Without them, construction of this constraint
(the only one for the spinless particle) would have been
sheer guess work.

A knowledge of the tilde structures was really not
essential for the construction of the 4, and &1 con-
straints when there was only one spinning particle. The
form 4, =a1 ~ 0, +M10» was already correct when
and M, were given by their spinless forms. The reason
for this is that the Grassmann corrections to vr, and M1
generated by x 's disappeared automatically from
through internal multiplications by the Grassmann vari-
ables 01 and 0», respectively. When both particles have
spin, however, some of the extra structure will survive
since there will be two (mutually commuting) sets of
Grassmann variables present. This structure is discussed
in detail in Ref. 2 for the case when just scalar interac-
tions are present. Here we review the highlights.

For two spin- —,
' particles, our pseudoclassical descrip-

tion employs two sets of Grassmann variables 0, , 02,
a=0, 1,2,3,5 (one for each particle) that for a given parti-
cle anticommute among themselves while commuting
with the 0's belonging to the other particle (0, 02&

=02&0,„,). These correspond to commuting sets of
Dirac y matrices ([y"',y& ']=0). All the fundamental
dynamical variables we deal with have definite even or
odd character with respect to each space. Oddness or
evenness is expressed by the relation

Ap ——g pApA

As we have seen, for a system employing one set of
Grassmann variables, 2) &

——( —) ~. However, for a sys-
tem employing two commuting sets of Grassmann vari-
ables,

(139)

Thus, for example, 01 is odd in space 1 and even in
space 2, so that @~1

——1, @~2
——0. Likewise, 02~ is odd in

its own space and even in the other, so that ep1 ——0,
ep2 ——1. As a consequence

8, 0213 ( —) 02PO,
——

For this system, both the product rule (56) and the pseu-
doclassical Jacobi identity (60) retain their form with the
appropriate ~~. The only new fundamental pseudoclassi-
cal Poisson bracket is I 01,02&I =0.

We begin our treatment of the interacting pseudoclas-
sical system of two spinning particles by first introducing
scalar interactions. Just as happened in the case of sys-
tems that consist of one spinning particle and one spin-
less particle, we expect that the conditions for compati-
bility will include the spinless ones (75) and (76). We in-
troduce pseudoclassical spin for each particle in such a

way that supersymmetry is preserved for each spinning
particle during interaction. This means that x ~ is re-
placed by

xi=(g„,+P„P„)(x,—x2)„,
where [with M, —=M, (xi)]

i 0",0»
x =x"+1 1

1

P
i 0~2052

X2 ——X2+
M2

(140)

(14 la)

(141b)

Equations (141a) and (141b) are self-referent definitions.
However, since the Grassmann Taylor expansions for
M, and M2 terminate, they completely determine the x;
in terms of the x, . Substitution of the resulting M, into
the Dirac-like constraints then yields

and

a
1 pi 01™1051—1 '02052051 0

M2

BM2
2 P2 02+M2052+ l '010»052

M1

(142)

(143)

The mass potential for particle one (M, ) has
modifications due to the presence of particle two (and
vice versa) that are not removed by multiplication by 0„
in S', . The canonical square of each 4, yields its mass-
shell companion

&, = —.IS, , S, I =p, '+M, ' . (144)

=(P.BM2/Mi )0»052 . (145)

This vanishes strongly even if M, depends on the relative
momentum (since xi.p =xi pi), so that 41 and S2 are
compatible. In fact, as we showed in Ref. 2 using the
Jacobi identity, all four constraints are compatible if 4,
and 42 are strongly compatible.

The primary utility of supersymmetry in the construc-

Note that just as in the spin-zero spin- —,
' case &, and &2

have the same spin dependence, so that &1—&2
=2P.p =0. Thus, for an interacting system of two
spin- —,

' particles, once supersymmetry is imposed, compa-
tibility restrictions drive us once again to the third law
and the x~ dependence of the underlying spinless poten-
tial given in (75) and (76). As shown in Refs. 2 and 3,
x1, x2, 41, and 2 are supersymmetric under transforma-
tions generated by

Q;=p; 0;+Q —p, 0„.
The 4' s would not be supersymmetric without the extra
spin-dependent terms at the end, nor would they be com-
patible. In Ref. 2 we found that use of (75) along with
repeated use of the pseudoclassical counterpart of the
product rule (56) leads to

[$1,42I = —(pi BM2/Mi —p2 BM, /M2 )051052
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x~ =(g„+P„P„)(x,—x2)

where now, with E, =E;(x~),

(146)

(x, Y~=x", —

(x~)~ =x2—

Ei

i 0~202-P

(147a)

(147b)

Again self-referent definitions may be evaluated using
terminating Taylor expansions for the E;. Substitution
of these into the Dirac-like constraints leads to

tion of 4, and $2 is that it eliminates all spin complica-
tions and reduces pseudoclassical compatibility problems
to those of the purely spin-zero system. When only
timelike vector interactions are present, similar super-
symmetry arguments succeed in generating compatible
constraints. As in the case of one spinless and one spin-
ning particle, we expect that the conditions for compati-
bility will include the spinless ones (92) and (93). In this
case we introduce supersymmetric interactions by re-
placing x~ by

Their supersymmetry ultimately depends on the fact that
I g, x, I =0, i.e., that the constituent variables are super-
symmetric. As in the scalar case this guarantees the
third-law condition. The details of this demonstration
are straightforward as are the proofs that 0'&, $2, &&,
and ~2 are compatible with one another.

When both scalar and timelike vector interactions are
present, there is no overall supersymmetry of the like de-
scribed above. However, just as in the spin- —,', spin-zero
case, the structures necessary to guarantee invariance in
single-interaction limits are sufhcient to guarantee the
compatibility of the constraints. The basic Dirac-like
constraints are again of the form 4, =Fr, .O;+M, Os, , de-
pending on interaction-dependent (and spin-dependent)
momenta and masses dictated by our previous analyses
of the separate interactions. We restrict our attention
here to the case in which E; and M, depend on the rela-
tive momentum at most through the angular momentum

Then we obtain the spin-dependent corrections to
the potential forms that lead to compatible constraints
by replacing E, (x~,p&,p~), M, (x~,p&,p2) by
E, ((x ~ ) ~p, , p~ ), M, ( (x ~ )M,p, ,p2 ), where

4', =5., -0, +m, Os,
«i)M=I( i)M —( z)M)i (149a)

=E,P 0, +p 0, +m, 0» (x, )~ =[(x, )~ —(x, )&)J (149b)

BE1=E,P.O, +p.0, +m) 0»+i -O,P 0)P 02,

(148a)

with x;~ and x,z given in (141a), (141b), (147a), and
(147b). This leads to

BM, BM,
M) —M( +i 0)0s) —i 020s2

M) M2
$2=5.2-02+ m 20s2

=E2P.02 —p.02+ m20s2

BE2=E2P.02 —p -02+ m 20s2 —I -02P 02P -0, .
E,

(148b)

As usual, the signature of a vector interaction is its al-
teration of the effective mechanical momentum of each
particle to some n, (here m.

, ) that depends on the mutual
interaction. However, a new feature arises when both
particles have spin. In that case, the Fr,- for each particle
contains terms depending on the other particle's spin
that survive the Grassmann multiplications in 4; and
product recoil corrections to each 4, that are
electromagnetic-moment-like interactions. The canoni-
cal squares of the 4, 's,

1
.&; = —.

I S;,4, j =Fr, +m, ', i =1,2,
1

produces A, 's with the same spin dependence, so that
again A, —Wz-P.p. As in the scalar case, compatibili-
ty of 4, and S2 depends on the inclusion of the extra
spin-dependent terms at the end of (148a) and (148b).
These terms help to guarantee the supersymmetry of ,
and $2 under transformations generated by

0, =P.6, (p~ +m, )'~ +p~ 8, +m, 0„.

02-BM )+B).B Os, Os2,
M)M2

BM, BM,
M2 =M2+i 0,0s, —i 020s2

M) M2

0) -BM2
+02.B

M Os)0s2
M)M2

BE, BE,
Ej ——E& —i 0)P.O, +) ~ B2P.02E, E

02 BE,
+0, B POP 0, ,1 2

BE, BE,
E2 ——E2 —s -0)P.B)+t -02P. 02Ei E2

Oi. BE2-
+O, -B P-O,P.O, .

E)E2

The basic constraints then become

4, —m. , -0)+M, Os,

BE)
=P -0)+E,P.O, +i -02P 02P -0)E

BM,
+M 1 051 —l 020s10s2

M2

(150a)

(150b)

(150c)

(150d)

(151)
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2 ~2 02 ™2052
BE2= —P -02+E2P 02 —l O,P.02P 0,

BM2
+M20s2 —' 'OiOs&Os2 .

M)

One then finds that

2 —
2m, —= —.[Z„Z,I=~, +M, =0,

l

(152)

(153)

BM, BM,
M) ——M) +iG -0)Os) —iG -020s2

M) M2

O, .BM,
+G'0 B OsiOs2

1 2

BM, BM,
M2 ——M2+lG 0)0s) —lG -020s2

M) M2

0, ~ BM2
+ G202-B 051052 .

1 2

(159a)

(159b)

~2= [~2»~2[ ~2 +M2
l

(154) We substitute these into the constraints (155) and (156)
to obtain

4) ——Fr) 0)+M)Os),

2 ~2 02 ™2052

(155)

(156)

We are guided in our search for acceptable 5.
, and M, 's

by the corresponding spin-zero, spin- —, forms given in

(127) and (128) as well as the results for E, and M, given
in (150). Accordingly, we take

5-", =E,P "+Gp"+iO, BGO", +i0 -BGO" (157a)

5. ~q ——E2P "—Gp~ i 0&'BGO~&i —'02 BGO~2l (157b)

where

BE) BE)
E) =E& iG 0)P'0)+iG '02P 02E ' E

02 ~ BE,
+G'0, .B P.O,P.02,E,E

(158a)

BE, BE,
E2 =E2 —lG .O, P-O, +lG .02P. O2E,

Oi. BE2
+G 0 -B P-0 P.OE (158b)

The corresponding spin-dependent mass potentials then
become

Each x turns out to be invariant under its own associat-
ed supersymmetry (but not under the other type):

[&,M «, )M I =o [~M «))Zl &o

[ Q»E»(xj )E ) =0» [ Q»EM»(xj )M I &0»

with the 9, 's defined just as in (110) (but with E; ~E;,
M; ~M; ). The construction of the 4', 's from these
would-be invariants turns out to be sufficient to guaran-
tee that all four constraints (g„gz, &&, &z) are compa-
tible with one another.

Finally, we complete our dynamical scheme for two
spin- —, particles by introducing electromagneticlike vec-
tor interactions in addition to the scalar and timelike
vector interactions. Again, the interactions enter the
Dirac-like constraints through (spin-dependent) momen-
tum and mass modifications:

M)0s)+E)P 0)
S,=G 0, p+

G
+iB lnG 020(~ 02'

BE,
+i .02P 02P. O) —i .020s20s,

E2 M2
(160)

M20s2+E2P 02
$2=G —02 p+

G
—i B lnG ~ 0

&
02~.0

BE, „BM,
~ O,P O,P 02+i 0)0„0s2 (161)

For the full system, one also finds that (see Ref. 45)

&,= —. [S, , 4', [ =rr, +M,—2
—

2

l
(162)

~2 ~ [ ~2» ~2 I ~2 ™2—
2

l
(163)

+10=(~1 ~1+M1~51)0=0

+20 (~2 ~2+ 2052)1

(164)

(165)

(with appropriately Hermitized terms). Notice that one
quantizes the Grassmann product forms Fr, .O, and M, Os,-

after all internal Grassmann multiplications have been
performed. One does not first quantize 5.; and M,- and
then multiply them by the operator 0's (y matrices).
This would not only lead to Dirac operators that were
not compatible, but would lead even in the ordinary
one-body case to the incorrect description of a spin- —,

'

particle in an external potential. One demonstrates the
compatibility of the quantum operators 4, and S2 corre-
sponding to the pseudoclassical constraints (160) and
(161) by a process that is isomorphic to the pseudoclassi-
cal proof. This isomorphism is made possible by the
correspondence between the pseudoclassical brackets

with the appropriate tilde forms (157a), (157b), (159a),
and (159b). Once again, && &z Pp, s—o tha——t these
forms incorporate the third-law condition. The proofs
that these four constraints are compatible carry through
in the usual way. (Repeated use of the appropriate
pseudoclassical analog of the product rule (56) [with
(139)] is essential '. )

When all the interactions are present, canonical quant-
ization of (160) and (161) produces the compatible two-
body Dirac equations



36 TWO-BODY DIRAC EQUATIONS FOR PARTICLES. . . 3029

and the quantum (anti)commutators [particularly the
quantum product rule (56)].

VI. TWO-BODY DIRAC EQUATIONS

Now that we have constructed two compatible Dirac
equations that describe the quantum mechanics of two
interacting spin- —, particles, we shall write them out in
full in three useful forms: (i) manifestly covariant; (ii)
center-of-mass rest frame; (iii) reduced Pauli form (in
c.m. rest frame ). Along the way we review the various
claims made about them in the Introduction. In covari-
ant form our two-body Dirac equations are

Mi —E]ri0
+1|i'=ys1G 'Y1 P+ + yz VlnGy2 ylG 2

oo &
~M

+
2 Y2 E y2rl 2

Y2'
2 2

(170)

M2 —E2.r2
0

~24 y52G y2 P+ —r—
1 V lnGr1 r2.

G 2

S,f=y, [y, .(p, —A, )+m, +S, ]/=0,
+2@ r52[ Y2 (p2 2 2 )+ mz +$2]1//=0,

in which

(la)

(lb)

2 o o l 2
r1rz+ 2r1. M

1 1

(171)

. G
(e, E, ) —i——yz.

2

()E ) +0 lnG y2-P P
2

l+(1—G)p ——BG yzyz,2
(166)

BE2
+BlnG y, P P

1

A z
—— (Ez Ez )+i —y1. —. G

2

l—(1—G)p + ~G r1r1'
2

(167)

l aM1
S) ——M, —m, ——Gy2.

2 M2
(168)

i
Sq ——M2 —m2+ —Gy)

M]
(169)

Note that (as claimed in the Introduction) the relative
time is regulated in a covariant manner through the
dependence of these potentials on the variable x~. These
compatible wave equations (la) and (lb) take the follow-
ing forms in the c.m. system (where P p1t =0 implies
i);.pP= r5, r, —/2 p&):

(p'+ @sr++ss+ @so+~'r +~'Do)'p =& 'q'

where

(172)

In Ref. 2 we showed how an exact reduction of these
coupled 16-component wave equations to four decoupled
(with diagonal y, ) 4-component Schrodinger-like equa-
tions can be carried out. The details of this procedure
for the more general case of (170) and (171) are similar
to those outlined in that paper. First one computes
&, —:[S,, S, ]+. This gives a wave equation with two
varieties of off'-diagonal coupling terms: singly odd (such
as y, .p=y„y, o, p) and doubly odd (such as y, .ryz r
=y»y, y52yzo. , ro z.r). The singly odd terms are
brought to diagonal form by using the appropriate Dirac
equation [$,/=0 to bring the term y, .(p —V lnG) to a
diagonal form, analogous to that found in (136) and
(138)). This produces diagonal (y, ) spin-orbit and
Darwin terms and more doubly odd terms. One then di-
agonalizes the doubly odd terms through rearrangements
that use both the $1/=0 and A'21J'j=0 Dirac equations
(see Appendix B). This procedure (with the additional
scale transformation /=+AD X1+2) results in the follow-
ing four decoupled (with diagonal y, 's) four-component
Schrodinger-like equations:

esp =2m~s +S +26~ V—V +26~A A 7

@ss———V in(X, XzG ' )/2+[V 1n(X,X2G ' ' )] /4+(VlnG) (3+o1.o z)/18,

4&so ———(81~,/BrL a1+31nX2/(3.rL oz)/r,
4T

——Sz.[ —( r 8 In G /dr 3 ln G /8 r ) /r + V lnG V ln(X + 2 )—]/6,

@Do——(At —8) /4 —jeztr1. V[crz (At —8)]/w +e1o2 V[o, .(At'—. 4 )]/u1 —o, .crzV lnG (At —8).
—o'1.V 1n(X1)crz (At —0)—o 2.V in(gz)o'1. (At —8)] ( —)'(4s& —b )/(2X1X2),

with ( —)'=1 for spin-singlet and —1 for spin-triplet
cases, 7; =(E;y, +M; )/G,

8=V(E1 +Ez ) l4E1Ezy, y 2 .

and

At =V(M12+Mzz)/4M, Mz, We make no approximation in going from the two-body
Dirac equations (170) and (171) to the Pauli form (172).
This Pauli form is the two-body analog of the reduced
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form of the standard Dirac equation involving two cou-
pled two-component equations with the characteristic
form y (E —V) —m —S appearing in the denominators
of the L-S and Darwin terms. That potential energy and
energy-dependent denominator structure appears in our
equations through the 7 forms.

The notation we have used in labeling the various
parts of the "quasipotential" N is motivated by
correspondence with the standard semirelativistic expan-
sions of atomic physics. @» is the spin-independent
piece not including the Darwin interactions. The
Darwin interactions are contained along with the spin-
spin interactions in Ass. [Many relativistic extensions of
the quark model based on replacing the Schrodinger
operator by

leave out these important Darwin terms. ] Even though
the Darwin terms are spin independent, they do not
a6'ect all angular-momentum levels to the same degree.
In fact they provide a very short-ranged interaction.
Hence, leaving them out tends to distort the splittings

I

between the l=O and the other angular-momentum lev-
els. +so is the spin-orbit term. Through g it contains
both magnetic and Thomas precession parts. We sym-
bolize the main tensor terms by +T. +&z contains those
terms (spin-independent, Darwin-like, spin-spin, and ten-
sor terms) that arise primarily from those terms in &,
(=1/i [S,, g, ]+) that are doubly odd in y& and y2
[which couple the upper-upper and the lower-lower com-
ponents of the 16-component spinor (see Appendix B)].
Equation (172) is a spin-dependent elaboration of (50).
Its momentum structure is as simple as that which ap-
pears in the nonrelativistic Schrodinger equation. No-
tice that all of the spin-dependent and Darwin terms
contain denominator forms that temper their singular
nature into quantum-mechanically legal operators.
Thus, our Pauli forms make quantum-mechanical sense
in the strong potential nonperturbative regime where rel-
ativistic effects of the wave operator on f are not negli-
gible. This property is easiest to demonstrate when
S=0, V=0. We compare the main spin-spin, tensor,
and spin-orbit terms of our equation with the corre-
sponding terms of the Breit equation (two-body Dirac
form~Breit form):

——,o, aqV ln 1—2 2A lX)'o2V A
m1+m2

(173)

1 a——'ST
r ar

a', , ~, [(I/r)(~ /ar) ]—a'a /ar'
ln 1— m —,'ST

ar2 m] +m2
(174)

' 1/2

ln [E,(A )+m, ] 1—1a
4 ar LO

1/2

L.o, +ln [Ez(A )+m2] 1—2A L-o2
t

1 hA
r ar

2m] +m2 2m2+m [L o]+ L -o.
~2m&( &+ 2) 2m2(m)+m2)

(175)

For A's that have singular short-range behavior like
—a/r (QED) and Sm. /27r lnr (QCD) the weak A form
on the right-hand sides can only be used perturbatively.
Notice that the weak potential forms of our spin-
dependent interaction terms are the same as the corre-
sponding spin-dependent interaction terms of the
O(1/c ) Breit Hamiltonian. (As we have shown earlier
the spin-independent semirelativistic [0 (1/c )] terms
(not shown here) are canonically equivalent to the
Darwin interaction. ) However, unlike the Breit forms
(which can only be used perturbatively ), our forms (on
the left-hand side) can be used even when the effect of
this term on the wave function is not that of a small per-
turbation. The logarithmic terms appearing in our Pauli
forms provide a natural smoothing mechanism that
avoids the necessity for extra singularity softening pa-
rameters in phenornenological applications.

As shown in a future paper, for weak potentials, the
upper-upper components of these equations, (172),
reduce to the Todorov equations for scalar and vector
interactions. Its equivalence to the Breit Hamiltonian
follows by making a further slow-motion expansion.

There we shall also show how, in its nonperturbative
form, (172) becomes exactly soluble for singlet positroni-
um. The resulting spectrum is correct through order a
(Ref. 54).

As mentioned in the Introduction, Eqs. (170) and (171)
reduce to the ordinary Dirac equation in the limit that
either particle becomes infinitely massive. For example,
when m2~ oo, 6~1 and the derivative terms at the
end of Eq. (170) (particle one's equation) vanish, so that
we are left with the Dirac equation for a single spin- —,

particle in external scalar and vector potentials
[M, ~m, +S, E,~e, —A (for V =0)]. This static limit
feature carries through to the Pauli form of these equa-
tions. For example, when V=O (172) becomes the stan-
dard static limit form of two decoupled two-component
equations similar to Eq. (138) with V=O, e„~e,,
m„~m], and G~1.

VII. CONCLUSION
The most important results of this paper are the com-

patible wave equations (la) and (lb) for two spin- —,
' parti-

cles interacting mutually through electromagneticlike
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&,=~, +M, =0,2 2

leads to the e6'ective system Klein-Gordon equation

[p —(e —A) +2@ V 4' —+(m +S)

(186)

+ —,'V lnG+ —,'(V lnG) ]/=0 . (187)

For a spin-zero, spin- —,
' system, the Pauli form of the

two-body equation turns out to be

[p —(e —A) +2@ V —V +(m +S) —V lnX, /2

+(V 1nX&) /4 —81 Xnt/BrL o &]4=0, (188)

where X, =(E,y, +M, )/G. This wave equation is a

(P ++sI+ +ss+ @so++T + @Do)+

where

(189)

spin-dependent elaboration of (187). The wave function
%' has four components, but in the representation in
which y& is diagonal, this equation reduces to an uncou-
pled set of two two-component wave equations. It re-
sults from quantization of pseudoclassical constraints
(displaying two types of supersymmetry associated with
the separate scalar and vector interactions).

For a spin- —,', spin- —,
' system, the Pauli form of the

two-body Dirac equations given in (170) and (171) turns
out to be

+s, =2m S+S +2@ V—V +26 A —A

@ss= —V'ln(X, X,G ' '
) /2+ [V In(X,X,G ' '

) ]'/4

+(V lnG) (3+o,.o.z)/18,
= —( 8 lnX, Idr L.o, +8 lnX Idr L.cr )Ir,

@r ——Sr [ —( r ~) ln G /c}r —8 ln G /dr ) /r + V ln 6 V ln(X &X2 ) ]/6,
@Do= (At —0 ) /4 —j e~cr, V [cr2. (At —8 ) ]/w +e,o 2 V[o, .(A. t —8 ) ] /w

—o& o zV lnG. (At —8)—cr
&

V ln(X&)o'2 (At —8)
cr ~ V—ln(X~ )o, (At —6 ) ] ( —)'( +s, —b ) /( 2X,X,),

with X; =(E;y, +M; ) IG,

At=V(M, +M~ )/4M, M2,

Let

P =p&+p2, P =w, P=P/m, (A2)

and

6" =V(E( +E2 )/4E)E2y/y2

Ix =x, —x2, p = (E2p, ——Qe)2
N

Ei+E2 —W, 6; =E;(w)

(A3)

(A4)
This c.m. form is an equation for a 16-component wave
function. Since all terms depend only on the diagonal y
matrices y„yz, this equation reduces to an uncoupled
set of four four-component wave equations. It results
directly from quantization of pseudoclassical constraints
(with broken supersymmetries) as outlined in the con-
clusion.

Following Todorov, ' we define D and N by

E)4, =@+ D=4, (x,p „p~ ),—
W

42=@— D=@~( pxp2~) . —
LU

(A5)

(A6)
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APPENDIX A: MODIFICATIONS
OF THE THIRD-LAW CONDITION

Consider the classical compatibility condition on the
constraints

Let

where

2 2
pz

+J &+J pJ & +/jp//2 2

2 2

(A8)

(A9)

&)——p) +m ) +4) =0,2 2

~2 p2 +m2 +@22 2
(A 1)

x~~ =(g" +P "P ')x„,
x)( = —x P) p(( = —p 'P
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vector, timelike vector, and scalar interactions. The
counterparts to these equations for a system of one
spin- —,

' particle and one spinless particle and for a system
of two spinless particles are given in (131), (132), (47a),
and (47b), respectively. These three sets of equations are
operator versions of the pseudoclassical descriptions
given by (160), (161), (123), (125), and (45). (These pseu-
doclassical constraints generate systems of coupled
Lorentz and Bargmann-Michel-Telegdi equations. ) The
Pauli forms for the wave equations with spin are given in
(172) and (138) and are the most useful forms for practi-
cal applications (employing simple extensions of nonrela-
tivistic forms). Their spinless counterpart is given in Eq.
(50). If we trace the spin structure of the wave equation
back to pseudoclassical mechanics, we see that it is rigid-
ly dictated by two ingredients. The first is the depen-
dence of interactions on constituent supersymmetric po-
sition variables x; that are themselves interaction depen-
dent (one supersymmetric variable for the scalar and one
for the timelike vector interactions). The second in-
gredient is an effective Gordon decomposition of the
electromagnetic current. These ingredients lead to the
spin-dependent potential structures given in (127a),
(127b), (128a), and (128b) for the spinless and spin- —,

' sys-

tem and (157)—(159) for the two spin- —,
' particle system.

The spin dependences arising from these effects are su-
persymmetric elaborations of the spinless forms con-
tained in (34), where (43a), (43b), (44a), and (44b) are
true. The resultant spin-dependent tilde forms of the po-
tential automatically enforce the same third-law forms as
appear in the spinless equations. Thus, our procedure
takes care of spin complications, reducing compatibility
arguments to those appearing in the spinless case. The x
variables and their supersymmetries are essential in-
gredients in the pseudoclassical mechanics that underlies
Dirac's own one-body equation with external potentials.
Consequently, through proper extension of the tilde vari-
ables to the case of two particles (resulting in interaction
dependence on x~), our procedure ultimately leads to
wave equations that stretch both perturbative and non-
perturbative structures of Dirac's own one-body equa-
tion to the two-body problem. Hence, our equations
possess correct relativistic kinematics, heavy-particle
limits to relativistic one-body equations, and correct
fine-structure as well as nonperturbative quantum-
mechanical meaning. In a future paper we describe the
applications of these equations to electrodynamic sys-
tems and to covariant quark model calculations.

VIII. SUMMARY OF IMPORTANT EQUATIONS
AND DEFINITIONS

+m& —m2
2 2 2 w +m2 —m&

2 2 2

The dynamical variables most convenient for the con-
straint description of the relativistic two-body problem
are (i) relative position x, —xz, (ii) relative momentum

p =(I /w)(e2p1 —e1pz), (iii) total c.m. energy w

P, (iv) total mo—mentum P =p, +p~, (v) (con-
served) constituent c.m. energies

(vi) relativistic reduced mass and energy of a fictitious
particle of relative motion,

m&m2
~w=

W

2 2 2—m& —m2

4 2 2 2[w —2w (m, +m~ )+(m, —m2 ) ] .2 2 2

4m

We introduce scalar and vector interactions through
constituent mass potentials and minimal substitutions:

M, =m, +S,(x1,p„pz), i =1,2, (176)

r", =p "1 —2", =E, (xi,p„p2 )P "+ G (x1,p, ,p2)p",

(177)

~2 p2 ~ 2 2 xl&pl &p2 ) G (xi~p 1 ~p2 )p

where~=(p1+pz)/w w = —(p1+p2) and

x11' =(g""+P"P ')x

(178)

(179)

The vector potentials A,~ are divided into timelike and
spacelike parts. The constituent energy potentials E, are
responsible for the timelike vector interactions while G is
responsible for the recoil-dependent spacelike vector in-
teractions. In the absence of interactions, E, ~e, and
G~1. Since there are only two independent parts of
the vector potential, the three forms E, , E2, and G are
not independent but related through

E, (A, V)=G ((e1—A) —2e V+V )

= G'(e, —A, )

E2 (A, V)=G ((e2 —A) —2e V+V )

=G (ez —A2)

G
1

1 —2A /w

(180)

(181)

(182)

Likewise, since there is only one independent scalar in-
teraction the two forms M, and M2 are related through

M1 (A, S)=m1 +G (2m S+S )=(m1+S1)

M&2(A, S)=mz +G (2m S+S )=(mz+S2)

(183)

(184)

A, V, and S are invariants associated with electromag-
neticlike vector, timelike vector, and scalar potentials,
respectively. Each is a function of x z and
(l =x1 Xp). These particular invariants have the virtue
of displaying the relation of our covariant formalism to
the nonrelativistic and semirelativistic limits on the one
hand and the appropriate field theory on the other.

Quantization of the compatible constraints,

and (vii) on-shell value of the relative momentum
squared:

b (w)=e —m =e, —m, =e2 —m22 2 2 2 2 2 2

E2= +M1 =0,2 2 (185)
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Let

()@=x~4 )+p~+ 2
—p~j~P+ 4,

BD= —x PD& —pPD

a, 4=x 4 +p e3 Pxllc'4 Pplla', 5

D = —x~~~PD 2
—plI~PD

The comma notation means derivative with respect to
the argument number. The compatibility condition is

[&1,&2] =2wp ~~4 4+ 2x
~~~p~~~D i + 2p~~~ D 2

—x
~~~

D i@ 4
—x

~~p~~~D oC s

2 2—
x~~p~~D 24 4

—
p~~

D 2N 5+x~~p~~~D 2N 4+pI~ 4 4D 3

=@4(2wp(( —x(( D, +p(( D, )+x((p()D, (2 —@~)+D ~(2p(( —
p(( @,) .2 2 2 2

The simplest solution is @ 4
——0 and 4& 5=2, and (AS) be-

comes
APPENDIX B: DIAGONALIZATION

OF THE DOUBLY ODD TERMS IN WD~

and

2 2
2 2

,xq pq, ,P +p~I2 2
(A10)

In computing &, =—[S, , g, ]+, one finds diagonal forms
(such as 4s, and bits and pieces of Ass, %so, and NT ),

singly odd terms, namely,

2
2 2

llpll'pll2
(Al 1)

V(E, y, +M) ) V(E2y2+M~ )
l

G rl l
G y2 (B1)

Thus, using p, =e,P+p, p2 ——e2P —p, and differencing
the constraints leads to

2P p+D+(ez —e, )w+m, —m2 =0 .

Choose
2 2m) —m2

1 F2

and doubly odd terms. Using $&/=0 to reduce the first
singly odd term and $2it =0 to reduce the second singly
odd term, produces more diagonal pieces [bringing C&ss,

%so, and 4T to their final forms below (172) after an ap-
propriate scale transformation that transforms the r p
Darwin terms to momentum-independent forms] and
more doubly odd terms. The doubly odd terms can be
written as

leading to [ ]r~irlr~2r&W (B2)

2P p+D-0 (A12) where [ ] is the square brackets of terms that multiply

Note that e, and e2 can be interpreted as c.m. constitu-
ent energies only if D =0, that is,

D—p P =Ei —p 'P E]+1

( —)'(4si —b ') /(2X )Xp )

in +Do
In this appendix, we shall show how the latter factor

arises. In particular, we show that

—p2 P =e2+p.P =e2
2

Note also that

[( ) (+SI b )~(+1+2)]r51rlr52r20 (B3)

&,=p —e, +m, +N+p +—(2P p+D)=0,
To demonstrate this, we write our two Dirac equations
in the forms

~2 p 2 + 2 +++pll (2Pp +D)=0

leading to

&=—&,+—&2——pi b(w)+ @=0, —
w w

as given in (14) or (20), since

2 2= 2
p +p)) =ps

(A13)

(A14)

&i0=(ri » &rz .»4— .

where

r2'Pi+'r i +)4

X;=(E;y; M; )IG, —

and

P,. =p+ —V ln6 + —,
' u; X V ln G

1

2l

(B4a)

(B4b)

(85)

(B6)
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X=—,'(At —6) . (B7) 0=(X y .P; —X yl -$)tlr+(Xzyz P& —iXzyz X)P . (B8)

We combine the two Dirac equations (B4a) and (B4b)
into the form

Bringing X, to the right of P, and using (B4a) and (B4b)
in those parts, leads to (using y =y ystr )

[oz P, , oz.P, ) +i VlnG tr, trz. P, —i V lnG tr2o, .P~+i cr, Xa& P, —i oz X.tr, P~ y»y, ys~yzg
X2

+ t cT ) Ppcr ) %—t cr p P) tr p
X—

where

X, =(&,y', +M, )/G (B9)

[L.(o
&

—o~)] =4L —2L. (o ~+o'z) —[L (o, +o ~)]—:6,
(B11)

One finds that the commutator term on the left-hand
side gives a result that cancels with the next two terms.
The last term on the right-hand side vanishes since
g,X, =X,X~. Multiplying both sides by Y,X, and simpli-
fying leads to

~'si —&
(o 1 + o2)3 sly ly 521 2t L (o

1 o2)~I ]72
(B10)

Multiply both sides of (B10) by L (o, —tr ~) and use

( —)'0,
(@st b' )y—siy s2y iy ~0

L jYQ

for which Eq. (B3) is a solution.

(B13)

and

L.(o, o2)i—L .(o, Xo.2)= —6, +2L2(1 o,—o,):6,—.

(B12)

For singlet states, o, o 2
———3 and 6, =6b. For triplet

states, o &'o2=+1 and 0, = —6b. Thus,
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