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We obtain the most general Cauchy data that produce Hadamard singularities in the propagator
of a scalar field in the following backgrounds: (a) space-times with general homogeneous plane
cosmological metrics; {b) Robertson-Walker space-times with arbitrary spatial curvature. Using
this result we discuss the propagator's structure derived from two recently proposed Hamiltonian
diagonalizations.

I. INTRODUCTION

The problem of the vacuum definition in quantum
field theory in curved space is still unsolved. The re-
quirements usually imposed on a given state to be con-
sidered a good candidate fall into two categories: (1)
The associated propagator must reproduce, in some
sense, the flat-space-time behavior for x ~x' or, related
to this, the energy-momentum tensor (T„) must be re-
normalizable (local properties) (2) the "energy" must
be diagonalized or minimized (global properties). '

All authors agree with the necessity of imposing re-
quirement (1) in dift'erent degrees but the clear require-
ment of type (2) is not apparent up to now. Waiting for
this global property to be established, we have obtained
the restrictions which result on the possible vacuum
states by applying property (1) in its weakest version,
i.e., that the propagator must reproduce only the Ha-
damard singularities for x ~x '. We remark that we do
not ask for the complete Hadamard form nor for the re-
normalizability of the T„;our criterion is less restrictive
than these.

We will work with some of the metrics (of cosmologi-
cal interest) which allow the separation of the natural
time in the field equation: general homogeneous plane
metrics and Robertson-Walker (RW) space-times with an
arbitrary scalar curvature (related works in spatially flat
RW (Ref. 7) and Bianchi type-I metrics will be com-
mented below).

The organization of the paper is as follows.
Hadamard's formalism is briefly reviewed in Sec. II. In
Sec. III we show that the WKB vacuum reproduces the
Hadamard singularities. In Sec. IV we obtain the rela-
tion between the WKB Cauchy data and the most gen-
eral ones that produce the correct singularity structure
in the propagator. The renormalizability of the energy-
mornentum tensor and the relation of our work to those
of Refs. 7 and 8 is also commented there.

It has been recently pointed out that, after perform-
ing an appropriate time-dependent canonical transforma-
tion, a consistent vacuum definition through Hamiltoni-

an diagonalization can be done in spatially flat RW
backgrounds for all values of the coupling constant g
(see Appendix A for notation). "Consistent" means that
the propagator has Hadamard singularities and that the
infinite terms in the vacuum expectation value of the
Hamiltonian do not depend on the time in which one
fixes the vacuum state, allowing a state-independent re-
normalization. Using the results of Sec. IV we show in
Sec. V that this cannot be done if the metric is aniso-
tropic. We also discuss in this section the cases in which
the Cauchy data which diagonalize the observer depen-
dent Hamiltonian proposed in Ref. 10 coincide with the
ones obtained in Sec. IV.

Finally, we present our conclusions in Sec. VI. Ap-
pendixes A and 8 contain the notation and conventions
used as well as some useful formulas.

II. HADAMARD STRUCTURE

Let us consider the propagator

G, (x,x') = (0
i IP(x), P(x') I i

0) . (2.1)

The Hadamard solution of the Klein-Gordon equation is
given by

G, (x,x') = ' —+v(x, x') lno +w(x, x')(x,x') 2

8~'

v(x, x')= g v„(x,x')cr",
n=0

w(x, x')= g w„(x,x')o",
n=0

(2.3)

and the coefficients v„(x,x') can be recursively calculat-

(2.2)

where b(x, x')=g ' (x) det(cr „,)g
'r

(.x'.) is the
Van-Vleck determinant and cr(x,x') is one-half of the
square of the geodesic distance between x and x'. The
functions v(x, x') and w (x,x') admit the expansions
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2 H(1)((2 2 )1/2)
4, (cT ) = Im

4~ (2m cr)'
(2.4)

(here H', " denotes the first order and type Hankel func-
tion and o =—,'[(x—x') —(t t') —]). It is easy to see
that 6, ( cr ) is of the form (2.2): expanding
H', "((2m cT)'~ ) one obtains

' n+1

v„=2 n!(n + 1)!, (2.5a)

ed inserting (2.2) and (2.3) into the field equation (A2),
while the tv„(x,x') are determined once tvo(x, x') is
fixed.

As is well known, the Hadamard solution (2.2) is the
natural generalization of the Oat-space-time kernel

s (x,x')=2o. (x,x')=g, I,
Y'Y

(x,x')=1+ —,', R,&
Y'Y"+

a, b =O, l, 2, 3,

(2.6)

(2.7)

where Y' are the normal coordinates of the point x'
with respect to x (Ref. 11) which can be written in terms
of the coordinates x' as

Ya gXb+ 1 I a gXbgXcbc

the Hadamard form for the singular part of the propaga-
tor in the coincidence limit x ~x . To do this, Eq. (2.2)
must be rewritten in terms of some particular coordi-
nates x'. We can write the square of the geodesic dis-
tance s (x,x') and the Van-Vleck determinant as

N =2n

m
ln

m

2

g(n—+2)—f(n +1)

n!(n +1)! +—„(r;„+r;,r;, )sx "ax ax', (2.8)

(2.5b)

We will discuss in Sec. IV which are the restrictions
that appear on the possible vacuum states by imposing

with Ax'=x" —x'.
On the other hand, the coincidence limits of the first

two functions v„(x,x') are'

lim vv(x, x')=m +(g——,')R —=vo(x),
X~X

m4 m'
lim v&(x, x')= + (g ——')R+ —'(g ——,') R —

—,', (g ——,')ClR + ,
' (R,b,dR' ' —R,bR' )—

X~X

—:vi(x)

(2.9a)

(2.9b)

In the following section we will obtain explicit expres-
sions for G, (x,x') in the limit x ~x' using Eqs.
(2.6)—(2.9) and the geometric identities of Appendix A.

III. WKB VACUUM AND SINGULARITIES

As we said in Sec. I we will restrict ourselves to cases
in which we can separate variables in the field equation.
We shall consider two types of metrics:

(A) ds = dt +g,, (t)dx'dxj, —
(3.1a)

(8) ds = dt +a (t)[dX +f (—X)(d9 +sin gdy~)],

with

sinX, X E [0,2n. ),
sinhX X&[0 + )

(these are RW metrics with K = +1, respectively).
The action for the scalar field is

(3.1b)

S= —-,
' J' d x( g)'~ [g" a„ya.y+—(m +JR)P ],

where g„ is the metric tensor, g is the determinant of
g„„,and R is the Ricci scalar. The field equation is then

( —m —gR )/=0 .

Setting

P(x) = J dp(k)[akuk(x)+H. c. ] (3.2)

d k, typeA
oo k —]. J

K=+1= 'k=o, =o

f dk g g, K= —l.
J=O m= —J

Using the normalization condition

Tg Tk —Tk Tk ——

the pure temporal part of the normal modes can be writ-
ten as

and uz(x)=E&(x)T&(t), , the temporal and spatial
equations which result are

Tg+Tg[cvg +g(R —' 'R ) —,'H ,'H]=0, ———
b, ' 'Eq(x) = (k K)Eq(x—), —

where cod ——m +gjk'kj, ' 'R =K =0 for type (A) and
cv =rn +k a +(g——,')' 'R, ' 'R =6K/a K=+1
for type (B) metrics; a always denotes ( —g)'~ and
H=a/a. The separation constant is k and the measure
dp, (k) in (3.2) is
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Tk(t) =
exp —i Vk t' dt'

[2Vk(t)]'
(3.3)

—2n —1
COk

2n

(2n —1)!!

'n
a —1

Bm

ik. x

(3.10)

where Vk(t) is a real function. Replacing (3.3) in the
temporal equation one obtains (2m ) (k +m )'

(3.11)

Vk ~k + ~k( Vk~ Vk~ Vk (3.4)

where the function Vk(Vk, V„,Vk) will be given below
for each case considered.

The WKB solution can be computed replacing the
asymptotic expansion

and performing the change of variables k'=B 'k such
that g, k'k =k . After a tedious, but straightforward
calculation (sketched in Appendix B) we obtain

G
~ (x, x~, t, t) = —+ [m +.(g ——')R ] lnx

8~'
AnQk- g

n&O ~k
(3.5) h, hk1 i j k 1

48x
into (3.4); the adiabatic solution of order m can be ob-
tained retaining those terms in (3.5) which contain less

than m derivatives of the metric.
Using Eqs. (2.1), (3.2), and (3.3) the WKB propagator

can be written as

Ek(x)Ek (x) cos f &k(z)dz
G, (x,x') = dp(k)

[Ilk(r)Qk(r')a '(t)a '(r')]'~' where

+ —,', ( h "+3h h '~+ h 'h, ')

r, r.
X +O(x lnx)

(3.12)

(3.6)

where IIk is given by (3.5).
In order to show that G& (x,x', t, t') has Hadamard

singularities we will compute G& (x, x', t, t) V t and
compare it with G, (x,x', t, t), both up to the second adi-
abatic order [obviously this assures that
c), G

&
(x, x', t, r) also has the Hadamard behavior].

(a) Metrics of type (A). In this case one has

x =—,'g1kr r, r =x —x, and h; =g,I k k 'k

It is interesting to note that only the term (g ——,
' )R in

A, [cf. (3.8)] contributes to the logarithmic divergence
since A

&

—(g ——,')R produces a finite term (which has no
well-defined limit for x~x').

The Hadamard propagator can be evaluated using the
expressions (2.6) up to the second adiabatic order,

and

so

ig, k'x~
Ek(x)= e

(2~)
ik. x~

e
(2' )'

1

2 Vk

2

~ 2

vk ——gR —,'H ,'H+ —— ——
k

(3.7)
Y (t =t')= ,'h, r'r—j,"

Y'(t =t') =r'+ ,', h/, h~zr r~r~—,

2cr(t =t') =2cT =g, r'r 1+ ', hklh, r ""r'r'r—~, "

(3.13a)

(3.13b)

(3.13c)

J
b, '~ (t =t')=1+ [—,'h; + —,'(6hh, —2h h, ()] .

b

b

—4H ——,'H + —,'R +

cok 1+ + ~ ~ ~

2
COk

where b—:(g,"k 'k~ )
' ~ and cok b+m-—

The WKB propagator is thus

ik x~
J

(2~a )
+ ~ ~ ~

2&k2

1, 1 b 1
Qk-~k 1+, (g ——,')R+-

2&k 4 b 2

(3.8)

(3.13d)

2

Pk g(R —' 'R) —'H ,'H——+————
k 2 V„

and in consequence, the WKB expansion gives

Replacing Eqs. (3.13) and (2.9a) into (2.2) one can verify
that GP(x, x', t, t) coincides with the one given in (3.12)
so the WKB solution has an associated propagator with
Hadamard singularities.

(b) Metrics of type (B). In this case 6, (x, x', t, t)
can be evaluated using similar arguments. Setting
cok ——k /a +m (g ——,') ' 'R one has

(3.9)

The successive terms in (3.9) can be evaluated using the
following well-known formulas:

Qk-cok 1+(g——,')
2Q) k

The WKB propagator is thus

(3.14)
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COg

(g ——,')(R —' 'R)
x

2cog

d~(1 ) Ek(x)Ek (x')
GwKB( x t t)

a (t)
T

+» ~ ~

The Hadamard propagator can be easily calculated.
Because of the isotropy there are no terms without a
well-defined limit for x~x' and then only the first term
in (2.6)—(2.8) must be retained so

d&(k) Ek(x)Ek (x')

a (t)
—+ [m + ( g ——,

' )' 'R ]8~'

(3.15)

This expression can be evaluated using the fact that for
the static case, the propagator G, (x,x', t, t) is of Ha-
damard form. Without losing generality, we can con-
sider 60=hy=O so

b, '~2(t =t')=1,
O = —2'(X —X')' .

= Y'(t =t')=0, (3.18a)

(3.18b)

(3.18c)

IV. ARBITRARY CAUCHY DATA AND SINGULARITIES

Replacing in (2.2) we see again the coincidence between
the divergences of GP(x, x', t, t) and G, (x,x', t, t)

Xlnx+O(x lnx)

(3.16)

Let us consider an arbitrary basis ITk(t), Tk(t)] of
the space of solutions to Eq. (A8a). One can always
write

where x = —,'a (X—X') . In consequence, using (3.10), T (t) TWKB(t)+p TWKB» (t) (4.1)

G, (x, x', t, t) = —+ [rn + (g ——,'R ) ] lnx
j. 2

8~'

where I Tk, Tk *
] is the WKB basis. Since T„and

Tk are normalized, the coefficients a„and pk satisfy

I
ak I

'=I+
I pk I

' . (4.2)

+O(x lnx) (3.17) Using Eqs. (4.1) and (4.2) G&(x,x') can be rewritten as

G, (x,x')= f dp(k)Ek(x)Ek (x')I T„(t)T„*(t')+2
~ pk ~

T„(t)T„*(t')2 Re
[a (t)a (t')]

+2a p»TWKB(t)TWKB(t )~

Let us suppose that the basis I Tk, Tk I is fixed by the Cauchy data at t =to, i.e.,

Tk(tp) = 1

[2V (t )]'"
1 Vk(tp)

Tk(to) =- +iV„(tp) Tk(tp);
2 Vk(tp)

then one has

(4.3)

(4.4a)

(4.4b)

—i [nk(tQ ) + Vk( tQ ) ]

1 Vk(to ) Qk(to )
+i [Ak(to) Vk(to) l

Tk (tp) 2 Vk tp) 0 (t kp
WKB»

(4.5)
Tk * (tp ) 1 Vk(tp ) Qk(to)

2 Vk(tp ) Qk(tp)

The first term in (4.3) gives the Hadamard singularities so, as we shall demonstrate below, pk must be O(k ) in or-
der to ensure that the second and third terms do not introduce new divergences. We will again separately treat the
metrics of types (A) and (B).

If the metric is of type (A) then it is trivial to prove that pk ——O(k ) is a sufficient condition, since the spatial func-
tions Ek(x) are simply exponentials. In the case of RW with Ik =+1 [type (B) metrics] these functions are more com-
plicated but, since ak and pk do not depend on lr (this fact is due to isotropy), the integration or summation over an-

gular variables can be performed (see Appendix A). The results are, for K =+1,

G ( ) y k I
TWKB(t)TWKB»(t )+2

~
p

~

2TWKB(t)TWKB»(tg)
[a (t)a(t')]'~2 ~ „, sin(X —X')

p»TWKB(t)TWKB(t )I (4.6a)
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and for K = —1,

G (» x') f dk k [TwKB(t)TWKB*(t )+2
~
p

~

2TWKB(t)TwKBe(t
~[a (t)a(t')] 0 sinh(X —X')

P T B(t)T KB(t )] (4.6b)

0), (t0) —Vq (t 0)=O(k ), (4.7a)

(t0) — (ta) =O(k ),
Qi, V~

(4.7b)

so we conclude that the most general Cauchy data com-
patible with Hadamard singularities in the propagator
are the ones which coincide with that of the WKB solu-
tion up to k

It is interesting to note that Eqs. (4.7) are necessary
and sufficient conditions in RW metrics but only
sufficient conditions in the anisotropic case. For in-
stance, if

From these equations it is now trivial to see that, if
P& ——O(k ), then no new singularity appears.

In terms of Qz and Vz the condition Pi, ——O(k ) can
be rewritten as

value (VEV) of T„, is constructed through

(4.10)

a a. dpkcx& „T& t T& t' (4. 1 1)

where X„ is a second-order differential operator and in
consequence the term o. lno. also contributes to the
infinite part of (T„). Only if g= —,

' it can be shown
that this term does not contribute to the divergences and
this is the reason why the "weak vacuum" of Ref. 2 pro-
duces a renormalizable T„.

Let us suppose that X„„applied to the first term of
(4.3) gives the Hadamard form (including the term
o incr) up to the fourth adiabatic order. In this case, the
sufficient condition to have a renormalizable T„can be
written as

Qq (t )0—Vq (ta) = A (k) =O(k ),
V~

(t, ) — (t, )=O(k '),
Ai, Vi,

(4.8a)

(4.8b)

so f3& must be O(k ) and the Cauchy data must coin-
cide with the WKB ones up to terms of order k

V. HAMILTONIAN DIAGONALIZATION

with f A(k)dQ=O then Pi, ——O(k '), but one can show
that the singularities for x ~x' are not modified. An ex-
ample of this type is

Vq ——coq +(g—
—,')R, (4.9)

since A i
—(g ——,')R produces a finite term [see the com-

ment below Eq. (3.12b)]. Nevertheless, these Cauchy
data (4.8) are not suitable because nonlocal singularities
(i.e., for x —x'&0) can appear.

In Refs. 7 and 8 similar results to our Eqs. (4.7) have
been derived in spatially flat RW and Bianchi type-I
metrics. We have generalized these results to metrics of
types (A) and (B) using a little different approach which
allows us to deduce that if the singular part of
Gi (x, x', ta, ta+e) is of the form (2.2), then the singular
part of Gi(x, x', t, t +e) is also of this form for all values
of t (Ref. 13).

A related theorem has been shown in Ref. 14: if
G, (x,x') has the complete Hadamard form in the neigh-
borhood of a Cauchy hypersurface, then it will maintain
this form on the whole manifold.

On the other hand we have tacitly supposed that there
are not infrared divergences in the second and third
term of (4.3). If this is not the case then nonlocal singu-
larities can appear, as has been discussed in Ref. 7.

Finally, we want to mention that the conditions which
we have found are necessary for the renormalizability of
the energy-momentum tensor but, in general, they are
not sufficient. This is because the vacuum expectation

The most natural global property to require for vacu-
um fixing is that of the Hamiltonian diagonalization (or
VEV minimization). Nevertheless, it is well known that
in general, the associated propagator does not have Ha-
damard singularities. ' For example, if one works with
the metric Hamiltonian (constructed with T00), the Cau-
chy data which minimize the energy VEV coincide with
the WKB ones in the sense of (4.7) only for g= —,

' in the
isotropic case.

But, on the other hand, using the ambiguity in the
election of the canonical Hamiltonian, ' it has been
shown in Ref. 9 that one can construct (in spatially flat
RW universes) a canonical Hamiltonian such that its
ground state produces the Hadamard singularities in the
propagator for all values of g. Is this fact true for more
general backgrounds? We will answer this question in
this section.

The canonical transformation proposed in Ref. 9 is of
the form

P(x, t ) =h '(t)X(x, t), (5.1)

+[m +JR —f(h)]X I, (5.2)

where

where h(t) is an unknown function which will be fixed at
the end of the calculation. The Hamiltonian is

3

H= —,
' f [g (

' 'j(Bp')' —g"8;XB,X
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'2
h h2 3hf (h)= — + a
h a2

Vk =[g, k'k'+m +JR —f(h)]'
MME

=2h /h —3a /a
MME

(5.3a)

(5.3b)

The Cauchy data which minimize this Hamiltonian
VEV can be evaluated using standard manipula-
tions. ' 3 9 The results are, for type (A),

E(Wk~ Wk~to) (Wk, Wk, tO)
l
« (5.6)

to note that the naive attempt to compatibilize them,
i.e., to minimize the energy within the subset (M) of
Cauchy data which produce Hadamard singularities,
does not work. This can be seen as follows.
~, ~(0

l

H
l 0)~, ~

is a functional of the arbitrary func-

tions of 1( Wk (to) and Wk (to), but it does not de-
pend on their k derivatives. As a consequence, given
e&0 one can always find, in M, functions Wk(to) and
Wk(to) such that

and, for type (B),

k —K
Vk — +m +(R —f (h),

a
MME

ME
=2h lh —3a/a .

V~

(5.3c)

(5.3d)

so, in general, there is no minimum in M. This is so
because the Cauchy data 8'& and 8'& produce a value
of E( Wk, Wk, to) that, although greater than
E( Wk, Wk, to), is arbitrarily close to it.

VI. CONCLUSIONS

Comparing Eqs. (5.3) with Eqs. (4.7) we conclude the fol-
lowing.

(1) In the isotropie case, the data (5.3) are eorreet if
h =a, since f (a)=(R —' 'R)/6 and Vk /VkM = H. —
This is Weiss's result for K =0, which we have general-
ized for %=+1. The canonical transformation is such
that Vg eoineides with Qg.

(2) If the metric is not isotropic then the canonical
transformation does not give good results because (4.7b)
is I( dependent and (5.3b) is not. The use of a more gen-
eral type of canonical transformation [for example, pk(t)
=hk '(t)Xk(t) or p(x, t)=h '( xt)X( xt)] is not appeal-
ing because the new Hamiltonian density becomes nonlo-
cal or nonuniform in terms of the new field.

To conclude this section we shall mention the proper-
ties of the vacuum associated to the observer-dependent
Hamiltonian of Ref. 10. The Cauchy data which mini-
mize (,H ) for a geodesic observer in type (A) metrics
are '

APPENDIX A: NOTATION AND CONVENTIONS

The Lagrangian density for the scalar field is

X= ——,'( —g)' [g"'()„P() P+(m +JR)P ], (A 1)

We have found the most general Cauehy data which
reproduce the Hadamard singularities up to the second
adiabatic order. The utility of this result is that it can
be used to test if a given state is a good candidate to be
the vacuum state, since it is the weakest restriction of
type (1) which can be imposed.

As an application, we have shown that the canonical
transformation proposed in Ref. 9 can be generalized to
type (B) metrics, but it fails in the anisotropie case of
type (A). On the other hand, the observer-dependent
Hamiltonian of Ref. 10 gives the correct structure only
in particular cases, and a minimization within the subset
of "good" Cauchy data cannot be performed.

VME [ 2+ gH( 1 6g ) ]1/2

MME

M~
= —3H(1 —4g),

k

(5.4a)

(5.4b)

where g„ is the metric tensor, g is the determinant of
g„, R is the Ricci scalar, and g the coupling constant.
The Klein-Gordon equation is then

( —m —gR )P =0,

V„= m '+, + )~"R +6/(1 6$)H2, (5.5a)—k —K

MME

M~
= —3H(1 —4g) .

k

(5.5b)

so the propagator has Hadamard singularities only in
some particular cases: RW with g= —,

' for all t; at t =to if

h,"(to)=0, etc. , (see Ref. 2).
For type (B) metrics one has' that the Cauchy data

which minimize (,H ) are

(A2)

0 il ~~'0 g (A3)

In this paper we use two types of metrics. The line ele-
ment is given in each case by the expressions (3.1a) and
(3.1b). Throughout the paper we use the notation
a = ( —g )

'/ for type (A) metrics. Some relevant
geometric identities for these metrics are the following.
Type (A):

The WKB data are given by (3.14) and Qk/0k= H. —
The situation is then similar to the K =0 case since for

or H =0 the singularities of 6, (x,x') are the
correct ones.

In view of these results, one sees that properties (1)
and (2) are still in general, incompatible. It is interesting

h; =g, , h J gv a= lh '=-'g,
6 i 6

g

the Ricci tensor is given by

R00 ———3h ——,'h; h'~,

(other Christoffel symbols vanish). Defining

(A4)

(A5a)
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R, = —,'h, + —,'(6h, h —2h, 'ht, ), Ro, =0,
and the scalar curvature is

R =6h+ —,'(36h +h,. h'j) .

(Asb)

(A5c)

APPENDIX 8: CALCULATION OF G I (x, x', t, t)

We will sketch here the calculation from (3.9) to
(3.12). The propagator is given by

R =6 H+2H + =6(H+2H )+' 'R
a

(A6)

Type (B): we will only need in this case the scalar cur-
vature. It is given by

COk

ik. rJ
Re f d3ke

(2~a )

A]
l — +2' k

(B1)

T, + T, [~,'+ g(R "R) —', H' —', H—]=—0-,

E„(x)=—(k —K)Eq(x) .

(A8a)

(A8b)

Equations (A7) and (A8) are valid for both types of
metrics: ' 'R =K =0, cok ——m +g,"k'kJ for type (A)
and K=+1, cok ——m +k a +(g ——,') 'R for type (B).
The separation constant is k and the measure dp(k) is
given by

d'k, K=O,

where H =a /a and K =+1 for closed and hyperbolic
RW metrics, respectively. Both types of metrics admit
variable separation in the Klein-Gordon equation. Set-
ting, as usual,

P(x)= f dp(k)[a„u„(x)+H. c. ] (A7)

and u~(x) =E&(x)Tk(t)a, the temporal and spatial
equations result:

where

(g'jk, k, )2

4

=—(g ——,')R +F+
F' k,-kJ

COk2

(G'jk;k )

4
Ct)k

Using Eqs. (3.10) and denoting

ik. r J
d k eF, (r)=Re f (2m-a )'

Eq. (B1) can be written as

G, " (x,x', t, t)= I+[(g——,')R +F]
Bm

. . k, k-
&, =(g ——,')R+ ——', H 'H ——g'j

(B2)

oo k —I J
K —+ 1

k=0 J=O m = —J
(A9)

a2 a+ 2FV
Br Br Bm

2

dk g g, K=
J=Om = —J

The solutions of the spatial equations are

Type (A): E ( k)=x(2n) e

Type (B): K =+1,E„(x)=YjM(0 Ip)III, j(X)

(A10)

(A 1 la)

a4
+ 4 GijG1m

Br 'Br JBr 'Br

3

F, (r) . (B4)

K = —1, E„(x)= Y (O, cp)II„(X), (Al lb)

where IIkj(X) are proportional to the Gegenbauer poly-
nomials' and IIkj(X ) can be obtained substituting
X~iX and k~ik in IIkj(X), (they are proportional to
the Gegenbauer functions). The solutions (Al 1) satisfy
the following identities (sum rules) ' For K =+1,
k —1 J

YjM(&, q )YjM(~ +)IIkj(X)IIkj (X )
J=Om= —J

The function F, (r) can be calculated performing the
change of variables k;=B;k' such that g' k, k =k'k'.
The matrix B satisfies

B gB = I, detB =(detg )

(here, and only here, g denotes the matrix g„). One
finds

2k sink(X —X')
sin(X —X') (A12a) F, (r) =b, ,(x), (B6)

forK= —1,
oo J

Yj~(&,q )&g~(~ 'p)II/&j(X)IIkj (X )
J=Om = —J

where x = —,'g,"r'r . The mass derivatives can be easily
evaluated using (2.5). To calculate the r derivatives the
following identities are useful:

2k sink (X—X')
sinh(X —X')

a
. F(x)=r, F'(x),

Br'
(B7a)
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BF(x)
. „,=r, r rkr&F'"'(x)+F"'(x)(gtkr, rj+perm)

ter'r jr "r'

(B7c)

a2
. F(x)=r, r F'4(x)'+g; F'.(x), (B7b)

Br'Br J

t) F(x)
.

k
——r, rjrkF"'(x)+F" (x)(rkg j+r(gkj+rjg k),k

G, " (x,x', t, t)= —+[m'+(g ——')R] Inx8~'

™11. . rr rr
X

+ —,', ( h "+3hh "+h 'hi')

+ (x)(glkgij +gjlgik +gkj gil )

The final result is then

(B7d)
rl r~.

X + 0 ~ ~

X (B8)
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