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Vacuum state and Schwarzschild solution in ten-dimensional gravity
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Gravity in more than four dimensions may involve terms of higher order in the curvature, as
well as the linear terms present in ordinary general relativity. I exp1ore the ten-dimensional vacu-
um configuration M )&S . The ten-dimensional spherically symmetric potential is examined, and
I determine conditions under which the formation of black holes is forbidden. Consequences for
the stability of the vacuum are discussed.

I. INTRODUCTION

The application of the methods of general relativity to
space with more than four dimensions began in the
1920's with the observation by Kaluza and Klein that
gravity and electromagnetism may be unified by adding
a fifth dimension to space-time. A similar unification of
gravity with non-Abelian gauge theories can be achieved
by the addition of more than one extra dimension. ' This
approach makes use of the Lagrangian formulation of
general relativity. The D-dimensional Einstein field
equations for a mass-energy tensor equal to zero can be
obtained from the variation of the action
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where C,'b are the structure constants of the group G. It
can be shown that under these circumstances the action
I can rewritten as
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where R is the scalar curvature and g is the determinant
of the metric of D-dimensional space-time. This metric
is parametrized in the following suggestive manner:-
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The geometry must now be restricted. The matrix P;j
is the metric of a (D —4)-dimensional space B. The sym-
metries of B are the gauge symmetries in the effective
four-dimensional world. Let T, , a =1, . . . , N generate
the symmetry group G of B, and y' be coordinates in B.
The "Killing vector" associated with T, is defined by
the equation g', =T,y'. Killing vectors have the proper-
ty

R' is the curvature associated with the matrix g„', and
the Maxwell field strength appropriate to the gauge
group is defined by

p,"g', pbd x =const&&6, bB
(1.6)

and rescaling GD and F„', the low-energy limit of the
action I becomes

R' ——,
' F„' " ' —g'd ~+

where the ellipsis, the result of the dependence of 3„'
and P;j on the coordinates in B, may be neglected. The
metric g„' may now be identified as the metric of ordi-
nary four-dimensional space-time. A variation of
—(1/16srG) J R'& —g'd x gives the familiar equations
of four-dimensional general relativity, while

1 f —'F'g""& g'd x—
16~G

is the action associated with the gauge fields. The con-
vention ( + —.. . —) is used throughout.

We return to the original action (1.1). The next step is
to apply the methods of general relativity to specific
physical situations. This is usually done by specifying a
form of the metric of space-time. The ansatz must be
compatible with the equations of motion which may fur-
ther restrict the metric. The simplest example of this is
the vacuum solution. Gravity and the gauge fields are
absent. The field A& is zero, and g& is the Minkowski
metric q& . The resulting metric is

F„' =Ops' —0 3„'+C~,A„3' .

W(p) is chosen to be
~

detp
~

'~' '. The ellipsis
stands for debris associated with the metric p; and the
derivative of 2„' with respect to y'.

Since only four dimensions are observed, B must be a
compact space with a very small characteristic scale.
The space is said to be compactified. At low energies, it
is therefore reasonable to neglect the dependence of the
macroscopic quantities R' and F„' on coordinates in B.
The extra D —4 coordinates are integrated out. Using
the formula
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0
gMN 0 (1.8)

To a good approximation, this describes physical reality
in deep space, and the metric should be compatible with
the equations of motion.

With a cosmological constant included for the sake of
completeness, the D-dimensional Einstein equations are

RMN pgMN(R +A) (1.9)

RM& is the Ricci tensor. For M =N (3, RMz ——0 and

R= —A. (1.10)

Contracting (1.9) gives

DA/2
1 —D/2

The only solution to (1.10) and (1.11) is R =A=0. For
M, N & 3, Eq. (1.9) then gives RMN ——0. The compactified
space B must be Ricci flat.

In the theory originally proposed by Kaluza and
Klein, the compactified space is S, which is trivially
Ricci flat, but in order to unify gravity with the forces
corresponding to non-Abelian gauge theories, higher-
dimensional compact Ricci-flat spaces are needed. This
greatly restricts the choice of spaces. The (D —4)-
sphere, for example, is not acceptable. Furthermore, the
requirements that the symmetries of the compactified
space generate the gauge group and that the space by
Ricci flat imply that the Killing vectors are not sym-
metries of the metric P;~ . There is, thus, no natural
choice for the vacuum field configuration. It is possible'

8~GD T™ (l.12)

In four dimensions 3" =aG" +bg", where G" is the
Einstein tensor. Lovelock showed that, in D dimensions,
the most general A& is given by

to introduce a nonzero energy-momentum tensor T„as
a source of curvature for the space B. This, however,
would not correspond to a true vacuum. Quantum
corrections may also provide a source of curvature for
the compactified space, but in the absence of a consistent
theory of quantum gravity, it is impossible to verify this
possibility. '

Work to create such a theory has continued. In the
early 1980s, higher-dimensional supergravity theories
created a flurry of interest in the Kaluza-Kein approach
to grand unification. Other problems, such as doubts
about the stability of the vacuum M )&B, arose, and
Kaluza-Klen theories again fell from favor. Recently,
superstring theories have employed many of the ideas
discussed above. Thus, despite its shortcomings, the
Kaluza-Klein approach remains a topic of interest.

Research in the mathematical foundations of general
relativity in more than four dimensions progressed in-
dependently. It was realized as early as 1970 by
Lovelock that in more than four dimensions the action
(1.1) is not the most general possibility. Many texts
derive the Einstein field equations by requiring that the
energy-momentum tensor T be proportional to the
most general possible tensor 3, subject to the follow-
ing conditions: (i) A = A ™,(ii) A is a function of
the metric and its first and second derivatives, (iii)

. N
——0, and (iv) A is linear in the second deriva-

tive of g„~. The Einstein field equation is, thus,
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where a and a~ are arbitrary constants and
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RzzcD is the Riemann curvature tensor. Lovelock also showed that the equations A =0 are the equations of
motion corresponding to the Lagrange density

D —1

L=&~g~ g 2a 6, '

p =1
2PR ji j . . . R &2P —ijzP

J2p 1 2 2p —1 2p
a g (1.15)

This is not the most general Lagrange density that gives
rise to 2 =0.

Lagrangians of this form have appeared independently
in the study of superstrings. In the low-energy limit,
superstring theory gives rise to a ten-dimensional theory
of gravity. The action associated with this theory has
not been determined, but it is evident that it does not
have the simple form of (1.1). Terms quadratic in the
Riemann curvature are known to appear. Such terms

I

lead to ghosts and violate unitarity, but Zweibach has
shown that the D-dimensional action (D & 4)

R~g~DR
" —4R ~gR +R g d x (1.16)

avoids such problems. Since such a term has the form
of the Euler invariant in four dimensions extended to
higher dimension, and the Einstein action
f R V

~ g ~

d x is the Euler invariant in two dimensions
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extended to D dimensions, it was suggested that a gen-
eral Lagrangian in D dimensions would include terms
corresponding to the Euler invariant in all even dimen-
sions less than D. The Euler invariant for odd dimen-
sions is zero and does not contribute. It turns out that
this is the Lagrangian postulated by Lovelock.

Zumino introduced a more practical formalism for
working with such a Lagrangian by constructing it in
terms of the vielbein and curvature forms. The vielbein
one-form is defined by

dx An, . ndxN=e, Nd x

The upper-lower index conventional must be abandoned.
Equation (1.26) now becomes

a . . . nOD=e A' 'e
N X

=DIe
1

' e DE . . . „d X

The wedge product is proportional to the volume ele-
ment:

e e Mdx (1.17)
=D!det(e'„)d x . (1.27)

e M=+
I gaM (1.19)

In keeping with the notation above, upper-case latin in-
dices are raised and lowered by the metric of ten-
dimensional curved space-time, and lower-case latin in-
dices by the ten-dimensional Minkowski metric. The
greek letters p and v indicate four-dimensional space-
time, and the latin indices i', j, and k are reserved for the
subspace B. Thus,

a b c d~ ABCD +abcde A e Be Ce D

The curvature two-form is defined by

% b
—'R b "e, Ae

(1.20)

(1.21)

The Lagrangian for gravity generalized to D dimen-
sions can be written as a linear combination of these
terms:

o,D=e (1.22)

where

a bgMN=e Me N'Dab

is the defining equation for e'M. For a diagonal metric,

For a diagonal matrix, det(e'„) = v g I
and

o,a=D'+ g I
d

Similarly,

L& D 2:(D—2)!R& g I

d x
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(1.29)

—4R„~R" +R )& g I
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In what follows, the equations of motion for a simple
example, the vacuum state M &&S, will be obtained
from the Lagrangian

L =aoLo 1o+a 1L 1 8 +a2L2 6 +a 3L 3 4 +Q4L4 2 (1.31)

With the cosmological constant assumed to be zero,
these equations produce expressions for a2/a1 and
a3/a1 in terms of the radius of S . Beginning with the
Lagrangian (1.31), I will derive the equations of motion
for a static spherically symmetric metric in ten dimen-
sions. when the expressions for a2/a1 and a3/a1 are
substituted into these equations, the condition that no
Schwarzschild radius exist restricts the allowable values
of a4/a1.

D factors II. M XS COMPACTIFICATION

LD y2, o

L(D —1)y2, 1

%,b A

P, .H I 6 e„e'

L1 D ~ =+ab ~ec ~ ' ' pen~

L2D 4 R,b A B,d he——f .A . . he„~'.
(1.23)

(1.24)

D even,

D odd .

Flat Cartesian coordinates x ", p =0, 1,2, 3 label a
point in four-dimensional Minkowski space-time. The
sphere S is parametrized by angular coordinates E9',

i =1, . . . , 6. The metric for M XS is

RMN 2 (2. 1)

(1.25)
The terms Lo D and L1D 2 represent the cosmological
constant and Einstein action, respectively. Considering
for the moment D even only, LD&2 o is the Euler invari-
ant in D dimensions. It is a perfect derivative and does
not contribute to the equations of motion. L1 D 2,
{2a &D ) is the Euler invariant in 2a dimensions contin-
ued to D dimensions. Similar results can be obtained for
odd dimensions.

It is straightforward to convert these Lagrangians to a
more familiar form. For example,

0 —p' Q sinO" 6;,
IK =1

e'= .

dx"' a =0, 1,2, 3 and p=a,
i —1

p Q sinO" dO', a =4, . . . , 9 and i =a —3.
A =1

(2.2)

where p is the radius of S . The vielbeins for this metric
are

Lo,D =e
=e'R, . R, e "ea

=e'„e&dx h hdx e, . . . „. (1 26)

The connection one-forms

a a M
co b =co bMdx

are defined by the equation

(2.3)
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b= ~R bqge Ae =dc' b+co q Aci) g (2.4) COab = —Cuba (2.6)

and the torsion one-forms by

T =Qe +CO b Ae (2.5)

and the torsion-free condition I „z——I ~z implies T'=0,
and thus

Equations (2.3) and (2.4) are known as Cartan's structure
equations.

It can be shown that the metricity condition
gM&. z ——0 is equivalent to the condition

Ge = —CO bRe (2.7)

For the vielbeins (2.2) Eq. (2.7) may be evaluated by the
"hypothesis" method. ' The result is

a b
CO b= —CO

0, a(3,
i —1

sinO" cos8jd8', a &b &3, i =a —3, j=b —3.
k =j+1

(2.8)

These solutions for the connection one-forms are substituted into (2.4), and the resulting expression for the curvature
two-form is

ab

0, a orb(3,
1
2e h' b' a

P

(2.9)

The expressions for the curvature and vielbeins are now substituted into the Lagrangian (1.31). Equation (1.28) re-
sults in

Lp &p=10!&—g d x (2.10)

The other terms are evaluated using the notation discussed in the introduction. From now on, I omit the wedge sign
in the product of differential forms:

L) g A,be, eqef——egebele e„eabcdfghlmn
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24X6!&—g d' x,
P

L42 A bA~g%fg%b/e e„e =0
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(2.14)

The last result is due to a saturation of indices. The cur-
vature two-form JR,b is nonzero only for a & 3. Because
of the presence of the antisymmetric tensor, the eight in-
dices a through I must be different, and at least two of
them must be less than four.

The Lagrangian (1.31) evaluated for M &(Sb is

L, =X&—g d "x,
where

8!~30 6!X360 6!~24
b 2 1+ 4 a2 6

P P P'

(2.15)
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The cosmological constant is set equal to zero.
The equations of motion associated with this Lagrang-

ian are

L=o,
a(z& —g )

Bp

(2.17)

(2.18)

These equations result when the generalized Einstein
tensor (1.13) is evaluated for the geometry of M &&S

and then substituted into the equation

AMN (2.19)

5I = f 5(X&—g ) d' x

= f 5Z& —g d "x+ f X5&—g d "x . (2.20)

The second term may be written as

( &gMN& g %5g )d x (2.21)

To examine the first term, I consider the part linear in
the curvature separately from the quadratic and cubic
parts. The procedure for evaluating 6R is well known:

6R =6RMNg +RMN6g (2.22)

It is possible to derive (2.17) and (2.18) without explicitly
evaluating all terms in AMN. The variation of the action
1s

Equation (2.19) is obtained by setting the coefficient of
6g, equal to zero.

For M =N (3, RMN and RMAz& are zero and Eq.
(2.17) results. Notice that for any maximally symmetric
space, the curvature has the form (2.25) and these results
hold.

Equation (2.18) comes from the equations of motion
for M=N &3. Inspection of (1.13) reveals that these
equations of motion are identical to that which results
for the space S alone. The only equation of motion as-
sociated with the six-sphere must come from the varia-
tion of the radius. Note that the term cubic in the cur-
vature is the Euler invariant in six dimensions and it
cannot contribute to the equation of motion. This is
indeed true since the contribution of this term to La-
grangian density goes as I/p, while & —g goes as p,
and the product is independent of p.

Similar arguments are used to show that the equations
AMN

——0 are satisfied trivially for M&N. All terms con-
tain a factor RMA~z, which is zero if either M or N (3.
For M, N ~ 3 and M&N, the equations are again formal-
ly the same as those for the subspace S . The cubic
term cannot contribute, and explicit calculation of the
linear and quadratic terms of AMN shows that they are
proportional to gMN, which is zero for M&N.

When the Lagrangian (2.16) is substituted into the
equations of motion, expressions for a2/a& and a3/a&
result:

Since"

6RMN 6~ 6~ML; N (2.23)
a&

28
p )

3
(2.27)

where 61"z& is the variation of the Christoffel symbol
and g commutes with the covariant derivative;
6RMNg is a covariant divergence and does not con-
tribute to the variation.

A similar method is applied to the other parts of
f 5X&—g d' x. This time, three types of terms ap-
pear. The first type is the product of the variation of a
Riemann curvature tensor, 6R &CD, and other Riemann
curvature tensors, as well as components of the metric
tensor. The variation of a curvature tensor is given by

6R „=6r, .,—6r „.A A A (2.24)

Equation (2.9) implies that REFGH is zero if any index is
less than four and

1
ABCD 2 (g ACgBD g ADgBC ) (2.25)

p
otherwise. The Riemann curvature commutes with the
covariant derivative, as do the components of the metric
tensor. The terms involving 6R zzD are therefore the
integrals of a divergence, and do not contribute to (2. 19).
The other types of terms are the product of
RMAacRNDFI; or RMN and other Riemann curvatures,
components of the metric tensor, and the variation
g MN. Thus,

f ( +MN ++M ABC +NDEF

' =70p4.
a&

(2.28)

gMN

—3 (r)
tr —2rQ sinO" 5pg-
k=1

(3.1)

Notice that Eq. (2.17) for the general Lagrangian (1.15)
replaces the previous condition R =0. Ricci flatness is
no longer required of the compactified space, and
M )&S is an allowable vacuum configuration, even in
the absence of an external matter field.

Muller-Hoissen ' has used a slightly different ap-
proach to calculate the equations of motion for the more
general vacuum M &(S . He assumes a Lagrangian of
the form (1.31) and includes terms up to cubic order in
the curvature. The variation of the Lagrangian is deter-
mined directly and the torsion is subsequently set equal
to zero. The restrictions on the coefficents a„ follow
from the resulting equations of motion.

III. THE SCHWARZSCHILD SOLUTION
IN TEN DIMENSIONS

The Schwarzschild solution in D dimensions describes
the external field of a static spherically symmetric body.
It can be shown that the most general metric for such a
field is

—2gMNX)& —g 5g d x . (2.26) where the D-dimensional space-time is parametrized by
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angular coordinates 0, k = 1, . . . , D —2, the radial
coordinate r and the time t. In this section, the upper-
case latin indices P and Q are reserved for angular coor-
dinates (P, Q=2, . . . , D). Notice that though similar in
appearance, this metric is different from (2.1). The ra-
dius r is a coordinate and not a parameter. The equa-
tions of motion for this geometry give solutions for the
functions A(r) and B(r). An event horizon is associat-
ed with a singularity of A (r ) at some radius R, called
the Schwarzschild radius. If the radius of the body is
smaller than the Schwarzschild radius, then it is called a
black hole. The existence of such solutions is important
in the study of Kaluza-Klein theories.

Witten has pointed out that the Schwarzschild solu-
tion is associated with a semiclassical instability of the
Kaluza-Klein vacuum. ' The decay of the vacuum may
intuitively be seen to result from the spontaneous forma-
tion of black holes with Schwarzschild radius on the or-

der of the compactification scale. After a short time,
these holes are expanding to infinity at the speed of
light. The state does not decay into a more stable state
as would be the case for a classical instability, but rather
it decays into nothing.

Hawking has furthermore shown that virtual black
holes lead to a loss of quantum coherence. ' If the space
has nontrivial topology, then pure quantum-mechanical
states may evolve into mixed states described by density
matrices. There is also a breakdown of unitary time evo-
lution. In particular, this can occur with the Kaluza-
Klein vacuum. Although it is a matter of controversy
whether or not this is physically acceptable, ' it is clear
that the existence of virtual black holes would require a
revision of quantum mechanics.

The Schwarzschild solution in ten dimensions is found
by substituting the metric (3.1) into the Lagrangian
(1.31). The vielbeins for this metric are given by

ae

o dt=&B dt, a=0,
o''dr =& A dr, a = 1,

i —1

o'dO'=r g sinO dO',
k=1

a=2, . . . , 9 andi =a —1 .

(3.2)

As before, Eq. (2.7) is used to solve for the connection
one-forms:

0 1 1 dB 0
1 =CO 0= dt, &0=~,=0,

2/AB dr

6L =ao6L0, 1o+a16L1 8+a26L2 6+a36L3 4+a46L4 2 .

(3.6)

The first term may be evaluated using Eq. (1.27):

1Cl 1
= —Ct)

i —1

g sinO dO',
k=1

(3.3)
Lo ~o

——10!det(e'„)d ' x

10to 0~ 1O 2O 3g 40 5~6~ 70- 80-9d 10& (3.7)

c/ = —co~ =
i —1

sinO" cosO'd O',
k =j+1 Since only the functions A and B are subject to varia-

tion, 6o'=0 for a & 1 and

for p &q &1, i =p —1, and j=q —l. Equation (2.4) is
used to solve for the Riemann curvature:

5LO i ——10!(cr'o o. 5o +o. o o . . o 5o')d' x .

(3.8)
Jr,b ——k(a, b )e, h eb,

where

(3.4)
The evaluation of the rest of expression (3.6) requires a
different approach. From the definitions (1.23) —(1.25), it
follows that

k(0, 1)=k, =
2i AB dr v AB dr

k(0,p)=kp —— 1 dB
2r AB dr

, 10—2n nabab +cd5+fgeh

+(10 2n )A, b A—fgeh eI5e e'

(3.9)

k(l,p)= —k3=— 1 dA
dr

1 —1/Ak(p, q ) = —k4 ———
r2

(3.5) An expression for the variation of the curvature two-
form is found by using Eq. (2.4):

5%'b d(5''b )+5'', h c——o'h +co', h 5''b D(5''b ) . —

(3.10)

for p, q & 1. I define k(a, a ) =0 and, from the symmetry
of %,b, it follows that k(a, b ) =k(b, a ).

The variation of the Lagrangian (1.31) is

The form Dx is the covariant generalization of the
differential form dx. Equation (3.9) is simplified by the
use of
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d (+ab +gd 5cpfg eb ) =D(&gb +gd5cp fg eb e~ e' )

=(n —1)&,b D(JP,d )5cpfgeb e e

+%ah ' ' ' R~d D(5cpfg )e„e e'

+(10 2—n )A, b A,d5cpfgeb e!D(e )e' (3.1 1)

The torsion De vanishes. The Bianchi identity may be written in the form

DW'b ——0,
and it follows that

(3.12)

Rgb Agd5JVfgeb e e' ' =d(%,b R,d5cpfgeb e e

The first term in (3.7) therefore does not contribute to the equations of motion and

5L„,p z„——( 10—2n )%,b %fg eb e!5e e'

This result is used to calculate the remaining terms in 61:
5L! g

——8JYQbe, edefegebe!e 5e„e' '

=8 g k(a, b)e ebecedefegebe!em5en~

(3.13)

(3.14)

=8 g k(a, b)o'cr o'o ocr cr"cr'.cr 5o "(e,b,dfgb! „)d' x

Similarly,

= [8X 8!(—7k, —2k, )o'o'c"o'o'o'o'o'o'5o'-
-+8X8!(—7k4+2kq)cr cr o o cr o o o cr 5cr']d' x . (3.15)

5L2 6=[24X6!k4(62k4+43k3)o'cr o' cr o'o. g g o 5g

+24X6!k4(62k4 —43k') r o o o o cr cr cr 5o ']d' x,
5L3 4

——[24X6!(—k4 )(28k4+54k3 )o 'g 2g 3g ~o globo 7g Sg 95g p

+24X6!k4 ( —28k4+54k~)o o ooo o cr cr o 5'cr']d' x,
5L4 2

——[2X8!k4 (k4+8k))o 'ocr o o o .cr o cr 5o

+ 2 X 8!k, '(k, —8k, )o'o'o'o'o'o'o'o'o'5o']d "x .

(3.16)

(3.17)

(3.18)

The variation of the action is zero if and only if the
coefficients of 5o. and 6cr' are zero. Two equations of
motion result:

One of the factors in this product must equal zero. We
first consider the possibility that k4 is a real root c of the
cubic equation

O=bp —b!(7kg+2k3)+ b24k(62k4+43k3) 2b) —43b2k4+54b3k4 —8b4k4 ——0 . (3.22)

—b3k4 (28k~+54k3)+b~k4 (k4+8k3) (3.19) We get

and

0:bp +b!( —7k4+ 2k' ) +pb4k(62 k—4 43k~ )

+b3kg ( —28k4+ 54k 2 )+b4k4 (k4 —8k2 ), (3.20)

1A(r)=
1 —cr

(3.23)

from the definition of k4. Substitution of this function
into Eq. (3.20) yields the equation

where

bo =315ao b ] =224a] b2 = 12ap

b3 ——12a3, b4 ——56a4 .

The difference of (3.19) and (3.20) is

where

1 1d8
C — +K=0

r 8 dr

bo —7b]c+62b2c +54b3c +b4c
b

&

—43b2c+28b3c —8b4c

(3.24)

(3.25)

(k3+k2)(2b, 43b2k4+54b3k~ ——8b4k4 ) =0 . (3.21) The solution of (3.24) is
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B(r)=go(cr —1) ' ' e (3.26)

This type of solution is a new feature of higher-
dimensional gravity with quadratic and higher-order
terms in the Lagrangian. It does not approach the
metric of Oat space-time as r goes to infinity, and so does
not obey the natural boundary conditions for a
Schwarzschild solution.

We now turn our attention to the other possibility al-
lowed by condition (3.21), k3 ———k~. It follows that

tI)(r)= —46 Mm' +' I —1+ D —1

2

D —3
2

(3.37)

It can be shown that, in the Newtonian limit,

goo=i+20 . (3.38)

It follows that, for a ten-dimensional spherically sym-
metric space as r becomes large,

1B(r)= 3 (r)
(3.27) S~KP r2 —9 (3.39)

This condition also arises in gravity theories without
higher-order terms. It is used to eliminate the function
A (r ) in Eq. (3.20) and upon integration the equations of
motion for a spherically symmetric space reduce to the
relation

where

K= 15m GDM .

This boundary condition is substituted into (3.28):

(3.40)

(3.28)

lnr +C= + q) + q2
ds 129 ds 243 s ds

$ ds

D
243 ~ Sds ~$ ds

q2 +4q382 o D(s) o D(s)
(3.41)

lns ~ InsD'(s ) 129 ~ ds
lnKp'r '= + ds+ q~D(s) o D ( ) 70 o D(s)

where

B(r)=1—
2

J )

p

3 bi
7

p

D = 1+q)$+q2S +q3S2 3

r

35 &2 1

(3.29)

(3.30)

(3.31)

I denote the right-hand side of this equation by F(s ).
This function can only have singularities at s =0 and at
zeros of the polynomial D(s). I assume for the moment
that such zeros exist and denote the smallest one by so
(see Fig. 1). If F(s ) is indeed singular at s =so, then the
boundary condition implies that the branch of F(s) that
is of physical interest lies between s =0 and s =so.

We now examine the divergence of F(s ) near so. It is
useful to rewrite Eq. (3.41) in the form

B3
q2 ——9

b) p

p

(3.32)

(3.33)

ds 129 ~ dsF(s)= const+ f + q, fsD(s ) 70 D(s )

243 2 ~ sds ~ s ds+ q +4q3
82 D(s ) D(s )

(3.42)

It is natural to fix the constant of integration C by im-

posing the requirement that the solution approach the
Newtonian limit as r goes to infinity. For a D-
dimensional space in the Newtonian limit, the potential
&P associated with a point particle of mass M is given by
the equation

q(~ ]) $=477G~M$(r), (3.34)

where V(D &~ is the Laplacian associated with D —1

spatial dimensions and r is the space coordinate.
The solution to this equation is

ik r
P(r)= 4~GnM f — d 'k . (3.35)

For D &4, this integral diverges, and must be regular-
ized. Substitution of the identity

tz i a tdt
(k) =r(z) o

' (3.36)
Sp

into integral (3.35) yields in the limit as z ~1 an expres-
sion for the potential:

FICi. 1. Let so be the smallest positive zero of D(s). The re-
gion of physical interest lies between s =0 and s =so.
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FIG. 2. If L(so) &0, then F(s) is not defined for F&F,„.
Such solutions are unphysical.
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If I define

1 129 243L(s)= —+ q, + qis+4q, s
s

then

(3.43)

FICx. 3. Solutions such that L(so) ~0 are of physical in-
terest. (a) L(s) is strictly positive in the interval 0&s &so and
it follows that F(s) is a monotonically increasing function of s.
The formula ln~p r =F(s) may be inverted to give s as a
function of r. (b) is similar, but s jumps from s, to s, at r =r&.

s dsF(s)~L(so) J + const
D(s )

(3.44)

as s approaches so.
If L(so)=0, there is no singularity of F(s) at s =s~,

and it is necessary to repeat the analysis for the next
larger zero of D(s ), if any exist. If L(so ) & 0, then F(s )

is as is shown in Fig. 2. F(s) is not defined in the region
of space r & r;„,where

1/9

r= ~
v's (3.47)

At the Schwarzschild radius, the left-hand side of Eq.
(3.41) equals

rmin = /CP

e max
(3.45)

Equation (3.41) cannot be solved in this region and this
is therefore not a physical solution.

The L (so ) & 0 case is of physical interest. In this case,
L(s) either has a pair of zeros between 0 and so, or is
strictly positive in this region. The resulting function
F(s ) for each case is sketched in Fig. 3. Equation (3.41)
has a solution for all r between zero and infinity. In Fig.
3(b), there is a radius ro where A (r ) and 8(r ) are
discontinuous as s jumps from s& to s2. The metric is
well defined everywhere else. If F(s) is finite for positive
s, then it is given by Fig. 4. Near s =0, F(s ) goes as lns,
and as s goes to infinity, the divergence of F(s) is pro-
portional to lns.

We now examine the conditions for the existence of a
Schwarzschild radius. This occurs when

0

8(r)=l—

and, therefore,

2

s=O (3.46)

FICy. 4. If F(s) has no singularities, then F(s) and G(s) al-
ways intersect and black holes form for any mass.
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—,
' lns+ ln

p'
(3.48)

4 lns, q3&0
F(s ) . —",,' Ins, q3 ——0, q2&0,

—",,' lns, q3 =qz =0, q, &0 .

(3.49)

In all three cases, F(s) diverges more slowly than G(s),
which goes as —,'1ns. As shown in Fig. 4, a
Schwarzschild radius exists and black holes form for any
mass M.

The problems that black holes have caused in
Kaluza-Klein theory are avoided only if there exists an

I denote this function by G(s). A Schwarzschild radius
exists if and only if the curves G(s ) and F(s ) intersect in
the region of physical interest. Consider the case when
F(s ) is as shown in Fig. 3. For s near zero, F(s ) goes as
lns, while G(s) goes as —,'Ins. Thus, G(s) &F(s) near
zero. For a proper choice of parameters, no intersection
of F(s ) and G(s ) and, therefore, no Schwarzschild ra-
dius, exists (see Fig. 5). A black hole associated with a
mass M does not form. Notice that as K gets smaller,
G(s) moves further away from F(s). Since a is directly
proportional to the mass of the black hole, we have a
mechanism whereby black holes of small energy can be
disallowed. Since virtual black holes of large energy are
extremely short lived, their effect is small and violation
of quantum coherence may not be observable. The in-
stability of the Kaluza-Klein vacuum proposed by Wit-
ten would be expected to occur for ~/p on the order of
1 and so, for sp (1, it is reasonable to conclude that this
instability is avoided. Macroscopic black holes (i.e.,
those with large v) are still allowed.

If F(s) is described by Fig. 4, the result is different.
Near zero the situation is as before. As s goes to
infinity, the divergence of F(s ) is given by

so & 1 such that D(so) =0 and L(so ) ~ 0. In the next sec-
tion we examine whether this is possible for the values of
q& and q2 found in the calculation for M &S above.

IV. CONCLUSION

It is natural to assume that the Lagrangian (1.31)
emerges from some fundamental theory such as the
superstring theory. The constants ap through a 4 would
be given once and for all and would be independent of
the metric of space-time. We can therefore substitute
into the analysis of the Schwarzschild problem the
values for a2/a& and a3/a& given by the vacuum equa-
tions.

In our example the vacuum is M )&S . Results (2.27)
and (2.28) imply

D(s)=1 ——",s+ —',"s +qs', (4.1)

where the subscript has been dropped from q3. Equa-
tion D(so) =0 may be inverted to give an equation for q:

q (1 35s + 135s )
So

(4.2)

This function is graphed in Fig. 6. The behavior of D(s)
as a function of q is summarized in Fig. 7. In Fig. 7(a)
we are interested in the branch between s =0 and s =sp.
There is a one-to-one correspondence between q and sp.

We need to find the sign of L(so). There are no real
solutions to the simultaneous equations:

D(so)=0, L(so)=0 .

Therefore, either L(so) &0 or L(so) ~0 for all so. It can
easily be verified that the former holds. It was shown in
Sec. III that the case L (so ) & 0 is unphysical.

so

FIG. 5. For F(s ) as shown in Fig. 3, and a proper choice of
parameters, no intersection of F(s) and G(s) exists. There is
no Schwarzschild radius and a black hole does not form.

FIG. 6. Equation D(sp)=0 may be inverted to give q as a
function of so.
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D(s) D(S) general relativity to higher dimensions, it is in principle
possible to avoid many of the problems associated with
Kaluza-Klein theories. Physical requirements place
strong restrictions on the coefficients of the Lagrangian
(1.31). This analysis provides a test for any theory
which predicts a gravitational Lagrangian of this form
and a vacuum solution of the form M &B.

(a) g&o (b) q 0
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FIG. 7. The behavior of D(s) as q varies is summarized
above.

Figure 7(b) corresponds to Fig. 4. The metric is well
defined, but black holes of any mass are allowed. The
space M &5 therefore has no physical solutions.

We have found that if one uses the proper extension of
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