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Adiabatic regularization in closed Robertson-Walker universes
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Adiabatic regularization is a particularly efficient method of regularization for numerical studies
of the dynamics of quantum scalar fields in homogeneous cosmological spacetimes. We show that
of the possible ways to apply adiabatic regularization in a closed Robertson-Walker universe, only
one yields the accepted trace anomaly and vacuum energy for a conformal scalar field. The
method is to use the continuum measure appropriate to a Aat space, while otherwise retaining the
form of the subtractions appropriate to a closed space. We also show that this procedure is
equivalent to point splitting, although technically much simpler.

I. INTRODUCTION

Adiabatic regularization is a method of finding the
finite parts of expectation values of products of quantum
scalar fields in homogeneous cosmological spacetimes. '
First introduced in studies of the particle number in spa-
tially flat Robertson-Walker universes, the method was
generalized and applied to the energy-momentum tensor
in Refs. 2 —4. It has been found to be particularly
efficient for numerical studies of the dynamics of quan-
tum scalar fields in spatially flat Robertson-Walker, Bi-
anchi type-I and Gowdy T universes. Birrell' has
shown that for spatially flat Robertson-Walker space-
times, it is equivalent to point splitting. Hu"' showed
that in the spatially flat Robertson-Walker and Bianchi
type-I spacetimes adiabatic regularization gives a trace
anomaly in agreement with other methods, and Bunch'
showed this for the spatially flat and hyperbolic
Robertson-Walker universes.

However, if one attempts to follow the approach of
Ref. 13 in the spatially closed Robertson-Walker
universe, then one obtains zero for the trace anomaly, as
we show in the next section. The reason is that the adia-
batic method yields the trace anomaly as the result of in-
frared divergences which appear in certain integrands as
the mass of the scalar field approaches zero. However,
these infrared divergences are absent when the momen-
tum integrations are replaced by mode sums in the
closed space.

It was noted already in Ref. 2 (p. 350) that "the
method may need to be slightly modified by including in

p„s and P„,s (the regularized energy density and pres-
sure), even when the metric is static, a nonvanishing vac-
uum energy density and pressure associated with the
curvature of the three-space. " Ford, ' in his work on
the Casimir effect in the closed static Einstein universe,
showed how the energy associated with the closed spa-
tial topology may be calculated, and pointed out the
close relation to adiabatic regularization. Ford's method
in conjunction with adiabatic regularization was used by

II. REVIEW

The Robertson-Walker metric can be written in the
form'

ds =a (g) d71 — rdA—
1 —Kr

(2.1a)

where a(ri) is the scale factor and K =0, —1, +1 for
spaces with zero, negative, or positive spatial curvature,
respectively. The equation satisfied by the scalar field is

OP+m /+/RE=O, (2.1b)

where g is a dimensionless constant and R is the scalar
curvature. The field is expanded in terms of mode func-
tions

uk a ( 1)+k(xWk(

such that

(2.2a)

Berger to obtain the vacuum energy in a Ciowdy T
cosmology. '" However, to our knowledge a definite
and systematic prescription for applying adiabatic regu-
larization in spatially closed universes which yields the
trace anomaly has not been spelled out. We wish to fill
this gap here. The basic result we find is that in calcu-
lating the vacuum subtraction, one should use the flat
space measure in the mode sum in all cases, while retain-
ing the form of the subtractions appropriate to the actu-
al spatial curvature. This is consistent with what one
would expect if the subtraction process is local, since the
mode sums depend on the global properties of the space-
time, while the spatial curvature terms are present in the
local curvature tensor.

Let us first briefly review the method of adiabatic reg-
ularization, in order to understand where possible ambi-
guity may arise, before proceeding in the following sec-
tions to present the solution and prove (by adapting the
methods of Birrell' ) that it must give the same results as
the more laborious covariant point-splitting method.
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J dP(~)(+kuk+uk~k ) (2.2b)

The measure dP, (k) and mode functions are described in
Ref. 2. Briefly they are as follows. The functions Pk(x)
are eigenfunctions of the three-space Laplacian 6' ' such
that b, ' 'Pk(x)= —(k —K)Pk(x) and their explicit
form is

Pk(x) =(2~) e'" ", K =0,
P„(x)=11'„-+(x)r, (e,y), K=+1.

(2.3a)

(2.3b)

Here the YI (8,$)'s are the standard spherical harmon-
ics and the properties of the Hkl

' functions can be found
in Refs. 2 and 17. The measure dP(k) is

J dP(k)—:J d k, K=O

dkg, K= —1
0

l, m

K= 1 .
k, l, m

The time-dependent mode functions fk(g) satisfy

gj,'+[k'+m'a'+(g ,'—)&—'&]&k (2.4)

T,.=(1 2k)0—;„0;.+(24 ,')g—„.g—0;A',p

2k';—,A+ ,'kg, A-0 4Ã,—.+( ,'4 ,'-)&g—„—.l0'

+(—,
' ——,'g)m g„p (2.5)

Substituting Eq. (2.2) into Eq. (2.5) and taking the vacu-
um expectation value, one finds, in a Robertson-Walker
spacetime'

Here, primes denote derivatives with respect to
R =6a (a 'a" +K) is the scalar curvature and g is
the coupling to the scalar curvature.

The classical expression for T„ofa scalar field is

(OITOIO)„=(4m a )
' jdP(k)(I/I„.

I
+(k +m a )Ig Ik

+6(k ——,
'

) I (~ '«)( 0k 0k + 0k 4k ) —I (~ ' «)' —K j I Wk I

'I ) (2.6a)

and

0&. =(2m a )
' f dp(k)(m a

I pk I
+6((——,')[

I p& I

' (u'I'~)(gk—fic +/kgb'k)

(k +rn ~ )Ifk
—(0—l)~'&

I 4 I'J» (2.6b)

where the measure dp(k) is such that

J dp(k)= J dk k, K=O, —1
0

—:g k2,
k=1

%=1 . (2.7b)

Here T denotes the trace Tz". The other components of
(T„„)can be obtained from these by using the spatial
isotropy. Note that in the case of conformal coupling,
g= —,', the factor of m in Eq. (2.6b) reflects the fact that
the classical trace of the stress tensor of the conformally
invariant field is zero (the field equation with conformal
coupling is invariant under conformal transformations of
the metric only for m =0).

The mode sums in Eq. (2.6) have ultraviolet diver-
gences. In adiabatic regularization one subtracts off
these divergences thereby obtaining a finite result. To
isolate the divergences one considers the case of a slowly
varying spacetime. In this case the particle number is an
adiabatic invariant, remaining constant in the limit of
infinitely slow change in the scale factor a(7)) (Refs. 1

and 18). Therefore, by using the adiabatic approxima-
tion to the mode functions, one can evaluate the vacuum
contribution for a slow change in a(rt). The ultraviolet
divergences are included in this unobservable vacuum
contribution. Subtracting this contribution gives the
finite observable result. Furthermore, if one introduces a

gk ——(2W) '~ exp i I 8'(r))d—g (2.8)

and then expanding to fourth order in the adiabatic pa-
rameter. The results are calculated in Refs. 2, 4, and 13.
The iterative calculation is readily summarized as fol-
lows. ' Substitute Eq. (2.8) into Eq. (2.4), obtaining

parameter (the adiabatic or slowness parameter) such
that each time derivative of a(r)) brings out one more
factor of this parameter, then the particle number will be
constant to any finite power of the adiabatic parame-
ter. ' ' Therefore, the vacuum contribution, which is
to be subtracted mode by mode, can be obtained to any
necessary order in the slowness parameter by using the
expansion of the mode function (i.e., the adiabatic ap-
proximation) in powers of the adiabatic parameter. In
order to cancel all ultraviolet divergences in (T„,),
while at the same time preserving the condition that
(T&") =0, it is su%cient t.o subtract the vacuum con-
tribution to fourth order in the adiabatic parameter.
Having done this for a slowly varying spacetime, one
then observes that the same counterterms remove the
divergences in ( T„)„ for arbitrary variations of the
scale factor.

The adiabatic approximation (which is a generalized
WKB approximation) to the time-dependent mode func-
tion gk(g) is obtained by writing
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II

W =co +(g ——')a R ——
6 2 Pr

where

~2 k2+m 2a2

3 W

8 (2.9)
The order of the adiabatic parameter in a term corre-
sponds to the number of time derivatives appearing.
Now solve for 8' in terms of co and its time derivatives
to fourth adiabatic order by iterating Eq. (2.9).

Substitution of the fourth-order expression for 8' into
Eqs. (2.6) using Eq. (2.8) gives the following adiabatic
vacuum contributions

g(0~ TO~0)g=(4na ) f dp(k) co+ — 2
8~5 a 2 326)7 a 2

4 it I2 I4

+
a a

r

7m a a "a' a'
+ +16' a a

105m'a' a'4

128cL)" a

+(g ——,') 3 I2
—K

a
3m a' 3m a 2a"'a'

CO

+ 4'' a' a

i4

a4

15m a 4a "a' 3a' a' 105m a a'
K

8co a a a geo' a 4

+(g——,)
9

2'
2a"'a ' a"

a a
4a "a'

a

I22a K K2
2 +

a

27m a+
II I2 l2

3
+'2K

a a
(2.10a)

and

ma ma a" a'
„(0~ T ~0)„=(4m a )

' f dp(k)
co 4~ a a

5m a a'
8' a

4 4

16~
4 I I I I 3 I I 2

+ 2 +
a a

m a 2ga"'a' 126a "a' a" a'
+ 9 2 + 3

+21
2

+21 43267 a a a' a4

231m a a "a' a' 1155m ' a ' a'4

32co" a a
+ +

128co' a

6 a"
+(g——,')

co a a

I2 3m a 2a"
CO a

I2

+K
a

9m a a' 3m a a""
+ 5 2 +

co a 2'
2a "a' a'

+a' a4

2 +
a

15m a 4a"'a' 3a"
+4' a 4 + + 2

K
a a a a

105m a 8a "a' 5a' a'
9 3 4 28') a a a

945m a a'
11 4

+(g——, )
9

CO

tl t I 4 I I I I

a a2
3 ti2

+
a

6a "a' 2a" 2a'
+

a a a2
r

27m a 4a"'a' 3a"+ +2' a a
K — K+Ka3 a a2

135m a a "a' a'
K

CO a a
(2.10b)
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8a "a' 2a'4
+

a a' (2.11)

The limit as m approaches zero is taken only after in-
tegration over k because the expectation value of T must
be obtained for finite m before the limit can be taken.
The result is just the negative of the well known trace
anomaly. Since it is the subtraction of this quantity
which gives rise to the only contribution to the trace in
this case, one obtains the usual trace anomaly for & T &.

III. THE SITUATION FOR K = 1

For the K = 1 universe, the expression in Eq. (2.6b) for
& T &„has a discrete summation over modes. If one uses
the same discrete summation in the adiabatic vacuum
subtraction of Eq. (2.10b), then the summations over the
finite terms in (2.10b) give g functions in the limit m ~0.
Thus, the trace anomaly does not appear.

The trace anomaly does appear in the K =0 and —1

cases because the integrals of the finite terms are in-
frared divergent in the limit m ~0. The positive powers
of m in the coe%cients of these terms exactly cancel the
divergences, leaving a result that is independent of the
mass. For K =1, the closed spatial topology results in a
mode sum beginning at k =1, thereby removing the in-
frared divergences. Thus if adiabatic regularization with
measure (2.7b) in the vacuum subtraction is applied to
the K =1 Robertson-Walker universe, it gives zero trace
anomaly, in disagreement with other methods such as di-
mensional, g-function and point-splitting regularization.
Examination of (2.6a) and (2.10a) with the measure (2.7b)
shows that the Casimir energy also does not appear for
the conformally invariant field in this case. In fact,
& 0

~ T„„~0&—:0 for the conformally invariant field in the
conformal vacuum state in a K =1 Robertson-Walker
universe if the measure (2.7b) is used in (2.10a).

We argue that the ultraviolet vacuum subtraction
should make use only of locally available information.
Therefore, we propose that in the adiabatic vacuum sub-
tractions of Eqs. (2.10) the flat space (K =0) mode in-
tegration of Eq. (2.7a) should be used in all cases, includ-
ing the closed universe (K =1). Terms involving K in
the integrand do not violate the locality principle be-

These are to be subtracted under the mode sum from the
corresponding expressions calculated using the exact
mode functions gk. The result is the physically relevant
expectation value.

When the subtraction is carried out, the divergent
terms will cancel. However, Eqs. (2.10) contain finite
terms as well. In particular, consider the trace T. In
the limit that g~ —,', m ~0, the expression in Eq. (2.6b)
with the exact mode functions will make no contribution
to the vacuum expectation value & T &, as it comes
directly from the classical expression. For K =0 and
—1, the integral over k in Eq. (2.10) can be done for the
finite terms and the limit as g~ —,', m ~0 can then be
taken, with the result that"'

I II I tl2

„&0~ T ~0&, = , —', + ',' + ',
2880~ a a a

cause K arises from local quantities such as the scalar
curvature. As we shall see, this method of applying adi-
abatic regularization to the K = 1 case gives results con-
sistent with the other regularization schemes. The latter
also do not take into account the global spatial topology
when computing the regularized terms corresponding to
the divergences in & T„,&„. The measure for the exact
modes must clearly remain the same as before. This is
because the formal expression & T„„&„ is defined with
the appropriate measure and exact solutions which result
from boundary conditions involving the global topology.
The use of only local information in the vacuum subtrac-
tion is also consistent with the classic calculation in
quantum electrodynamics of the Casimir effect between
conducting plates' ' (for further discussion see Sec. IV).

To show that our version of adiabatic regularization
for a K =1 spacetime really is in agreement with the
schemes mentioned above, we shall compute
& 0

~ T&, ~

0 & for the conformally invariant field and show
that the trace anomaly is recovered. Then we will show
that for a field with arbitrary mass and coupling to the
scalar curvature, all of the divergences in & T„,&„are
canceled by the counterterms. Finally, in the Appendix
we give a proof which shows that adiabatic regulariza-
tion is equivalent to point splitting for arbitrary mass
and coupling to the scalar curvature. Birrell' did the
original proof for the case K =0 and we have general-
ized it to include the cases K=+1.

For a conformally invariant scalar field in a K =1
spacetime the mode equation, (2.4), can be solved exactly
for arbitrary functions of the scale factor a(g) with the
result that

&o~To, ~o&=, , y k' —,&o~To, ~o&„,
4m a

(3.1a)

&oi T io&= —„&oi T io&„. (3.1b)

Inserting a cutoff of the form e in both terms of
(3.la), and setting a=o at the end of the calculation, as
in Ref. (14) one finds

&0 T ~0&= 1+
2880~ a a 2 a

2a "a' 1 a'4

a 2 a
+ (3.2)

and &0
~

T
~

0& is given by negative of Eq. (2.11). These
expressions are in complete agreement with the results of
dimensional regularization, g-function regularization,
and point splitting. ' Thus one obtains both the trace
anomaly and the Casimir energy.

We next show that all of the divergences in & T„
are canceled when „&0

~
T„~0&z is computed for a

K = 1 spacetime using the continuum measure (2.7a).
First of all, they are certainly canceled when the discrete
measure (2.7b) is used since the asymptotic expansion
obtained by iterating Eq. (2.9) is valid in the limit k ~ oo

and the measure (2.7b) is the same when K = 1 as that
used in computing & T„,&„. From (2.10a) and (2.10b) one
sees that each divergent term in ~ &0

~ T„,, 0& „has the
form
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dp(k)
(k2 2 2)n!2 (3.3)

with f„(ri) some function which is independent of k. Divergences occur for n = —1, 1,3. Using the Plana summation
formula one finds

(k2+ 2 2)n/2 0 (k2+ 2 2)n/2 0 (k2+ 2 2)n/2 2 0 2nt

(3.4)

q(t)=—1 (1+it)
[(1+it) +m a ]"

(1—it)
[(1—it) +m a2in/2

The only divergent term in (3.4) for n = —1, 1,3 is the
first one. This is just the term which occurs if the con-
tinuum measure (2.7a) is used so the divergence struc-
ture of „(0

i T„~0) „ is the same regardless of which
measure is used to compute it.

IV. DISCUSSION

We have shown that in a K =1 Robertson-Walker
universe adiabatic regularization with the discrete mea-
sure (2.7b) does not give the trace anomaly for the scalar
field. We have also shown that with the continuum mea-
sure (2.7a) the trace anomaly is obtained, all divergences
in ( T„„)„arestill canceled and adiabatic regularization
is equivalent to point splitting.

These results warrant some discussion. Adiabatic reg-
ularization with discrete measure (2.7b) is a valid regu-
larization scheme in the sense that it does remove the
divergences in (T„)„.Because it makes use of the glo-
bal topology, it leads to results which differ from other
schemes which only make use of locally available infor-
mation. However, it is a mathematically consistent pro-
cedure. Furthermore, other regularization methods
could conceivably be altered to take account of the glo-
bal topology and would then probably give the same re-
sults as does the discrete measure. Therefore, one may
ask why is adiabatic regularizations with the continuum
measure (2.7a) in the closed (K =1) Robertson-Walker
universe to be preferred over the closely related pro-
cedure with discrete measure (2.7b)?

One may argue that since the divergences are ultravio-
let divergences and hence local, only local information
should be used for computing the counterterms to
(T„„)„.A second argument makes use of a theorem
proved by Wald. It says that if two candidates for the
renormalized stress-energy tensor (T„,) both obey the
three reasonable conditions of covariant conservation,
causality, and standard results for "off-diagonal" ele-
ments, then they can differ at most by a local, conserved
tensor. Now in a closed Robertson-Walker universe,
adiabatic regularization with either measure results in
expressions for ( T„)which satisfy these conditions and
the two expressions differ only by a local conserved ten-
sor. However, in a nonconformally flat spacetime such
as a Bianchi type-IX universe the situation is different.
In such a case a discrete measure analogous to (2.7b)
would have to be used to compute ( T„)„. If it was
also used to compute „(0

i T„„i
0)„ then the trace

anomaly would almost certainly not result while if a con-

I

tinuum measure analogous to (2.7a) were used the trace
anomaly probably would result. However, the trace
anomaly outside of an exactly conformally flat spacetime
cannot be derived from a local, conserved tensor ' and
thus adiabatic regularization with a discrete measure
would probably violate one or more of the three condi-
tions mentioned above. This is particularly true since
point splitting obeys the Wald axioms ' and results in
the trace anomaly for an arbitrary spacetime. This ar-
gument, then favors the continuum measure for a closed
(K = 1) Robertson-Walker space.

There is also one piece of experimental evidence avail-
able. This is the Casimir effect in electrodynamics. ' '

In computing (0
~ T„, i

0) in the Casimir effect one does
not use, when constructing the counterterms to
(0

i T„„~0)„, the mode sum appropriate to the vanish-
ing boundary conditions on the uncharged conducting
plates, but rather subtracts the Minkowski expression in-
volving the continuum measure. The force caused by
the resulting vacuum energy of the electromagnetic field
between two uncharged conducting plates has been ex-
perimentally verified. Therefore, although we lack direct
observational evidence concerning the vacuum energy or
pressure in a closed universe, the use of the flat space-
mode integration (2.7a) in the vacuum subtraction does
appear to be clearly favored by physical considerations.
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APPENDIX

In this Appendix the proof that adiabatic regulariza-
tion is equivalent to point splitting for an arbitrary
Robertson-Walker spacetime is given. In point split-
ting ' ' one computes the quantity G„'"(X',X")
= ( [P(X')P(X")) )„and subtracts from it G~Ds)(X', X")
which is obtained using the DeWitt-Schwinger expan-
sion. ( T„) is obtained by differentiating the regular-
ized G "'(X',X") and then letting the points come to-
gether along the shortest geodesic connecting them.
Thus
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(T )ps —lim 2)„„(X',X")6"'(X',X")
X'~X
X"~X

= lim S„,(X',X")[G„"'(X', X")X'~X

—GDs(X', X")], (Al)

with 2)„(X',X")being a derivative operator. '

If we compute 6,'d'(X', X") = „(0
~

P(X')P(X" )
~

0) „,
act on it with 2)&,(X',X") and set X'=X"=X, we must
end up with ~ (0

~ T&„~ 0)„. Then the regularized
stress tensor from adiabatic regularization must be given
by

(0~ T„„~0)
= lim Xl„„(X',X")[6„"(X',X")

X'~X

—G,'d (X',X")] . (A2)

Thus to show that adiabatic regularization is
equivalent to point splitting, i.e., ( T„„),d ——( T„)ps, it
suffices to show that G',d'(X', X")=GDs(X', X") to
whatever order in the separation between the points it is
necessary to retain so that the contribution to ( T )
does not vanish when the points come together. This
turns out to be to 0 (e ), where e is one-half the geodesic
distance between X' and X". Since (T„,)ps does not
depend on the choice of the points X' and X" (Refs. 21
and 28) it is sufficient to prove that G,'d'(X', X")
=GDs(X', X"}+O(e ) for a particular choice of X' and
XI r

The proof that 6,'d'(X', X")=GDs(X',X")+O(e )

proceeds as follows: Compute 6',d'(X', X") using the
Minkowski measure for the mode sum and the adiabatic
expansion for the modes truncated at fourth adiabatic
order. One finds that

I

G,'dI(X', X")=J~
™

dk [2a(q')a(g")W'i (q')W' (g")] 'exp i J W—(q)dry g Pl(x')Pl*, (x")
0

1, m

+complex conjugate (A3}

Here W ' (g') W 'i (g") are to be expanded to fourth
adiabatic order.

In the coordinate systems with

The geodesic equation can be solved as a power series in
e to obtain the t,~. t", is the tangent vector at the point
L.

ds =a (7i)[ —dg +dX +X (X)dII ],
g~(X)=X, K=O=sinh X,
Q= —1=sin g,

(A4)

To make the computation of the integrals in (A3)
easier we choose X' and X" so that they are separated
by a geodesic with constant values of the angular coordi-
nates 0 and P and with the tangent vector at X given by
t, =0, t,' =a '. Then one finds that

and with X' and X" connected by a geodesic with con-
stant values of the angular coordinates 8 and P one
finds '

g P„(x')P„'(x")=gII'„—,'(x')II'„—,'*( ")
~

Y, (8,$)
~

1, m

2 4

rI(F. ) = ri+ —,r,'+
,
r,'+ O (e—'),

while

2

X(e)=7+Et,'+ —,r,'+

(A8a)

(A8b)

sinks+
2m' &(~~)

' (A5)

Next one expands q', g",hz in powers of e with the re-
sult that '

as before. Since g(e) is symmetric in e, i.e. ,
'g(s) =rI( —e) to at least O(e ), so that g' —'ri" =O(e ),
(A3) can be written as

2 3

g(e)=ri+er', + —,r,'+ —,r', + .
k sin(khan)

(A9)

2 3

(X)e=-X+Et I + t 2 +—t 3 +— (A6)

2
tP —tP +~tP + tP +1 2 2f 3 (A7)

Here g(e)= ri', g( —e) =q", X(e)=X', X( —e) =X", g and
J are the points approached in the limit a~0, and t" is
the tangent vector to the geodesic. t" is expanded in
powers of e such that

One next expands 8 to fourth adiabatic order, does
the momentum integrals, and then expands g' and 6& in
powers of e such that each term in 6,'d' is of order E OI

less. The result agrees exactly with that given by
Christensen ' ' ' with t] ——0 with t&

——a '. Thus for
this separation of the points, G,'d'(X', X")

=GDs(X', X")+O(e ) completing the proof of the
equivalence of adiabatic regularization and point split-
ting.
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