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This is a systematic study of the evolution of thin shell bubbles in general relativity. We devel-
op the general thin-wall formalism first elaborated by Israel and apply it to the investigation of the
motion of various bubbles arising in the course of phase transitions in the very early Universe in-
cluding new phase bubbles, old phase remnants, and domains. We consider metric junction condi-
tions and derive constraints both on the decay of metastable states and on the evolution of non-
equilibrium scalar field configurations (fluctuations) following from the global geometry of space-
time.

I. INTRODUCTION

Great attention was paid quite recently (see, e.g. , Refs.
1 —14) to the study of the new and important subject of
bubbles arising in the course of cosmological phase tran-
sitions. ' These are both new phase bubbles in interiors
of an old phase' ' ' and old phase remnants sur-
rounded by the new phase. ' ' ' ' ' It has become clear
that an account of general-relativistic effects is necessary
in investigations of these objects.

A full account of gravity in cosmological phase-
transition phenomena seems to be a rather complicated
problem; to date this question has not yet been investi-
gated properly despite its importance.

In this paper we shall investigate systematically the
dynamics of space regions occupied by different phases
in the framework of general relativity assuming that the
transient layer is thin enough. We shall also consider
the properties of boundaries of phase separation. The
quite adequate formalism for investigation of such prob-
lems is that of metric junctions on thin shells. ' ' '

In this approach the surface of phase separation is the
three-dimensional hypersurface dividing all of four-
dimensional spacetime into two parts. We shall carry
out a detailed evaluation of spherically symmetric sur-
faces of phase separation, both timelike (TL) and space-
like (SL).

The shape of the TL surface determines, in particular,
the motion of bubble walls. In this case one encounters
the following three physically different problems: (i) the
evolution of new phase bubbles surrounded by an old
phase, (ii) the evolution of remnants of the old phase sur-
rounded by the new phase, and (iii) the case of the
domain structure.

(i) The decay of a metastable state in the Universe
could proceed by means of new phase bubble nucleation
in interiors of the old phase. Thus, the problem of in-

vestigation of phase transitions consists of two parts.
First, one needs to know the probability of bubble nu-
cleation. Second, it is necessary to study the subsequent
evolution of newly formed bubbles. In a pure vacuum
case both these problems reduce to one as follows: the
motion of the nucleated bubble is given by analytic con-
tinuation into real time of the Euclidean configuration
describing the process of subbarrier tunneling. ' The
probability of the thermodynamical formation of a bub-
ble was found in Ref. 18. However, the problem of bub-
ble growth requires, in this case, special consideration.
Usually bubble evolution is treated similarly to detona-
tion wave propagation' (or to the motion of the so-
called "condensation discontinuities"' ). In Refs. 11 and
12 a similar approach has been used for the investigation
of phase transitions in the very early Universe. Howev-
er, the detonation wave approximation is valid only for
nonsingular surfaces of phase separation. (Recall that a
surface of phase separation is called singular if the
energy-momentum tensor surface density on the shell is
not equal to zero identically. ) In a number of cases the
surface of phase separation may not be treated as non-
singular. For example, the shell separating two phases
with pure vacuum equations of state is always singu-
lar. ' ' Another example is given by the shell in the
"vacuum-burning" phenomenon. We shall investigate
the equation of motion of singular shells describing, as
special limiting cases, ' the growth of pure vacuum bub-
bles, vacuum combustion, and detonation wave propaga-
tion.

(ii) The processes of bubble nucleation, expansion, and
collision continue until the Universe is filled with the
new phase. In principle, the phase transition may never
become completed. Such a situation arises if the cosmo-
logical expansion rate exceeds the bubble nucleation
rate. Nevertheless, most phase transitions certainly
have been completed in our Universe and percolation
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through the old phase ceased at a certain moment. Thus
old-phase remnants are isolated from one another begin-
ning from that moment and the sizes of the remnants do
not exceed certain maximum size. Black holes in the
Universe could then originate from such remnants. ' ' '

In this paper we consider only spherically symmetric
remnants of the old phase. We suppose that the spheri-
cal formation of a remnant may be due to its surface ten-
sion.

One (or some) phase transition may never become
complete, and then the entire visible part of the Universe
should lie inside one bubble of a corresponding new
phase (such a situation may be realized in the frame-
work of a phase transition with inflation ). In such a
case we have no remnants of old phase to investigate.
The new phase bubble (where we live) expands forever
and has a tremendous size but it is clear that it is never-
theless nothing but a bubble, so one might study it as
such. Moreover, in the chaotic inflationary scenario
there is no phase transition at all. However, the
inflating scalar field fluctuation possesses a greater ener-
gy density than the outlying Universe, so we may treat it
formally as a remnant of the old phase as well. '

(iii) The investigation of the domain structure in the
Universe, in particular, of domains with different
gauge symmetries of the ground state and of CP
domains ' playing possibly an important role in the
production of the baryon asymmetry of the Universe,
is also of great interest. The plane domain walls were
considered in Ref. 25. However, domain boundaries
would form closed surfaces when abundances of the
phases reach the value given by the percolation theory.
Such an isolated domain can be again considered ap-
proximately as a spherically symmetric bubble and treat-
ed in the same terms as the old phase remnants.

As far as the physical meaning of a spacelike hyper-
surface of phase separation is concerned, we would like
to emphasize that it differs essentially from that of a
timelike hypersurface, the latter describing real motion
of bubble walls, while the SL junction describes process-
es of the fast creation of a new phase. Investigating such
a junction one can connect parameters of a new and old
phase.

The paper is constituted as follows. In Sec. II we
present some elements of the general formalism; in Sec.
III we consider the decay of a metastable state and
derive constraints on parameters of the decaying vacu-
um; in Sec. IV the growth of new-phase bubbles is stud-
ied; in Sec. V old-phase remnants and domains with
nonzero outer mass are investigated. Section VI is de-
voted to the investigation of lightlike shells.

ly Universe), we shall derive the equations of interest
taking into account general-relativistic effects.

Let us imagine that spacetime is divided into three re-
gions: the first one is occupied by the phase I, the
second region is occupied by the phase II, while the
transient layer represents the third region. In the limit
of vanishing thickness of the transient layer we obtain an
infinitely thin wall with the energy-momentum tensor
T„having, in general, singularities on it.

Let us enumerate somehow all points on the given
spacetime manifold and let the equation of the phase
separation hypersurface X, in the chosen coordinate y",
have the form

F(y")=0, (2. l)

F being a certain unknown function. We introduce the
function n(y") as

(2.2)

If a displacement vector dy" lies on the hypersurface
n =const, then

dn =n dy"=0,~p (2.3)

n „=—B„n being the usual derivative. Therefore, a vector
with covariant components n „ is just the normal vector
to the surface n =const. Because of the normalization
factor in Eq. (2.2) the vector

nplz
is the unit normal vector to the hypersurface X,

N N"=e,

(2.4)

T„'(y)= T„'(y)+2)&+ (y)8(n )+2)„(y)8(—n )

+S„(y)5(n )+ (2.6)

where 5(n ) and 8(n ) are 5 function and 8 function, re-
spectively, S„ is a surface density of the T~ on the
shell and T„ is the regular part of T„. Then, from the
continuity equation

where e= —1 for a timelike hypersurface and e= + 1 for
a spacelike hypersurface, respectively. The case of the
null hypersurface (e=O) will be considered separately in
Sec. VI.

According to the assumptions, T„has singularities
on the hypersurface n =0 only and therefore it has to be
written in the covariant form

T„.,=O, {2.7)

II. EVOLUTION QF THIN SHELLS.
GENERAL FORMALISM

one obtains, equating the coefficients at the correspond-
ing singular functions,

In this section we shall obtain equations describing a
shell separating two media with different properties.
Since we are interested mainly in surfaces of phase sepa-
ration arising at first-order phase transitions in the
framework of modern unified theories of fundamental in-
teractions (which presumably took place in the very ear-

Sp 8 n=0,
S„".+(2)~+"—2)„)B„n=0,
2)„.„8( n)+2)+" 8—(n )+T„,=O., . . . .

Here a semicolon denotes a covariant derivative.

(2.8a)

{2.8b)

(2.8c)
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A. The Einstein equations for thin shells

To begin with, let us write the Einstein equations for
the metric tensor g„of spacetime [we use the signature
(+ ———) and units fi=c =1; the gravitational con-
stant is ~=Mp&, where Mp&

——1.2 ~ 10' GeV is the
Planck mass]:

R& —2gz R =8mT& /Mp] (2.9)

Here R„ is the Ricci tensor, T„ is the energy-
momentum tensor of matter fields, R„being expressed
in terms of the Christoffel connections I „as

R„=B[pIv] +I p[ I v] (2.10)

and

ka
~pv = 2g (gcrp, v +gatv, p gpv, u ) (2. 1 1)

We intend to apply the Einstein equations to thin
boundaries of phase separation using the thin-wall ap-
proximation. One must realize that when speaking
about a thin shell we always keep in mind that the thick-
ness of the shell we are dealing with must not be smaller
than Mp& ', provided gravity is described just by the
classical Einstein equations. Working in the framework
of the Einstein equations only, one can treat the problem
in various ways.

If in the problem under consideration there are in ad-
dition to the energy-momentum conservation any other
conservation laws (for example, those of charge, entropy,
etc.), then it is convenient to write in the form (2.8) all
the continuity equations also, corresponding to each
conserved current.

In the case when one considers the spacetime manifold
as fixed, i.e., if one does not take into account the back
reaction of the moving matter on the spacetime metric,
the obtained equations determine completely the phase
separation surface. This is true, in particular, if one
neglects gravitation, i.e., in the case of flat Minkowski
spacetime of special relativity. We would note that even
in the case of the flat geometry of spacetime, the covari-
ant derivatives in Eqs. (2.8) have to be preserved never-
theless, since the phase separation surface may be curved
in general.

The expansion (2.6) for the energy-momentum tensor
(as well as similar expansions for all other conserved
currents) is in fact not the most general one. Generally
speaking, T„could contain terms proportional to
derivatives of the 6 function, etc. One can find the form
of Eqs. (2.8) in every such case. However, we have
preserved here, in the expansion of T„ terms propor-
tional to the 5 function only. We shall dwell upon the
same problem in the next section as well.

In order to include the back reaction of moving
matter in the manifold, we need additional equations for
dynamical variables describing the spacetime. In the
next section we shall consider only the Einstein equa-
tions for the metric tensor. Equations (2.8) are obviously
valid for an arbitrary theory of the spacetime manifold.

(1) Let the geometry of spacetime be given, including
the form of the phase separation surface. One can then
find from the Einstein equations the corresponding
energy-momentum distribution in the space; in particu-
lar, find the quantity S;~.

(2) On the other hand, one can consider that the struc-
ture of tensors T„' and S is given (in other words, both
the equation of state of matter and the symmetry in-
herent to the problem are given). One can thus find
from the Einstein equations (using in addition initial
conditions) the geometry of spacetime.

Here we shall deal just with this latter treatment of
the problem. We shall imply that the structure of the
energy-momentum tensor, in the case of the cosmologi-
cal phase transitions we are interested in, can be
somehow found from a given field theory.

If T„entering the right-hand sides of the Einstein
equations (2.9) contains first derivatives of the 5 func-
tion, then connection coefficients (the derivatives of
which enter the curvature tensor) should contain the 5
function. Furthermore, if the spacetime manifold has
the usual Riemannian structure [i.e., if the connections
are related to metric coeScients in the usual manner
(2.11)] then the metric coefficients should be discontinu-
ous on the surface of phase separation. Therefore, Ein-
stein gravity becomes inapplicable in this case. Such
singularities in T„may arise, for example, in supergrav-
ity in eleven dimensions if one tries to construct a sur-
face separating two phases with different values of pa-
rameters characterizing any given compactification down
to M )&S . However, the terms -R in the action lead
to higher derivatives of the metric in the equations of
motion and one can compensate 6' in T„with a con-
tinuous metric. Though consideration of a situation
with derivative of the 5 function in T„ is of indubitable
interest (it might even happen that in a number of
theories one will have to consider such hypersurfaces),
we shall nevertheless restrict ourselves in this paper to
the study of the problem with the energy-momentum
tensor having singularities no stronger than those given
by 5 functions.

Thus, let there be given a (pseudo-)Riemannian mani-
fold ' ' V with a three-dimensional hypersurface
' 'X C ' ' V dividing it into two parts: V+ and V . If all
components of the tensor S„[see (2.6)] are equal to
zero, then we shall call the corresponding hypersurface
of phase separation a nonsingular shell. First derivatives
of the metric gz are in this case continuous on
though second derivatives could be discontinuous. If on
the contrary some of the quantities S„are not equal to
zero, then we shall call the corresponding hypersurface a
singular shell. In this case, first derivatives of g& are
discontinuous on X while the metric itself is still con-
tinuous on X.

1. The first junction

Let Iy" I+ ( Iy" I ) be an arbitrary coordinate system
in the V+ (V ) region (the greek indices take four
values and numerate components of four-dimensional
ten sors while latin indices take three values and
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numerate components of the three-dimensional tensors
of the hyperspace X), and [x'I be an arbitrary coordi-
nate system on X. The metric g~+ (g„„)determines the
geometry on the V+ (V ) region:

ds =g„dy"dy (2.12)

Before proceeding to the Einstein equations on the
shell, one has to match continuously g+ and g„on X.
We shall call such a procedure the first junction. Let the
equation of the hypersurface found in the coordinates
y+ be F+(y+)=0, while in the coordinates y let it be
F (y )=0. Introduce new coordinates (n, x') —in such
a way that the surfaces n

+—=0 coincide with the surfaces
F*(y —)=0, respectively. Since we have four arbitrary
functions of coordinate transformations in each region,
we may reduce the metric to the form

A"=n„A",dn

QyP

A„=eA", A; = . A„.QyP

x

For a second-rank tensor Q & we obtain

(2.17)

giving the normal component A" ( A„) and the tangen-
tial components A;. At the given decomposition, A is
a scalar while A; is a three-dimensional vector with
respect to transformations of coordinates x on the sur-
faces n =const. Similar decompositions take place for all
tensors. For example, a second-rank tensor Q„ is
decomposed as a scalar Q"", two three-vectors Q;" and
Q~, and a three-tensor Q;, If a vector A„ is given in ar-
bitrary coordinates Iy" I then

ds =e dn + + y+~ (x +,n + )dx +'dx +

ds =edn +y, (x, n )dx 'dx
(2.13)

Q
tl ~Q flfl Q..=Q""

Q""=n n pQ
~

(2.18)
where y;J are functions of F—+. The condition of the first
junction will be satisfied if there exists on the junction
surface n =0 a transformation of coordinates
x+=x+(x ) such that

—k —l

yi) (x,O) =yg((x, O)
Bx Bx
ax+' ax+J (2.14)

Given the two metrics g~+ and g&, can we find such a
hypersurface X where the first junction is possible?

For a spacetime manifold of dimension N, Eqs. (2.14)
give N(N —1)/2 conditions. On the other hand, there
are only N+ 1 unknown functions: F+, F, x+'(x ).
Thus, if the spacetime in question has the dimensionality
1V =4, then even the first junction is by no means always
possible. Moreover, recall that one must also obey the
Einstein equations. Therefore, we shall investigate the
problem of interest in two following treatments: (1)
Metrics g„and g~+ possessing a high symmetry are
given which reduce the number of junction conditions.
(2) The metric g„ is matched to the metric g+, . In oth-
er words, the junction equations provide boundary con-
ditions for the field equations in the V region.

After the first junction is carried out one can write the
metric on the whole manifold in the form

ds =edn +y,, (x,n)dx'dx' . (2.15)

dl =y,)(x,O)dx'dx' (2.16)

determines the geometry on X. In what follows, the ex-
plicit expression for the coordinate n =n (y") will not be
necessary for us, though we shall use Gaussian coordi-
nates. All we need is &he unit vector of the outer normal
to X given by Eqs. (2.2) and (2.4). (In the vicinity of X
the coordinates n and n coincide. )

A slicing of the manifold by the surfaces n =const
leads to a corresponding decomposition of both vectors
and tensors. So a vector A " is decomposed naturally

We shall call such coordinates the Gaussian normal
coordinates. Since n =0 is the equation of the hypersur-
face X to be found, the interval

JP=+1, A'=0, A; =0, JV„=e .

Hence

(2.19)

JV =en

2. The Einstein equations

In the Gaussian system of coordinates (2.15) the com-
ponents of the ChristofFel symbols containing two or
three indices n are equal to zero. Components not con-
taining indices n at all are regular, since the three-
dimensional geometry of the surface X is by assumption
we11 defined. Thus, only those connection coe%cients
which contain just one index n, namely,

n Il
J 2 f ]J 77

and I
Jpf Q p f lJ (2.20)

are discontinuous at crossing X. One can write the ex-
pansions

I;,"=I;+"0(n)+I;, "8( n)+I;", —
(2.21)

I ~. '„=I1'„+g(n)+I J'„8( n)+I 1'„—
where I are the corresponding regular parts. Substitut-
ing these expansions into the Einstein equations and us-
ing the expansion (2.6) for T& written in Gaussian coor-
dinates, one easily finds that

S "=0
p

for any p, [note that this is just Eq. (2.8a)] and

(2.22)

Q;~ =(By /Bx')(By~/Bx J)Q & .

Note that the above-written expression for A" allows
one to choose the sign of the normal. We shall call the
normal the outer one if the normal vector n has the
direction from V to V+. Then, choosing the surfaces
n =const in such a way that the values n & 0 correspond
to V (n &0 for V+) one finds that the contravariant
components of a unit outer normal vector should be
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(I,"—y, I i, iy"')+ —( ) =8m.~S,J . (2.23)

These are just the Einstein equations on the shell. They
can be written in the more convenient form provided
one takes into account that the covariant derivative of
the unit normal vector to X is, in accordance with Eq.
(2.19), given by

(2.25)

(2.24)

The quantity K;~ = —JV;.
~ =el;J is called the outer cur-

vature tensor of the surface X. Since the quantity JV„.,
is a tensor, one can find it in an arbitrary convenient sys-
tem of coordinates Iy" ]; then K;~ can be found using the
formula

S,JK, '+ ~4—~~S,~(S, '
,'6—, 'S—,')+ [T„"]=0 . (2.31)

Equation (2.29) for [T;"] does not change, since it con-
tains only quantities characterizing the inherent
geometry of the shell.

B. Transition to the limit Mp~ ~ Do

when there is no fixed matter state in one of the regions
(for example, the state of the medium inside a new phase
bubble is not given). In this case, S;~ has to be deter-
mined completely from a field theory [generally speaking
as a functional of F(y)]. Since a metric in one of the re-
gions is unknown (say, in V ), one cannot calculate
K; i~mediately and therefore it is convenient to find
K, ~ from Eq. (2.26) and then substitute into Eq. (2.30).
Then one obtains

In this notation Eqs. (2.23) take the form

e([K ] 5[Ki'—])=8~xS

where

(2.26)

is the discontinuity of the outer curvature tensor. Not-
ing also that K; ~ = —I „~ one can rewrite ('„) and ( „" )

components of the Einstein equation as

Equations (2.29) and (2.30) are valid both in the case
when one takes into account the influence of the gravita-
tional field on the shell motion and the back reaction of
the shell energy-momentum tensor S; on the spacetime
geometry and in the case when one considers the shell
motion in arbitrary smooth curved spacetime (in particu-
lar, in the fiat spacetime) not accounting for gravity.
Neglecting the influence of the shell on the metric, one
obtains the following equations of motion of the shell in
an arbitrary curved spacetime:

e(K;J
~ J

—Ki'~; ) =—8n~T;",
——,

' ' 'R 2KJ'e—(K, J 5, 'Ki—') =8m.x T„",
(2.27)

(2.28)

K, 'S, '+ [T„"]=0,

S,', +[T,"]=0 .

(2.32a)

(2.32b)

where ' 'R is the three-curvature of the hypersurface X
and the vertical bar denotes covariant differentiation
with respect to the metric on X. Let us write each of
these equations in the regions V+ and V and then sub-
tract the corresponding equations for the V+ region
from those for the V region. Using Eq. (2.26) we can
write as a result

[Ki']=0 . (2.33)

C. Spherical shells

This is of course nothing but Eq. (2.8a) rewritten in
Gaussian coordinates. In this case obviously

S i +[T,"]=0,
[KJ'IS +[T„"]=0,

where

(2.29)

(2.30)

For the sake of simplicity we shall consider in the rest
of the paper spherical shells only. Let us derive corre-
sponding formulas for this particular case. An interval
can be represented now as

[K, '] = 2i(IC)'++KJ' ) —.

But just the same form is taken by the i and n com-
ponents of Eq. (2.8b) provided they are written in Gauss-
ian coordinates. Thus, these equations are consequences
of the Einstein equations for V+, V regions and on the
shell.

Now we see the way of solving various problems.
(1) If the metrics in V+ and in V and the functions

S;~(x) are known, then the only nontrivial equations of
the second junction are the Einstein equations on the
shell (2.26).

(2) A calculation of S;~(x) is a complicated field-
theoretical problem. However, in a number of cases one
can find S;~(x) using Eq. (2.29), [T,"] being given and
the value of S,~ being determined (from a field theory)
only on a certain two-dimensional boundary lying on X.

(3) Of the most interest is a treatment of the problem

ds =g00dt +2g01dt dq+g»dq —r d0
where

(2.34)

d Q2 d @2+sjn20 d +2

while g00, g01, g» and r are functions of q and t only.
One can proceed in the metric (2.34) to the new vari-
ables q and t related to the old variables through trans-
formations

(2.35)t =t(t, q), q =q(t, q),

(2.36)g01

the metric then takes the form

which do not include angular variables. Therefore, one
can use two coordinate conditions without loss of gen-
erality. If one of these conditions is the orthogonality
requirement
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ds =e dt —e dq r—(q, t)dA (2.37)

We choose the coordinate q originating from the center
of a bubble on the outside.

In curved spacetime, the normal vector to the surface
r =const may be spacelike as well as timelike. In the
first case,

h=g ~r r p&0 (2.38)

and the corresponding region is called the R region
(in flat space, the R region occupies the whole space). In
the second case,

6&0 . (2.39)

Such a region is called the T region. ' In a chosen
coordinate frame (2.37) we have

~
—vr 2 ~

—A, rt 2 (2.40)

As far as 5 & 0 in the T region, it is impossible to satisfy
the condition r'=0 there. That is, in the T region either
r' & 0 or r &0 remains true under any continuous coordi-
nate change. The region where r' &0 we shall call the T
region of expansion (T+ region), while the region where
r &0 we shall call the T region of contraction (T ).
Similarly, the sign of r'=dr/dq does not depend upon
the coordinate chosen in the R region (remember that q
originates from the center of a bubble). We shall call
R+ the region with r'&0, while R that with r'&0.
The metric on the shell is determined by

2. The shell outer curvature tensor K

Because of the factorization of the two-sphere metric,
the components of the three-tensor 3;~ on the shell are
invariants as long as we keep the angular variables 0 and

p fixed. So, we can compute E; using any convenient
coordinates in the whole spacetime and then reexpress it
via the invariants. Let us choose now the coordinates in
(2.37), so that

q=r ~ (2.44)

Then it is convenient to represent the equation of a time-
like shell in the coordinates of the V (V+) region in
the form

F(y ) =r —R (t) =0, (2.45)

where R (t) is a certain unknown function. One can
easily satisfy oneself that the first junction in this case is
always possible.

The condition of metric continuity on the hypersur-
face X results in the relation between the time of the
inner (outer) region and the proper time on the shell

R (t) =p(r), (2.46a)

where p =—dp/d ~. With the four-dimensional energy-
momentum tensor, T ~, given, the components T„" and
To" can be evaluated using Eqs. (2.18).

Our main purpose now wi11 be to determine the outer
curvature tensor K

ds
~ q

———edz —p (z)dA (2.41)

where z in the case of the timelike shell (e= —1) is the
proper time (which we shall denote by r) measured by
an observer at rest with respect to this shell, while in the
case of the spacelike shell, z is the distance from the
center of the sphere of the radius p(z) (which we shall
denote by g). We shall choose the same angular vari-
ables in the inner and outer regions and on the shell.
We shall use indices 2 and 3 for them, while the indices
0 and 1 will be used on the shell for r and g, respective-
ly.

It is sufficient to derive explicitly all necessary formu-
las only for the TL junction. The corresponding junc-
tion equations (in their final form) for the SL hypersur-
face can be obtained by the change in the indices 0~1
and the substitution r if, So ~ iS, '. —

l. Equations of motion

In the spherically symmetric case A2 ——A3 for any
second-rank tensor and the junction equation (2.26) take
the form

r

dR
dt

dt
d1

2

(2.46b)

hence,
2

dt ek —
v(

' 2+e —k)
d~

(2.47a)

v —A,
dR /dt =p exp

2
(

~ 2+ —k)1/2 (2.47b)

(2.48)

Thus, after the procedure of the first junction is carried
out with given A,

—and v —,there remains one unknown
function p(r) which should obey the Einstein equations.

We shall regard for definiteness the inner region of the
bubbles as the V region and the outer as the V+ re-
gion, respectively; then [see Eq. (2.2)]

e4ntrSO [Kz ], ——
e8~aS, =[Ko ]+[K~ ],

and Eqs. (2.29) and (2.30) become

[Ko ]So +2(K~ ]Sq +[T„"]=0,
dSO /dr+2p(So —S~ )/p+[To" ]=0,

(2.42a)

(2.42b)

(2.43a)

(2.43b) JV =en (2.4')

since radii may either increase in the direction of the
outer normal (o =+ 1, which is always the case for a flat
space) or decrease (cr = —1, in an R region this corre-
sponds to a semiclosed world). The vector of the outer
normal to the shell is
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and

A;= JV, =O, JV() ——dR
dt

(2.49a)

(p
2 g)1/2

p

Koo = —(y
p —A2/2A

(
~ 2 g)1/2 +

(2.54a)

2
(

~ 2 g)1/2
Q2 p

JV1 c——r e
dR
dt

—Ve ~e 2.
(P 2+ —A, )1/2

P (g 2 g g)1/2
2 3 (2.54b)

dR pK 2 r22 ——— r2 K1 re-—
dt

(2.50)
2 ~

(
~ 2+ —2)1/2

p

Calculation of the Ep component is more cumbersome;
therefore we give only the final result:

Ko ———u p+p +—e0 . 2 k'+V' V

2 2
(

~ 2+ e
—2. )1/2

(2.49b)

We shall calculate now the outer curvature tensor of
the shell (2.45) in the metric (2.37) with condition (2.44)
using formula (2.25).

The K2 component can be easily calculated

Note that the outer curvature tensor given by Eqs.
(2.50) and (2.51) has been calculated in coordinates (2.44)
valid in an R region only. But the final results, Eqs.
(2.54), are valid everywhere. The tensor K,~1sL1 for the
SL hypersurface can be obtained form K ( pp, p) TLby
the substitution

6 —1
Q& ——4mKPT +

p
&( I+~)

b, 2
——8m'( TA —T p ~ p)—

(2.55)

(2.56)

K'(p p p )sL='«(p 'p p

Using the Einstein equations (see Appendix A) we can
simplify the above expression for Kp . Indeed, from
Eqs. (A9) and (All) we easily derive the following for-
mulas for 6's:

(A, —v)/2

where

Bv M.
A. '—= , v'—= , A,=, p—:dp /de .

(2.51) 63= 64m xp(T & '2TT p ~—p+T~ T p, 1p,s)

—16m'~(1+6 )(Tb, —T p ~ p)+
A(1+6)

p'

(2.57)

Now we want to rewrite the outer curvature tensor in
terms of invariants. There is one invariant without
derivative at our disposal: namely, the "radius"
r =r(t, )q[=p(~)] on the shell. It is clear from expres-
sions (2.50) and (2.51) that we need only those invariants
derived from r which, being expressed in coordinates
(2.44), involve derivatives up to the first order. Those in-

variants are 6 [see (2.38) and (2.40)] and

p o .. 1+6
o

—— p + —4&Kp T~
(

~ 2 g)1/2 2p
(2.58)

Now it easy to show that Eq. (2.43a) is in fact an alge-

braic combination of Eqs. (2.43a) and (2.43b). So, we are

left with the following set of equations:

Inserting this into Eq. (2.54b) we arrive, after some alge-

bra, at the expression

b, , =(g Pr P). , 62=A, r Pg P,

b.3=6 b, pg
p .

(2.52)

e4m~So ——[K2 ],
em.~S2 =[Ko ]+[K2 ],

So'
+2P(~o' —~2') ~P+ [To"]=o

(2.59a)

(2.59b)

(2.60)

We have, in coordinates (2.44),

g2 A, —v
2

g4 Q3

the last equation can be viewed as an integrability condi-
tion for Eqs. (2.59).

D. Surface energy-momentum tensor on the shell

—e
2

+ (2.53)

v'+X'
2 Q2 p

So, we obtain the following formulas for K2 and Kp,
which are valid in any coordinate frame:

The derived equations are valid for any spherical sym-
metric shell. To proceed further one needs to set the
tensor S~'.

Let us find the surface energy momentum tensor for
the bubbles arising in cosmological phase transitions.
The order parameter in such transitions is the appropri-
ately defined average of the scalar field operator p. In
equilibrium, in absence of sources, y = ( g ) does not de-
pend on coordinates.
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The field y obeys the equations of motion following
from the effective action. In particular, the field that is
not dependent upon coordinates (q)) is determined from
the condition of the effective potential extremum on this
field. We consider the situation when the effective po-
tential has several local minima. The lowest minimum
corresponds to the ground (equilibrium) state of the sys-
tem, the rest correspond to metastable states. In the
case of a spherical bubble of one phase surrounded by
another phase the value of the field y at the center of the
bubble coincides with the value y of the field in one of
the local minima of potential, while at p~ ~ it coin-
cides with the value y+ in other local minima. In gen-
eral, the field y has m components and transforms ac-
cording to some representation of gauge group G. The
group G is broken down to G C:G by the value of the
field y and it is broken down to G+ C G by the value
q)+. The subgroup G+ (G ) may coincide with G if
q)+ ——0 (q) =0). The value of q) in the potential
minimum determines the corresponding scale of viola-
tion of the group G: M6 —g. In modern grand unified
theories (GUT's) several such scales are presented.
Namely, one usually has at least two scales: the scale of
violation of the unifying group Mz —=Mz —10' —10'
GeV and the scale of breaking of the electroweak group
SU(2)L X U(1), M6 =M)v —10 GeV. Furthermore, we
may consider phase transitions with "hadronization" as
well, as in QCD. Then cp is the value of the qq or gluon
condensates (in QCD, (qq ) —1 GeV). Such transitions
occur in any theory when temperature falls down to the
strong-coupling regime value.

Consider as a scaled down example the bubble arising
in the minimal SU(5) model. The unifying group SU(5)
is violated by the vacuum expectation value of the 24-
component field Y from the adjoint representation of the
group. The field r may be represented by traceless ma-
trices 5 X 5.

Consider for definiteness a bubble of the SU(4) X U(1)
phase in the SU(3) X SU(2) X U(1)-symmetric vacuum.
Then, inside the bubble, the field Y has the form

X = (2)pq) )*(&"q)) (1 —g—)
—

q) *q)—V(q) ) ——,'Fp. 'F'"

g)p —
Qp

—lg 3p T

F„'=a„A,' —a, A„'+gf' 'A„A, ',
(2.61)

where g is the gauge coupling constant of the group G,
T' are generators in the representation of the fields y',f' ' are structure constants of the group, R is the scalar
curvature, g is the coupling constant of the scalar field
with the background metric (/ =0 for conformal cou-
pling and /=1 for the minimal coupling, respectively).
The potential V(q)) is a G-invariant polynomial of de-
gree not higher than 4 in the fields y '.

Using the formula

a& —gx
ag~

(2.62)

where g =det(g„, ),

av —g /ag" = ——,
'v —g g„.

we obtain for the energy-momentum tensor

Y=diag(u, u, u, u, —4u) while outside it is Y=diag(u,
u, u, —3u /2, —3u /2), where u -M».

In the transient layer Y=diag( u, u, u —( —', —e )u,
—( —,

' +e)u } with the boundary conditions e = —', at p =0
and @=0 at p~ oo, respectively. The electroweak group
is broken in the framework of the SU(5) model by the
five-component field H -Mz .

Let us proceed now to the derivation of the energy-
momentum-tensor surface density on the shells of bub-
bles arising in such phase transitions.

The scalar field y is described by the Lagrangian den-
sity of the form

T„,= (2)„q))*(&„q))——,'g„(2) q))*(& q))

+-,'(g — )[( „q")*(,q ) g„.(a q )*(a.q —)+q *v„a,q- g„„q *v.v"q+—,'G„.q *q-]-
+ —,

' V(q))g„, +H. c. + —,'Fi 'F' 'g„F„„'F'„'. — (2.63)

It is clear that before the transition to the limit of van-
ishing thickness of the layer separating two phases with
different values of y we have to choose as a gaussian
normal system of coordinates, the system in which the
surfaces of the constant value of coordinate n coincide
with the surfaces of constant values of y. Let x' be the
coordinates on the surfaces n=const; then By/Bx'=0.
Let us define the field P as follows: q) =q)+))), i.e.,
(P) =0. Substituting q)=q)+P into Eq. (2.63) we find
(we set here and in what follows g= 1)

T,, =(2),P)*(2),P) ,'F, 'Fg '+ ,'g,, T(—rp—,g)+H. c. , —

T= V(q )+(X„q ) (X—)„q)+1F~.F.
—(2)f)*(N;P),

T„„=,'(2)„q) )*(2)„q)) ,' V—(q)+ 2(&„P)(&—„—P)—(2.64)

+ —,
' (Xl;P )(2)$)—,' F„'F„' ,

' F), 'F ' '—+H. c. ,——

where we omitted terms linear in P because after subse-



36 DYNAMICS OF BUBBLES IN GENERAL RELATIViTY 2927

quent averaging these terms will give vanishing contribu-
tion. Averaging now the expression for TJ and integrat-
ing it over n from —5 to +5, one obtains, for S;J in the
limit 6~0, r„„=-,'(a„g)(a„+)—V(&), (2.70)

2

I-et us write explicitly the expressions (2.64) for the
system under consideration:

S,, =Sg;, + lim f dn( {2);$2),P~$~0
——,

' {F; 'F, '") +H. c. ),

1 d
IJ RlJ

We see that

+ V(g) (2.71)

S=—lim dn —,
' T+H. c.5~0

The Uacuum case

S„„=lim f —,'C dn =0
5~0

as a consequence of the equation of motion (269) in
agreement with (2.22), and

Neglecting field fluctuations in Eq. (2.65) (i.e., setting
all correlation functions like {PP), etc. , to be equal to
zero) one obtains

S, =5,~iim f dn [2Vj =5,. lim f dn dg
5~0 5~0 dn

(2.72)

S;J=S6;J . (2.66)

We shall call such a shell a vacuum shell.
Let us find now the dependence S upon coordinates

using Eq. (2.29). The vacuum energy-momentum tensor
in any frame of reference is of the form T„"=e6„,
e =const being the vacuum energy density. Therefore, in
the pure vacuum case [T;"]=0 and we obtain, from Eq.
(2.29), S;=0 or

S =const . (2.67)

Relation (2.67) remains valid also if the shell (2.66) is
spherically symmetric and charged. Indeed, if the shell
carries a charge, then in the spherically symmetric case
the energy-momentum tensor has the form TQ' = T, =0,
To =T, ', so we obtain from Eqs. (2.18b) and (2.49a)
that To"=0. Then from Eqs. (2.43b) and (2.66) we ob-
tain again Eq. (2.67).

Since the quantity S does not depend on x ' (in particu-
lar, in the case of a spherical shell it does not depend
upon time r), one may find S by calculating its value at a
certain point x'. We shall not consider the calculation
of this quantity in this paper; it will as a rule play the
role of an input parameter of the model. Here we con-
sider only, as a characteristic example, the neutral wall
produced by one of the components of the field y. In
this case the field y configuration is described in the
gaussian frame of references by

2
1 d dy; dy dV
2 dV- dn '" dn dV-

(2.68)

(dg/dn) =2V+C, (2.69)

C being an integration constant. Since dye/dn equals
zero far from the wall we can take for C either the value
—2V(g ) or —2V(g+) (remember that the thin-wall
approximation is valid when

~

V —V+
~

&& V+ ).

When the transient layer is thin enough, the "singular-
ity" of the (d/dg)(dye/dn) is stronger than that of
dy/dn and we may neglect the second term in the left-
hand side of Eq. (2.68) (this gives by the way the cri-
terion for validity of the thin-wall approximation). Then
we obtain immediately the first integral of (2.68):

Note that we can obtain S;J without using the equation
of motion in the form (2.68). Indeed, since we are in-
terested only in the singular part of T„, we can obtain
Eqs. (2.72) just from the condition S„„=O using Eqs.
(2.70) and (2.71). In such a way we could calculate S
but would not obtain the criterion of validity of thin-
wall approximation.

The value of S;J does not vanish if the field values g
and g+ do not coincide, giving dg/dn-5(n). Using
Eq. (2.69) one can rewrite (2.72) as

S;1=5
i f dcp[2

i
V(cp) —V(cp )

/

]', (2.73)

Formally speaking one is integrating in expression
(2.72) the uncertain quantity —[5(n)] rather than 5(n).
This uncertainty is settled by the functional relation

5 (x)=Ci5(x)+C25'(x)+

the coefficient C; being in general unknown. We can,
however, find them for any given physical problem.
Namely, one has to calculate first of all the integral
(2.73) for a thick-wall (smoothed) field configuration and
then proceed to the limit in terms of parameters of the
theory leading to validity of the thin-wall approxima-
tion. Let us consider for example the potential of the
form

g(~2 @ 2)2

We obtain in this case

(2.74)

v2S =—'+A. VO —— mHVO3 3
(2.75)

mH being the mass of the Higgs field in the minimum of
V. Since the thickness of the transient layer is
d-mH ', the latter becomes thin in the limit mH~oo,
so we see from (2.72) that C;=0 and Ci —mH. Similar-
ly, the integral (2.73) can be calculated in every particu-
lar case. [When the potential does not possess the
y~ —p symmetry one may have C;&const=O for i~1
but lim (C;/Ci )~0, so one might hope that in or-
der to obtain an approximate solution in the case
mH ((Mpi one may set C; =0, i Q 1.] It is important,
however, that by order of magnitude S -MG, M& being
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In the previous section we found that the surface
energy-momentum tensor of the vacuum shell has the
form S;~=6;~S and S=const. Here we would like to im-
mediately utilize this result. We shall consider again the
case of a spherical bubble. Then the solution to the Ein-
stein equations for V+ and V regions are also known.
The pure vacuum metric (or electrovacuum in the case
of charged shells) may be written as

ds =f dt —dr ——r dA (2.76)

where

28m'. z 2~m e a
3 pe~2 (2.77)

The parameters m and e, being the Schwarzschild mass
and the charge of the shell, respectively, may not equal
zero for the outer metric of the bubble only, while e
(which is vacuum energy density) may not equal zero for
both outer and inner metrics. All these quantities are
constant. Thus, in the pure vacuum case one has to find
only one unknown function p(r) to describe a spherical
shell model. Therefore, we need only one of Eqs. (2.42a),
(2.42b), and (2.43b), the rest of them being satisfied iden-
tically. It is convenient to write Eq. (2.42) in the form

P1

(2.78)

Using Eq. (2.54a) one easily finds, for the metric (2.76),

(2.79)

Thus, the motion of the vacuum bubble is described
5

(2.80)

A detailed analysis of Eq. (2.80) including gravitational
effects will be carried out later. Now we shall find its
form in the case when one may neglect gravity effects.
Let us consider in Eq. (2.80) the transition to the limit

8& in(out)p
2

3 1+p
((MP1

at m =e =0. Taking the series expansion of the radical,
we obtain

4~p&S(1+ ~ 2)1/2 ~ 3(~ ) (2.8 1)

This is the expression of the usual energy conservation
law when one may neglect gravity efFects. Let us find p
from this equation and substitute it into Eq. (2.47) (again

the scale of violation of the group 6 if only there are no
special conditions imposed on coupling constants [such
conditions may arise naturally in supersymmetric
(SUSY) GUT's].

2. Equation of motion ofpure vacuum shell

taking the limit Mp&~ oo ) which gives the relation of
outer coordinates with the coordinates on the shell. In-
tegrating then the derived equation we find finally

r t =—[3S/(e,„,—e;„)]' . (2.82)

This is the well-known (see Refs. 1 and 2) equation of ex-
pansion of the pure vacuum bubble.

3. 2 nonuacuum shell

Nonvacuum shells are however most interesting.
Indeed, an expansion of an even initially pure vacuum
shell is followed with the particle creation. In this con-
nection the key question arises as to whether or not a
bubble remains "empty. " Recently there appeared a
number of papers ' ' ' devoted to the investigation of
particle production process by vacuum shells. Such a
process is usually treated as a small perturbation over
the vacuum solution (2.76); however, the complete inves-
tigation of the problem (in the framework of validity of
thin-wall approximation) should be based on the solu-
tions to Eqs. (2.26), (2.29), and (2.30). Moreover, besides
the structure of the tensor, S;~ should be given.

In this paper for the nonvacuum case we shall restrict
ourselves to a discussion of some peculiar properties of
Eqs. (2.43) which do not depend essentially on the struc-
ture of S;~ (Ref. 7).

In the case of spherical symmetry one can rewrite Eq.
(2.65) as

S2 ——So +S22 0 2

(2.83)
S22 ——lim dn 2 2 2 + Fo 'Fo

5~0
—(0~2)] .

Calculating radiative corrections to T„ in the case
when the temperature T =0 and y=const in the whole
spacetime, one should necessarily obtain T„=e6„due
the Lorentz invariance of the ground state. However, at
T&0 we obtain T~, =(e,p, p,p). Similarly, we shall ob-
tain S&&&0 if T~O, Sq2 being constant over all space-
time and the averaging in (2.83) being understood in the
Gibbsian sense. Moreover, even at T =0 we obtain
S22~0, since for a bubble g =cp(n) and the symmetry be-
tween the coordinates 0 and 2 which resulted in S22 ——0
is now broken.

Let us consider first of all the case when the outer
medium is a pure metastable vacuum (e+p),„,=0 with
e,„,~0. As far as the inner medium is concerned we
shall suppose that its vacuum energy density equals zero
and that its state is not a vacuum one (say, e=3p). In
this case, Eqs. (2.43) allow the existence of a shell with
S2 ——0. However, by no means is S2 ——0. Indeed, our
shell is the source of particles; consequently the S2
component of the shell stress tensor is not zero. It is
seen from Eq. (2.43b) that such a shell should have
S2 ~ 0. If, on the contrary, just the inner medium is a
pure vacuum one (being, e.g. , a remnant of the old
phase) and the shell collapses producing particles out-
side, then Eq. (2.43b) has a solution with So ——0 only at
S2 (0. We may assume further that the inner medium
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is in thermal equilibrium (in this case we consider the
whole transient nonequilibrium layer as a thin one and
attribute it to the shell). For simplicity, let the chemical
potential of the inner medium be equal to zero, then
(e+p);„=Ts. The inner medium possess the nonzero en-
tropy density s while the outer medium entropy density
equals zero. Consequently, the shell has a nonvanishing
entropy source co:

SQ

u 2)1/2 (2.84)

T„"=(e+p)u„u ' —p5„ (2.85)

then from Eq. (2.43b) follows the relation between the
entropy source ~ and Sz .

pT
Sp —— CO

2p(1 —u )'
(2.86)

As far as S0 ——0 the released energy cannot be ab-
sorbed by the bubble walls as in the pure vacuum case
(2.81) and should be converted in the energy of the inner
medium. Therefore, a shell with So ——0, S2 &0 could
apparently be considered to be a good approximation of
studies of chemical burning processes. We have seen
that Eqs. (2.43) allow the existence of a shell with such
structure in the case of a pure vacuum equation of state
of the outer medium. Therefore, we may believe that
the eff'ect of vacuum combustion (with the following
structure of S;: So ——0, S2 ——S2 &0) is possible in
principle.

We now turn to consider several specific problems in
more detail.

u being a three-velocity of the medium relative to the
shell. If So =0 [or S2 ——S2, see Eq. (2.83)] and the
energy-momentum tensor of the inner medium is that of
a homogeneous isotropic perfect Auid,

A. Timelike hypersurface of junction

b, ,„& 16' (S—o ) p IMp, (3.1)

Correspondingly, o.,„,= —1 at the opposite sign of the
inequality (3.1). One may also write easily similar ine-
qualities for o.;„.

Consider the case of homogeneous isotropic space de-
scribed by the Friedmann-Robertson-Walker metric:

d 2
d&2=dt2 —a2(t) q +q dQ

1 —kq
(3.2)

where k = + 1, 0, and —1 distinguish the closed, spatial-
ly flat, and the open cosmological models, respectively.
Using the Einstein equations we obtain (see Appendix B)

—6=1—8m' /3Mpi (3.3)

e being the energy density inside (outside) the bubble.
For further convenience let us introduce the notation

/=M@1 [e,„,(t,„,) e;„(t;„)]/6m.—[SO (r)]

Then, solving Eq. (2.59a) for p one has

(3.4)

Consider first a timelike hypersurface of junction. Let
both the junction hypersurface and the metrics inside
and outside the bubble be O(3) invariant. Then the K2
and E0 components of outer curvature tensor are deter-0

mined by Eqs. (2.54). The case cr =+1 in these expres-
sions corresponds to increasing radii r in the outward
direction while o. = —1 indicates the opposite case.
Thus, for given inner and outer metrics o. determine the
global geometry (i.e. , how the inner geometry is stuck to-
gether with the outer one). We find that in some cases
the junction is impossible. Such a situation may arise if
the sign of cr,„, (or o;„) in Eqs. (2.54) following from the
junction equations does not agree with the given
geometry of an outer (inner) region. It follows immedi-
ately from Eqs. (2.42a) and (2.54a) that cr,„,=+ I at
S0 )0 if

III. DECAY OF A METASTABLE STATE
p = 4rr ~ S(g'+1) + e;„p —1 .

8~~
(3.5)

In accordance with the classification of possible situa-
tions arising in the phase transitions (see Sec. I) we start
with the consideration of a single bubble of the new
phase surrounded by the old medium.

In the general case of a first-order phase transition,
the spacetime is described by different metrics inside and
outside the new phase bubble. The same is true also in
the case of the Universe before and after a cosmological
phase transition. The surface of phase separation should
obey the Einstein equations; therefore, one has to match
metrics on this hypersurface. The form of the TL hy-
persurface gives the bubble wall's motion, the investiga-
tion of which we postpone until the next section. In this
section, we consider only the possibility of junction of
metrics on the hypersurface separating the phases. In
such a way, the decay probability of a metastable state
cannot be obtained; however, we can find the range of
parameters of a theory when it should vanish. One has
to consider the junction on both timelike (TL) and space-
like (SL) surfaces of phase separation.

Inserting this back into Eq. (2.59a) one obtains the rela-
tion

(3.6)

The correspondence between g and o's is now easily
seen. It is shown in Table I. (This table corresponds to
the case S0 &0. In the exotic case S0 &0, the signs of
all the o's would be opposite. ) Let us note that in the
pure vacuum case, g is constant and the values of o.;„
and o.,„, remain unchanged. In other words, the o's are
constants of motion.

We see that the case k,„,= + 1, g & —1 can be reduced
to the case k,„,= + 1, g & 1 by exchanging the outer and
the inner regions; i.e., these two cases are formally
equivalent. The same is true for g &0 and g&0 cases
when —1 & g & + 1. However, these cases are physically
different because we do not consider bubbles existing
externally but spontaneously arising bubbles, so e,„, is
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TABLE I. The correspondence between the values of g and
the signs of o's. $=Mp~ (E „t—E;„)/6vrS, and o = —1 if radii
of spheres increase in the outward direction normal to the
shell, while o.= —1 if radii decrease. Schematically shown are
spatial sections of resulting spacetimes at the moment of bub-
ble creation when the shell is at rest.

ou&

S PA TI AL SEC TI ON (scHEMATlc)

Kour =
OUT K~uy 0

-1 4'- C1 JUNC TIPN

IMPP S SIB LE

also the energy of the metastable state before the phase
transition. Thus, the case g & 0 describes spontaneously
arising bubbles with e;„&e,„„while / & 0 does this with
e;„&e,„, correspondingly. Transitions into the (metasta-
ble) state with the higher energy density may be possible
in the closed Universe. Having in mind remarks con-
cerning the physical difference between g &0 and g & 0
cases, we may consider now the formal possibility of
junction and restrict ourselves to the case g& 0 only.

Note that the case of domains created in a source of
spontaneous breaking of a discrete symmetry (e.g. , for
CP domains ) one has just /=0.

As one can see from Table I the junction is not always
possible. Indeed, since o =sgn(c)r/c)q) in the R region
for any coordinate q increasing along the direction from
the center of a bubble [cr = —sgn(c)r/c)q) for q decreas-
ing from the center in the vicinity of a shell], we may
find the o just in the coordinates (3.2). Then we obtain
r'=a (t) and find that in the open and spatially flat
Universes o & 0 is the only possibility (in the R region).
In a closed Universe, both o. &0 (a bubble occupies less
than a half of the Universe) and cr &0 (in the opposite
case) are allowed. For the bubbles nucleated in the R re-
gion (for example, all the bubbles which are nucleated at
rest do appear in the R region) we arrived at the follow-
ing conclusions.

(i) In a closed Universe (k =+1) the junction is possi-
ble at any value of g, so one cannot obtain any con-
straints in such a way. In the open Universe (k = —1)
the junction is possible only if g& 1. It is clear that if
such a metric describes all the spacetime, then the decay
of a metastable state occurs only if g& 1. However,
there may occur situations requiring an additional
analysis which take place if the coordinates (3.2) with
k = —1 do not describe all the spacetime but its part
only. In these coordinates the junction is again impossi-
ble at g & 1; however, this does not mean that the meta-

' 1/2
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180 Mp]R GU~ —10 GeV (3.7)

The constraints on decaying vacuum parameters fol-
lowing from Table I may be useful in studies of any

stable state does not decay. It may be simply that the
new phase bubble is nucleated in such a way that it goes
out of the scope of the coordinate set (3.2). Let us ex-
plain this by considering as an example the junction of
two metrics with pure vacuum equations of state, i.e.,
two de Sitter metrics with different e;„'s but e,„,&0. In
the pure de Sitter world (without bubbles) with e & 0 one
can always choose the coordinate t in such a way that
the section t =const will be open or spatially Aat. How-
ever, one needs two such coordinate sets to cover all of
the manifold. At (&1 the junction in terms of these
coordinates is impossible, while it may be easily shown
that the junction of two de Sitter metrics with e &0 is
possible at any g. It is sufficient to note that such a
metric may be written in the form (3.2) with k = + 1 and
this coordinate set covers all the spacetime.

Let us now set e,„,=0, i.e., the Universe without a
bubble is a Minkowski world which is described by one
coordinate set of the type (3.2) with k =0. We see that
gravitation stabilizes such a vacuum with respect to de-
cay into the states with negative energy density if g & 1.
This particular result was obtained in Ref. 3 using a
completely different approach. It was found that the
probability of decay of a pure vacuum state equals zero
at g & 1 if e,„,=0, in agreement with our constraints fol-
lowing from the junction conditions.

Thus, the conclusion about the stability of a system
with g & 1 may always be possible if the coordinates (3.2)
with k = —1 or 0 describe all the spacetime. Therefore,
we may arrive at such a conclusion, for example, when
the Universe filled with radiation only (in this case the
metric k = —1 is inextendable ).

(ii) In order to obtain from Table I the constraints on
the decay of a metastable state of the Universe in terms
of parameters of the model of quantum field theory one
has yet to find the relation between the times t and ~ in
(3.4). Fortunately, in practically interesting cases this
procedure is unnecessary because of the large difference
between e and 5 /Mp~ at g & 1. Let us consider, for ex-
ample, the supersymmetric SU(5) model with the low
scale of supersymmetry breaking, M &&RGUI ', RGU+
being the radius of confinement during the grand unified
phase [in the case of the SU(5) model RsUi~~
GeV]. In such a theory (as generally in any theory
where the barrier between phases disappears at low tem-
perature) a strong-coupling regime occurs at
T -R GU+ and this is when there appears the possibili-
ty of the phase transitions occurring, energy density be-
ing equal then to e=(o /30)NRoUr, where N is the
total number of effectively massless degree of freedom
[N —200 in the minimal SU(5) model]. The vacuum
contribution dominates in the wall energy density at
least at early stages of the bubble expansion. Thus, we
obtain that in the nonclosed Universe, in such a case the
transition is possible in principle, only if
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stages of the Universe evolution and not only of the very
early ones. In Ref. 33 the constraint g& 1 derived in
Ref. 3 for the particular case e,„,=O was used to show
the stability of the present A=O Universe with respect
to decay into the states with negative energy which arise
in the framework of supergravity models (all the states
arising in the model of Ref. 33 satisfy the condition
g& 1). It should be noted, however, that the Universe
state in fact is not a pure vacuum one. Therefore, using
the results of the present paper we may conclude that
the decay probability of such a state could not equal
zero in a closed Universe (though it should be extremely
small). In the open Universe the state considered in Ref.
33 is undoubtedly stable for it satisfies the condition
g& l.

Of particular interest is the vacuum-dominated case.
Namely, let the Universe at high temperature be radia-
tion dominated and be described by the metric (3.2) with
k = —1. Further let at a certain temperature there be-
gin the epoch of domination of a metastable vacuum and
the parameters of a (field) theory be such that g& 1.
Will there occur a phase transition in this case or not?
Does the answer to this question depend on the global
spacetime structure at the epoch precedigg the vacuum-
dominating state? We would conclude with the follow-

ing remark. A bubble could probably be nucleated by
means of large-scale fluctuations (greater than the Hub-
ble radius) of a scalar field in de Sitter universe. Such a
bubble does not appear in the R region, but in the T re-

gion, so all our constraints are invalid in this case. The
standard calculations of decay probability are also in-
valid for these bubbles. Moreover, if a vacuum bubble
appears with g & 1, this might in general take place only
due to the mentioned large-scale fluctuations and not
due to the subbarrier tunneling.

B. Spacelike hypersurface of junction

1/2
8~ e, (t, )—(7 pg

—1+ p
Pl M Pl

(3.8)

The sign of the o's shows [see Eq. (2.48)] whether ra-
dius r is increasing (cr =+1) or decreasing (o = —1) in
the outer normal direction to the SL hypersurface. In a
T region of spacetime o. =+1 means the expansion and
o. = —1 correspondingly the contraction of the Universe
when the normal is directed from the past to the future.
If we choose the SL hypersurface to be the surface
t=const, then such an interpretation holds in an R re-

Let us proceed now to the consideration of the junc-
tion on the SL hypersurface. The tensor K;~ of the SL
hypersurface may be obtained from K (r)T„given by
Eq. (2.54) by the analytic continuation K;i(q)sL
=iK; j(iq)T„Here w. e consider the isotropic homogene-
ous space with the metric (3.2). Then 6 is given by (3.3)
and Eq. (2.42a) takes the form

1/2
2 8' eb(tb) 2b Pg +

3 M 2 P
Pl

gion also. Thus, in the case o.,o.
b
———1, one has the

transition from the expansion to the contraction or vice
versa. Let us introduce the quantity g' defined as

EB 2M pi
6m(S, )

(3.9)

1/2
8~ ~b kT2

M

' 1/2
8m cT4 kT2

M

4~S
2M Pl

(3.10)

where cT is the radiation energy density, N = TR,
N =s3/4c, s being the coordinate entropy density. For
the inflationary scenario to work it is necessary to have
1V & 10 (Ref. 23). Thus, Eq. (3.8) relates to the amount

From Eq. (3.8) we have o,o b
.= 1 if

~ g ~
& 1, while

o'ao'b= —»f —1&/&1. We would like to note here
some physical situations to which, as we may suppose,
the SL junction could be applied: (i) A phase transition
which proceeds through isolated bubble nucleation, col-
lision, and subsequent thermalization, but which stops
very rapidly (almost instantly); (ii) a materialization of a
new phase inside one (large) bubble; (iii) a phase transi-
tion in the framework of the new inflationary scenario.

In case (i) the matching is carried out across the
Universe, while in cases (ii) and (iii) we are restricted by
the bubble dimensions. In case (ii) we match two phases,
the transition between them being a quantum tunneling
process. Therefore, the applicability of the SL junction
to this case is unclear. Though this junction may have
proved to be rather unphysical we shall nevertheless for-
mally investigate it too. In case (iii) we pay no attention
to the quantum transition process and consider the
whole region of spacetime where the slow classical rol-
ling of the field fluctuations occurs (during which vacu-
um energy is essentially constant) as the region still oc-
cupied by the old phase. We attribute to the transient
layer the region where the system rolls down rapidly to
the minimum of the potential and then oscillates, the ki-
netic energy of the field being transformed into the parti-
cle energy. The duration of both latter stages is of the
order 1/M„, that is much smaller than even dimensions
of the visible part of the Universe. Therefore it is quite
natural to use here the thin-wall formalism.

Consider first case (ii). The phase transition can take
place only when the physical volume of new phase bub-
bles increases. In the expanding Universe the radius of a
bubble increases (in the T region) only if the scale factor
in the inner metric is also rising. So, we conclude that
in this case the old phase decays only if the parameters
of the field theory are chosen in such a way that g & l.

Let us consider now cases (i) and (iii). Our Universe
expands, so we restrict ourselves to the case o.

b
——+1

and o., =+1. Because of homogeneity and isotropy it is
natural to choose the hypersurface of phase separation
as the surface of constant t, where t is the cosmological
time (3.2). In proper coordinates the equation of such a
hypersurface is p~ =1—kp /R and Eq. (3.8) now takes
the form
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of inflation with the temperature after reheating. In gen-
eral the value of k in Eq. (3.10) is not fixed. However,
when the complete metric is O(4) invariant the metric in-
side the new phase bubble is of the open type (k = —1).
In the new inflationary scenario the fluctuation passes
the stage of vacuum expansion. One expects that in this
case the visible part of the Universe is describe by (3.2)
with k = —1. The contributions to S come from the
rapid roiling down to the minimum of potential and
from subsequent particle creation processes. The first
contribution can be easily calculated and equals
S——&2A, yo /3, where go is the equilibrium value of
the scalar field, A. being the quartic coupling constant
entering the potential as —A.y . The second contribu-
tion requires special consideration.

IV. GROWTH OF NEW PHASE BUBBLES

cr;„1+p — e;„(t)p
1/2

—o.,„, 1+p — e,„,(t)p
8~~

1/2

=4~~SO (r)p,

(4. 1)

determines p(r) at any given So (r). Then we have to
consider the second equation (2.42b) as the equation
which determines the S2 (r). Such a shell should have
of course a very special structure unless we do not con-
sider the pure vacuum case [see (2.66)]. At arbitrary S;~
the space does not remain homogeneous and isotropic
and this case will be considered later.

Twice squaring Eq. (4.1) we obtain

We shall consider here the problem of new phase bub-
ble growth at the background of some given outer medi-
um. This surrounding medium can be either the unper-
turbed matter before the phase transition (the "detona-
tion" case) or the reheated matter with the one more
nonsingular boundary (shock wave) expanding in the
"initial" medium (the "defiagration" case). The investi-
gation of these problems with the nonsingular layer of
phase transition has been carried out in Refs. 11 and 12.
We shall treat only the shell where the phase transition
occurs, not considering at all the outgoing shock waves.
In general the process of new phase bubble expansion is
determined essentially by the structure of the tensor S,~.

2 B2p2 1 (4.2a)

where

3SO (r)

[[e,„,+e;„+6ntr(SO )
.] 4e;„E,„—, ]

'~2 (4.2b)

In the pure vacuum case e's and S are constant and the
quantity B ' determines the bubble radius at the rest
moment in the frame of reference connected with the
shell and coincides with the bubble radius at its moment
of materialization. In the vacuum case Eq. (4.2) can be
easily integrated

1p(r)= —coshBr .
B (4.3)

A. New vacuum bubble expansion

First of all let us assume that the state of the inner
medium is given. Let the inner and outer metrics be of
the Friedmann-Robertson-Walker type (3.2). This picks
out a subclass of S;~. Second junction conditions in such
a problem are given by Eqs. (2.42). The first equation
(2.42a), now taking the form

We see that in a proper time the bubble expands ex-
ponentially.

Let us find now the equation of motion of the bubble
in coordinates of inner and outer regions. In both cases
the equation looks identical so we omit the index out (in)
keeping in mind that corresponding quantities carry this
index. The equation to be found is

dR
dt

8' k

a
kp
a

1/2
JG+ (B2 2 1) B2 ~ 1 P
a

k
pa B

a

1/2

(4.4)

where

p=aR
In the case of zero energy density inside (or outside) the
bubble, Eq. (4.4) is readily integrated to give [cf. (2.82)]

p' —(t t, )'=B—

t

case, the shell velocity does not exceed that of light.
For simplicity let us consider Eq. (4.4) in the particu-

lar case of a spatially flat world, i.e. , let us put in Eq.
(4.4) k =0 (which is a good approximation at any k if
the bubble size is much less than dimensions of the
Universe):

where
3S'

B —1 0

e+6vra(SO ).
This clarifies the fact that the exponential growth (4.3) is
an effect of the proper-time parametrization. In any

1

pB
8~v e

3 B 2

dR 1 8m~ e
Q 3

1/2

1/2

1— 1

B2p2

1/2

(4.6)
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d& out 1 Supe1—
dtoUt p oo a 3

1/2

(4.7)

Note that in the vacuum case, contrary to the thermal
one, only the coordinate velocity of the shell does not
tend to the velocity of light. The proper velocity (4.2)
does tend to the velocity of light (p~ ao ), but never be-
ing equal to it.

In GUT's with M~ ((Mp] the velocity (4.7) only
slightly differs from the velocity of light. This, however,
may not be so if the wall energy contribution is essential,

I

A light radial geodesic would be described in the coordi-
nates (3.2) by the equation dR/dt= 1/a. The bubble
shell (4.6) will tend to move along the light geodesic
from the very beginning only in the case 1/B =—0 or,
equivalently, So ~0. [This does not mean, however,
that the shell propagating along the light geodesic is a
nonsingular one (see Sec. VI).] Moreover, the coordinate
velocity of the shell during expansion does not even tend
to the coordinate velocity of light. This is the conse-
quence of two factors: (1) The shell velocity in the coor-
dinate space does not tend to velocity of light due to
medium thermal properties (see, e.g. , Sec. IVB); (2) the
asymptotical shell velocity in the coordinate space differs
from velocity of light due to the Hubble expansion of
space. This statement is valid at any equation of state
of matter, so in the particular case of a pure vacuum we
have

which may take place, for example, in supersymmetric
GUT's. Moreover, dR, „,/dt, „,~0 if /~ 1, i.e., the
coordinate volume of such a bubble does not increase.

It is important to know the value of the asymptotic
velocity of the shell in estimates of the number density
of produced magnetic monopoles, in studies of the per-
colation problem in phase transitions, ' etc. All the
possible Penrose diagrams for the pure vacuum bubbles
are shown in Fig. 1.

B. Vacuum burning

Let us turn now to the more general case of the arbi-
trary S;~. Now the metric inside the bubble is unknown.
Since we are primarily interested in the matter content
inside the bubble (but not in the inner metric) it is ap-
propriate to rewrite the second junction equations in the
form (2.31). Now we shall sacrifice the generality and
consider the case when both inside and outside the bub-
ble the energy-momentum tensor of a medium T„ is
that of a perfect fluid (2.85). Thus, all possible entropy
production (and all particle production in general) we re-
late with the transient layer and attribute it to the shell.

Consider first the case when the metric outside the
bubble is the pure vacuum one. Then (K, ')+ is deter-
mined by expressions (B7) and (Bl 1) with e+p =0, and
Eqs. (2.29) and (2.31) take the form

p —8mce, „~/3 (p 2+1 —m8. air, „p /3)'

(p +1—8mwe, „~ /3)' p

2

+2vrxSO (4S2 So ) =[T—„"]=—p,„t+
1 —0

(4.8)

S + (S —S )= —[T "]=—(e.+p), (4.9)
p 1 —LL

e and p being the proper energy and pressure, respective-
ly, and u is the value of three-velocity of the inner medi-
um relative to the shell.

At So =0 these equations are considerably simplified.
This is just the case of "vacuum burning. " The equa-
tion of motion of the shell at So =0 may be rewritten as

(e,„, e;„)(e,„,+p;„)p +—4(Sz') f
o „t(f+p )

2S, '[(e.„,—e;„)+(e.„,+p,„)]p

p'(p;„+ e.„,) 4(S,')'f-
p (e,„,—e;„)—4(S2 ) f

(4.10)

(4.11)

Consider the case when one may neglect the effects of
gravitation. Then f =1 and cr,„,=+1. Take in these
equations the limit p~ ~. In this limiting case, the

shell velocity tends to the velocity of light (p ~ co ),
while inner medium parameters lie on the detonation
adiabat e,„u —p,„=e,„,(1+u) if (Sz /p)~0. If
(Sz /p) ~const&0, then the motion of the shell with the
constant velocity is possible. Finally, at (Sz /p)~ oo the
shell velocity tends to the velocity of light again, but
u ~1; i.e., in this latter case, at p~ oo there is a "con-
stant" which is not the velocity of the inner medium
with respect to the shell but the medium velocity with
respect to the bubble center. In particular, a solution is
possible with the homogeneous inner medium resting
with respect to the bubble center. It follows also from
Eq. (4.10) that in the limit p~ oo one has e;„&2e,„,+p;„
if (Sz /p)~0, while e;„(2e,„,+p;„ if (Sz /p)~ oo, but
t;„)e,„, always.

Independent of the value of S 2, the total metastable
vacuum energy is processed into the inner medium ener-
gy. It is obviously the direct consequence of So =0 so
that the energy release in the phase transition cannot be
attributed to the wall kinetic energy as in the pure vacu-
um case. On the magnitude of S 2 there depends the ve-
locity of the shell expansion only, i.e., the rate of pro-
cessing of the vacuum energy into the inner medium
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FIG. 1. Construction of Penrose diagrams for true vacuum bubbles in false vacuum surroundings. (a) From left to right: Pen-
rose diagrams for de Sitter, Minkowski, and anti —de Sitter spacetimes. Null lines are at +45 ~ (b) Distorted Penrose diagrams for
de Sitter spacetimes with different values of e. The larger angle a corresponds to the larger value of e, a being equal to zero for
Minkowski spacetime and a~45 for e~ ao. Null lines are at +45'. (c) Distorted Penrose diagrams for anti —de Sitter spacetimes
with different values of e &0. The larger angle a corresponds to the larger absolute value of e, a approaching 45 when e~O and
a~90' when

~

e
~

~oo. The lines I and p=O are parallel. Null lines are at +45'. Note that there is no continuous transition to
the limiting case of the Penrose diagram for @=0. (d) Matching of two de Sitter spacetimes with different values of positive vacu-
um energy density e for three values of g: g & 1, g= 1, and 0 & g & 1, respectively. The world line of a shell with surface energy den-

sity S is shown by the double line, while dotted lines denote apparent horizons of the inner and outer de Sitter spacetimes.
g=(e s

—e
I; )/6mirS . (e) Matching of outer de Sitter spacetime (e,„s & 0) with inner Minkowski spacetime (e;„=0) for three values

of g: g& 1, /=1, and 0&/& 1, respectively. The world line of a shell is shown by a double line, while the dotted lines represent
apparent horizons of the outer de Sitter spacetime. (fl Matching of the outer de Sitter spacetime (e,„,&0) with the inner anti —de
Sitter spacetime (e;„&0) for three values of g: (& 1, (=1, and 0&(& l. (g) Matching of the outer Minkowski (e,„s=O) or anti —de

Sitter (e,„s & 0) spacetime with the inner anti —de Sitter spacetime (e;„&e,„s). In this case only g & 1 is possible.
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one.
The quantity Sp gives the amount of energy con-

tained in the transient layer between two phases under
consideration. Therefore, though formally speaking Sp
may be equal to zero if, in the limiting case of an
infinitely thin transient layer, Tp has only finite discon-
tinuity and does not possess any 6-functional singulari-
ties, nevertheless in the case of a phase transition the
value of Sp may prove not to vanish.

Let us now proceed to the consideration of bubbles
with Sp &0. Let us find the conditions at which one
may say that there takes place the vacuum-burning
phenomenon.

Particles created during the bubble expansion can
form bound states with the wall so that So =So (p)
and Sp is growing together with the rise of p. We shall
neglect this effect and shall take that Sp ——const. The
particle production results in Sz ——Sp +S z, where the
quantity S 2 is connected with the entropy source (2.84).
Generally speaking, S z is a complicated function of the
state of a medium and of the shell motion. For example,
S z could contain terms proportional to p, p, p, etc.
Since we are interested here in the question of whether
or not a new phase bubble is empty we shall investigate
in what follows the bubble motion taking S z ——const as
a model example.

One can easily integrate Eq. (4.9) assuming that all
quantities except for p(r) are constant:

e,„, ';„+—(~+p);„/(1 —u')
(I+p )' /p=

3Sp +2S
—(3SO +2S2 )/S() (4.12)

C' being the integration constant. C'&0 corresponds to
the nonzero Schwarzschild mass in the vacuum case [see
(5.3) below], so initial conditions for a spontaneously nu-
cleated bubble require C'=0. The critical radius of a
bubble nucleated in a thermostat (where a bubble may be
nucleated with a nonvanishing mass) is determined by
the conditions of equilibrium of a bubble in a medium:
p=O, p=O. In this case one obtains from Eq. (4.9) that
po

——2S2 /(p;„—p,„,), which is the well-known formula
of thermodynamics. In any case, at large enough p the
specific value of C' becomes nonessential. From Eqs.
(4.12) and (4.8) at p~ ao we then obtain

Clearly,

Ep„,/Eg;„——4p e,„,/3E„;„—1. (4.14)

We shall say that a vacuum is burning if E~,„,/Ez;„~ l.
From Eqs. (4.14) and (4.12) we find

Ep„,/Eg;„——[2e,„,S ~ (u —1)

+3uS0 E;„]/3SO u(e,„,—e;„) . (4.15)

Using the relation between e;„and u following from Eq.
(4.13) with the condition that the inner medium has the
equation of state p;„=Vs e;„,Vs being sound velocity,
we Anally obtain

Ep„, /Eg;„=2S2 (1—u)(u —Vs )/3SO u(1+ Vs ) .

(4.16)

We see that E „,/E&;„vanishes at u =1 or at u = Vs
and takes its maximum at u = Vs. Thus, at Sp ——const
and S z ——const we obtain

Ep~~t/Egi~ S z /Sp

What could be the value of this ratio?
It seems to us rather plausible that it could be of order

1 in realistic models of field theory. First of all it seems
that Sp is determined by the value of a scalar coupling
constant A. while Sz is determined by the value of a
maximal coupling constant of a model (gauge coupling
constant g in GUT's). The most interesting from a
cosmological viewpoint are models with strong super-
cooling of a metastable phase which take place just in
GUT's with A, -g (see, e.g. , Ref. 27). In addition, in
GUT phase transitions with supercooling, the transitions
occur at temperatures of order of inverse confinement
radius in a metastable phase where all the couplings in-
crease.

Now let the outer medium not be a pure vacuum as
well, (e+p),„,=(TS),„,. If one can ignore gravity then
the corresponding equations of motion are easily ob-
tained by setting x=0 in (4.8) and (4.9) and taking for
T;" the expressions

[Z n] (e+p)u
1 —u in

—(in~out),

[T„"]=(eu +p)/(1 —u ) ~;„—(in~out) .

um energy release absorbed by the inner medium while
Eq;„ is the kinetic energy of the bubble walls,

2S 0(1+ ~ 2) 1/2

2S p [e,„~+p;„—u (&,„,—&;„)]

=(3SO +2S 2 )u(@+p);„. (4.13)

In this case as well as in the vacuum case, equations of
motion allow the shell motion with p~ ap at p~ ao if

v ~[(e+p);„—(E+p),„,]/[(e+p), „+(e+p),„,], (4.17)

One can easily see from Eq. (4.13) that E;„- E „g at any
arbitrarily small value of S z provided u -S z /Sp . We
would note that the magnitude of e;„may not serve as an
adequate criterion in the question of whether or not the
vacuum is burning. In order to find such a criterion let
us proceed as follows. Denote by Ep t the part of vacu-

where U =U '/U is the three-velocity of the outer medi-
um. We are discussing here the cases Sp ~const,
S2 -const. However, besides solution (4.17) there is at
(E+p),„,&0 the possibility of the shell motion with con-
stant velocity (p-const) at p~ao. At large enough p,
such a shell takes the regime of a detonation wave whose
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behavior is well known (see, e.g. , Refs. 19 and 12). We
see that the singular shell may indeed expand as a de-
tonation wave and have learned at what conditions this
takes place. At small values of (e+p ),„, the shell veloci-
ty tends to the constant value close to the velocity of
light (but not equal to it) and the inner medium charac-
teristics u, e;„,p;„obey Eq. (4.11). This regime is rather
remarkable because in this case there takes place the to-
tal processing of vacuum energy into the medium energy
independently of the magnitudes of So and S z (because
of constancy p, the energy released cannot lead to the in-
crease of a shell kinetic energy at large p).

Thus, using the energy-momentum-conservation law
we have shown that the metastable vacuum-burning
phenomenon is possible in principle. In order to calcu-
late the magnitude of the effect in a realistic field theory
model one has to investigate the process of particle pro-
duction by the classical field with varying in time field
gradient (i.e., by expanding the bubble wall). The num-
ber of particles produced and consequently the magni-
tude of S z should depend, in particular, on how the
wall moves. The S z in turn comes into the equation of
motion of the shell (2.26).

So, completing Eq. (2.26) with the calculation of S,~ in

the framework of a field theory one may obtain a closed
system of equations. We did not carry out this program
in full. Suppose nevertheless that the vacuum bubble ex-
pansion in realistic grand unified models is indeed simi-
lar to the combustion process. We may expect at least
that if the initial temperature inside a bubble is high
enough, then this temperature will be maintained during
the expansion. The vacuum burning could lead to some
interesting cosmological consequences discussed in part
in Ref. 7.

V. OLD PHASE REMNANTS AND DOMAINS

Up to now we considered an evolution of a new phase
bubble immersed in the old phase region. Such a pro-
cess takes place at the very beginning of the phase tran-
sition. The formal description of an intermediate stage
of the phase transition would be extremely complicated,
so we omit this stage and consider the final stage of the
transition. Suppose that at a certain moment the new
phase (or one of the new phases if a domain structure
takes place) starts percolating. Moreover, suppose that
the old phase does not percolate starting from some mo-
ment; i.e., there exists an old phase remnant of finite
maximal size. Such a moment has definitively existed
during most cosmological phase transitions (see the dis-
cussion in Sec. I).

A shape of a remnant is extremely angular just after
formation. It is reminiscent of an amoeba. However,
after the time has passed at least a part of these rem-
nants will take a spherical form (for example, due to sur-
face tension effects or dissipation) and we may think of
such remnants of old phase as spherical bubbles.

Such a bubble, however, differs essentially from a
spontaneously created bubble of the new phase. Name-
ly, an old phase remnant can have a nonzero total mass.
This mass, of course, shows itself not at once but after

settling the appropriate boundary conditions at
"infinity" (during this process a part of energy is carried
away by gravitational and electromagnetic radiation).
Thus, the case of old phase remnant is reduced to the
case of a spherically symmetric bubble with the
Schwarzschild metric as an exterior.

A. General equations

+4rrp So;„(p +1—8m.lre, ~ /3)'

8~2gS 2p3 (5.1)

Relation (5.1) is also the equation of motion of the shell.
It can be solved with respect to p, but the resulting rela-
tion is too cumbersome in the case of a charged shell.
So we write down the result for the case g =0 only:

p Mp] 6mS

m+
16m. S p

(5.2)

8 being defined by Eq. (4.2b). Both forms of the equa-
tion of motion (5.1) and (5.2) prove to be useful.

It is easy to see from Eq. (5.2) that the junction super-
surface is O(4) invariant in imaginary time at m =0, the
invariance being lost at m&0. So, calculating the proba-
bility of spontaneous creation of a ring of new vacuum
with an old vacuum remnant at the center of the ring,
the remnant having a nonzero mass, one has to take into
account that the Euclidean solution to the coupled field
equations may be O(3) invariant at most. Namely, the
Euclidean phase separation surface is now a torus. This
differs from the case of new vacuum bubble formation
for which we have thus proved the O(4) invariance. In
Ref. 3, O(4) invariance for the new vacuum bubble case
has been conjectured and essentially used in calculations
of tunneling probability.

Let us consider now the equations of motion in the
form (5.1). It is easy to understand the meaning of all
the terms in the right-hand side of Eq. (5.1). The first
term describes a potential energy of a charged shell; the
second one is a difference between old and new vacuum
energy densities; the third is a kinetic energy of the shell;
the fourth is an energy of gravitational self-interaction of
the shell.

For generality, let us consider the case when an exter-
nal vacuum has also nonzero energy density and a rem-
nant itself carries electric or magnetic charge. Then a
metric both inside and outside the bubble has the form
(2.76), where we have inside the bubble f,„=1—8~~@;~ /3, while outside the bubble

f«, ——1 —8vrIre«~ /3 —21rm/p+g K/p .

The motion of bubble walls under consideration is de-
scribed just by Eq. (2.80). We find, solving Eq. (2.80)
with respect to m,

g 4~
m = + (e';„—e,„,)p

2p
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B. Static shells

Let us show that a charged shell has a point of stable
equilibrium.

Theorem. The shell has an equilibrium point if the
equation

c}m(p,p)
Bp p=O

=0 (5.3)

has a solution at some value of p, say po. For
c)m/c)p

~

. O&0 the equilibrium state is stable if thep=O
function m (p, p =0) takes a minimum value at the point
po, and for c)m/c}p

~

. O&0 the equilibrium state isp=O
stable if this function takes a maximum value at the
point po.

Proof. A point is an equilibrium point for a shell if
the conditions p =0 and p =0 are satisfied simultaneous-
ly. Furthermore,

dm . Bm 20m ..+2 pd'T Bp Qp
(5.4)

The mass m is the integral of motion, so we have, for
any p&0,

Bm 28m ..+2 p=0 (5.5}

and, hence, at the point p=O we have dm/Op=0. The
point p =0 possesses the same property due to the con-
tinuity of the equations of motion. Thus, the shell equi-
librium point is the solution to Eq. (5.3). The equilibri-
um state at the point is stable if at p & po one has p &0,
while at p &po one has p &0. It is easy to see from Eq.
(5.5) that at c}m/c)p

~

.
o &0 the equilibrium state at thep=O

point po is stable if at this point the function m(p, p=0)
takes a minimum while at c}m /c)p

~

. 0 &0 the equilibri-p=O
um is stable if this function takes a maximum, respec-
tively. In the particular case of Eq. (5.1) one has
c}m /c)p

~

. 0&0 if cr;„&0 and elm /c)p
~

. o &0 if
o'in & 0

Let us consider now as a simple example a charged
shell in the particular case when one may neglect S. It
is easy to find the radius of a stable configuration,

po =g /8n(e;„e, „,). , —

and its mass

(5.6)

2g

3po
(5.7)

At g »1 the radius of the stable configuration is much
larger than its Compton length 1/m, so our treatment of
the configuration as a classical one is quite appropriate.
One example of such a configuration is well known; it is
a magnetic monopole.

Consider the field y', i =1,2, 3 transforming as a trip-
let with respect to the group SU(2}. Let the &p' field
direction in isotropic space coincide with the direction
of the radius in the configurational space and the quanti-
ty

~

y'
~

tend to its vacuum-averaged value at p~ m.
The field y' in the center of such a configuration equals

C. Global geometry of spacetime

Let us introduce the variable g, similarly to Eq. (3.4),
and the new variable g as

2g2 Mp)

2p 8~'S'p' (5.8)

In these variables the signs of o.;„and cr,„, (and therefore
the global spacetime geometry) are completely deter-
mined. The relation between o and the variables rj, g is
shown in Table II. [We can derive the equation analo-
gous to Eq. (3.6), which in this case takes the form
cr,„ t g'+rl+ 1

~

cr,„,
~

1——g —rl
~

=2.] Generally speak-
ing, the signs of o. may change at the shell motion; how-
ever, this may occur in T regions of spacetime only.
Therefore, the shell classification in accordance with
signs of cr is unequivocal only at the moment when the
shell intersects an R region; however, it is sufficient for
the construction of the global geometry.

In case A (see Table II) one has o.,„,&0 and the shell
crosses the R+ region. In such a case the shell forms a
black hole if initial conditions allow the shell to collapse.
The collapse with the formation of a charged black hole
is possible in the case e,„,=0 only if m &gMP&. A neu-
tral shell in the case e,„,=O (i.e., in the case of pure
Schwarzschild outer metric) is collapsing always at the
final stage of its evolution.

Suppose now that in the course of phase transition a
magnetically charged remnant of the old vacuum was
formed and that it has a mass large enough to collapse
and to form a black hole. Such a black hole will then
evaporate. However, the evaporation of charged black

zero. Therefore, e(p~ao)=0 and e(0)-M„. The elec-
tromagnetic field at large distances from the center
reproduces the field of a magnetic monopole with the
charge g =2m/e, where e is unit electric charge. We
may now treat the monopole problem in the thin-wall
approximation; i.e., we may regard that all of the field y'
variation is concentrated near some value of the radius
po. Then Eqs. (5.6) and (5.7) describe the magnetic
monopole in the thin-wall approximation and one ob-
tains, for the monopole mass, mM-M /e, where n is
the fine-structure constant.

In principle, one can construct other charged
configurations also; for example, islands of the
SU(4) X U(1) phase in the SU(3) X SU(2) X U(1)-
svmmetrical vacuum. Such a remnant may carry a
charge with respect to the group SU(2)L, since genera-
tors corresponding to weak intermediate bosons W's are
broken in the SU(4)XU(1) vacuum while they are not
broken in the SU(3) X SU(2) X U(1) vacuum.

If the shell radius at its rest moment does not coincide
with po, which is the solution of Eq. (5.3), but differs
from it slightly then the shell will oscillate around that
state. At other initial conditions the shell may proceed
either to a regime of unrestricted expansion or to a re-
gime of collapse. During a phase transition there may
arise, of course, rather different conditions for remnants.
Let us proceed now to the study of the relation between
initial conditions and the geometry of spacetime.
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holes differs from that of neutral black holes; namely,
the temperature of charged black holes differs from that
of neutral blackholes: the temperature of a charged
black hole increases at first, achieves its maximum value,
and then begins to decrease. The evaporation stops
when the mass of the hole decreases to the value
m =gMp&. Thus, if the monopole has not evaporated at
the maximal heating of the hole (for this it is sufficient
that the temperature of the maximal heating is less than
the monopole mass) then such an old vacuum remnant
at the final stage of evaporation will represent not the
usual magnetic monopole but the magnetically charged
black hole with the mass

m =2+Mp)/e . (5.9)

m &M, —=Mp, /3+8~rg, „, , (5.10)

then the outer metric has no horizons. A shell with
such a mass will expand infinitely. At rn &M, the outer
metric has two horizons, an event horizon at p =pH and
a cosmological horizon at p=p, &pH (Ref. 39). Possible
trajectories of the shells in the Schwarzschild —de Sitter
metric in the case m &M, are shown in Fig. 2. Shells 1

and 2 cross the R + region, while shells 3 and 4 cross the
R region.

In general, the mass spectrum starts from zero for
both black holes and wormholes. It may be shown,
however, that the mass of any shell crossing the R+ re-
gion is bounded from above if g & 1.

Indeed, let the shell cross the R+ region; then w' e
have il(p) & 1 —g (see Table II). In the R region p & pH,
so for any p in the R region we have

FICr. 2. Penrose diagram for a Schwarzschild —de Sitter
geotnetry with m &Mp, '/3+8m. e,„,. The straight lines at +45'
are either a black-hole horizon (pH ) or a cosmological horizon

(p, ). The curvy lines p=O denote singularities. The double
curves represent all possible paths of shells, the
Schwarzschild —de Sitter geometry being the part of the space-
time external to the shell. Shell 1 forms a black hole, while
shell 2 expands infinitely. Shells 3 and 4 are crossing the R
region and form the wormholes (viewing from the R+ region).

The problem of the stability of such a black hole re-
quires special consideration. It might be thought that it
will prove to be unstable, decaying on the usual black
hole and magnetic monopole.

In cases 8 and C the shell crosses the R region.
Any shell crossing the R region forms a wormhole.

Let us consider now neutral remnants of the old vacu-
um in more detail. If such a remnant has a mass obey-
ing the condition

rl(pH ) & tl(p) & 1 —g. Furthermore, we have in the case
of the Schwarzschild —de Sitter metric pH ) 2~m; i.e., a
shell may cross the R+ region only if il(2am ) & 1 —g or
equivalently

m & m, /i/ I —g, m,:—Mpi /8mS . (5.1 1)

Thus, a black-hole mass is bounded by the value
m, —(Mp, /MG ) Mp, if a wall energy dominates
(

~ g ~
& 1) and by the value (Mpi/MG ) Mpi if vacuum en-

ergy dominates (
~ g ~

&&1), MG being the unification
mass scale. For GUT black holes with MG —10' GeV
we obtain m & 10 GeV in the case of vacuum-energy
domination and m & 10 GeV in the case of wall-energy
domination. Black holes with masses in this range have
already evaporated long ago (until now only black holes
with masses larger or equal to 10 GeV could survive).

For phase transitions with breaking of the Weinberg-
Salam electroweak gauge group, the shell energy does
not dominate. Consequently, the maximum mass of the
black holes created during this phase transition is of the
order 10 GeV —10 Mc). These are very unusual

53 —4

black holes. Indeed, recall that black holes originating
from collapsing stars are in any case heavier than
1,2MO.

It may be shown, similarly to (5.11), that a wormhole
mass of type B is also bounded at g & —1 by the value

m &m, /i/ —1 —g . (5.12)

Note also that for the shell having a turning point (p =())
we may give the following criterion: if the shell radius
at the turning point obeys the inequality

—1/2
Mp) g2 e;„

P&f'c ~ Pc= 4 2+ 67T pf
(5.13)

then an object is formed which collapses towards a black
hole; otherwise (p &p, ) we are dealing with a wormhole.

D. New phase bubble with the remnant inside

. 2+, 8~~ 2 2~m

P

1/2

1/2

o oui P + 1 —
2 4rrapS . (5.14)——

aln

In this section we will consider a new phase bubble
with a remnant (BWR) of the old phase inside it; i.e., we
consider a configuration which consists of two concen-
tric shells. The metric inside the inner shell is the de
Sitter metric; in between the first and the second shells it
is of the Schwarzschild —de Sitter type with m&0 (but
may be with @=0) and the outer metric coincides with
the inner metric, so we denote its parameters by the sub-
script in also. The values of o for the first (inner) shell
(say cr"') can be directly determined using the previously
constructed classification (see Table II, for example). To
determine o's for the second (outer) shell let us write the
junction equation for it:
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TABLE II ~ The correspondence between the values of
(g+ g) and the signs of o's; (=Mpi (e t e' )/6~S
g=mMP& /8m S p . Schematically shown are spatial sections
of resulting spacetimes at the moment when the shell is at rest.

SPATiAL SECTi ON

3y=x 1 2(1 x 2)1/2
fA

/

(5.19)

y & 0 only).
(ii) Let A &0 (i.e., 1+/&0). The o.;„ is not changed

now and Eq. (5.17) takes the form

A (~ ))i

s -1(t i&\

&UT (SCMEMATI C ) The function y =y (x) given by (5.19) is shown in the re-
gion y &0 of Fig. 3. The sign of o.,„, is changed at the
point x as above.

It is convenient to consider A and x as the input pa-
rameters when constructing the overall classification.
However, the situations with 1+/=0 or a;„~eo should
be described separately. We have for m(p) in these de-
generate cases, (1) 1+/=0, then o,„, changes the sign at
x =x and

c n ~ )C-S =x (1—x )'
4+So;„

(2) a;„=~, then

(5.20)

4~S
1+4 3+ 2

2p~
(5.21)

We see that the substitutions

(2) —(&)
Oin = ~out ~

(2) —(2)Oout= O in (5.15)

bring this equation to the previously constructed
classification. Such a configuration describes the spon-
taneously created BWR if the shells have the rest points.

In view of the spontaneous creation of a BWR, the
shells possessing the rest points are of particular interest,
so we investigate them in more detail. Taking into ac-
count Eq. (5.15), it is clear that it is sufficient to investi-
gate the inner shell only.

To begin, it is convenient to represent the dependence
of the mass m of the shell on p at the moment when
p=0. In terms of the variables

m x =p/ain
Sn. (1+$)ITS a;„'

(5.16)
A—:(1+$)2m.Sa;„/Mpi

[g is determined by (3.4)] Eq. (5.1) takes the form

x (m =0)= 1

1+3 (5.22)

It is easy to see that p determined by this equation coin-

and o.,„, changes the sign at p =p, where
p =Mpi /4mS. In both cases, o;„=+1.

The remarkable property of the function m(p, p=0) is
as follows: there exist two shells (if any) with different
values of p at the rest point for the given value of m [the
only exclusions are the extremum points of m(p) and
the case 1+/&0, a;„=ac]. Note that two shells with
m =0 possess x =0 and

y =x' — '" x'(1 —x')'" (5.17)

We will distinguish now two cases A & 0 and A & 0.
(i) Let A & 0 (i.e., 1 +g & 0). Then o;„ is changed

along the curve y(x) (see Fig. 3). Equation (5.17) now
takes the form

(5.17')

The sign of o.;„ is changed at the point x = 1 and the sign
of cr,„, is changed on the upper branch of the curve y (x)
at the point x

1

1+4[A /(1+()]' (5.18)

The function y =y(x) is shown in Fig. 3 (if A &0, we
are dealing with the part of this figure corresponding to

FIG. 3. Dependence of the mass of the shell on the shell ra-
dius p at the moment of rest. The variables are
y = —mM p~ /8' ( 1+g )S a;„and x =p /a;„, where
g=(E „t—E;„)Mp~'/6mS', a;„'=8vre;„/3Mp~' The curves .are
parametrized by the values of

~

A ~, where
A =(1+/)2mSa;„/Mp~'. The upper part of each curve (y &0)
corresponds to values of A &0, while the lower part to A &0.
Curves corresponding to larger values of

~

A
~

are inside those
corresponding to smaller values of

~

A
~

. At the point
x = [1+4[A/(1+/)] J

' the quantity ~,„, changes sign,
while o.;„changes sign at the point x =1. For a given value of
m (y) there exist two shells with different radii.
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cides with the radius B ' given by Eq. (4.2b) for the
empty new phase bubble.

Now we are able to construct the configuration con-
sisting of two concentric shells. The procedure is as fol-
lows. First we put the first (inner) shell at any point on
the curve y(x) [or on the curves given by (5.20) and
(5.21)] and obtain the values of o'" directly from Fig. 3.
Then we have to set the second shell at any of two
points with the same values of y (i.e., the same values of
m). The same procedure has to be used for obtaining
o' ': we first get the o ' 's using y(x) (see Fig. 3) and
then obtain o' ' by the rules (5.19).

The shells lying to the left from the extremum point of
y(x) contract, while the ones to the right expand. When
both shells are at the same point on the curve y (x) it
does not mean that they coincide in the configurational
space. In fact, the shells turn up to lie on different sides
of the horizon. The whole configuration contains from
the very beginning either the cosmological or the black-
hole horizon inbetween two shells (and describes mostly
the spontaneously created wormholes), the only excep-
tion is the case g & —1 when we put the first shell in the
region where o.

jn (7pot +1, and the second shell lies
at the point with o ;'„'=o,'„', = —1 on the curve y(x).
Then the values o.,'„'=o.p'„', =+1 will correspond to the
second shell and the whole configuration does not con-
tain initially any horizons. In the course of evolution
the inner shell will collapse to form the black hole. We
find from Fig. 3 that the radius of the outer shell in the
case of the bubble with the remnant but without any
horizon (the black-hole case) is larger than B ' and the
mass of the resulting black hole is constrained by

(5.20')

A. Junction conditions

Let a null hypersurface be determined by Eq. (2.1),
F(y")=0. The normal vector to this surface is given as
before by the condition

dF =F dy =0, N =F (6.1)

However, now Eq. (2.1) should describe the null surface,
so one cannot choose the normal vector as a unit vector
one, because

F F' =0 . (6.2)

Thus, the formalism described in Sec. II is useless here;
in particular, one cannot construct the Gaussian coordi-
nates. Instead, let us choose one of the coordinates as
follows:

u =F(y"), (6.3)

so in these coordinates the surface equation is simply
u =0 and the normal vector has the following covariant
components:

N„=1, N; =0, i =1,2, 3 . (6.4)

From condition (6.2) g ~N Np ——0 it follows that g""=0.
Insofar as

functional singularities in the energy-momentum tensor. )

Such scalar field discontinuities propagate along charac-
teristic surfaces. In other words, the boundaries of the
region move with the velocity of light. It is interesting,
therefore, to study null shells and junction conditions for
metric tensor and its derivatives on lightlike hypersur-
faces.

NP=g P", (6.5)

The mass of any configuration is obviously bounded
from above by the value corresponding to the maximum
of y(x). The consideration and the calculation of decay
probabilities onto such configurations leading to the
creation of black holes and wormholes will be carried
out in our forthcoming papers.

VI. NULL SHELLS

Until now we have considered only timelike and
spacelike shells. As it was shown, timelike shells de-
scribe the motion of walls of bubbles nucleated in the
course of first-order phase transitions when there is a
barrier between different phases in the effective potential.
The spontaneous creation of a bubble is described by a
spacelike shell. Let us consider now the case when the
effective potential has one minimum only, but in a cer-
tain region of space the magnitude of free energy of a
system is for some reason larger than on average. The
state of the system in this region is obviously a non-
equilibrium one. This is just the case, for example, in
the chaotic inflationary-universe scenario. Suppose
that gradients of the scalar field nearby to boundaries of
this nonequilibrium region are large enough so that one
may treat the scalar field distribution approximately as a
step function. (There would be correspondingly 5-

we have N"=0. This means that the normal vector to
the surface u =—const lies just on this surface. We may
choose one of three coordinate curves on the surface
(denoted by u) in such a way that the tangential vector
L~—= (O, du, 0, 0) is proportional to the normal vector N~

[Eq. (6.5)]. In this frame of reference we obtain g "=0,
g "=0. Furthermore, O=N N~g ~

——(g'") g„, so, in ad-
dition, g„=0. We have, therefore,

g
VA

ap
0

gQU 0 0
gv2 gv3

g2U

g
' a'~

i j=1,2. (6.6)

guu guv gg2 gg3

0 0 0gUu
ap

2 0
g3Q 0

(6.7)

with g"'g„„=1.
By definition, the metric tensor may be

The tensor g p being inverse to g p has the following
structure:
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nondiff'erentiable only in the u direction. That is, the
Ricci tensor may contain a 6 function only in the terms
B„I„„"and B„I &". The first one is

O'I &—
(6.8)

Ou

8~~
3

r ( Eo~t —Ei~ ) = —417K&' S (6.16)

Let e;„)e,„„then S )0. Supposing that the shell under
consideration is due to the scalar field, one obtains

ll QU (6.9)

and the second, in view of Eqs. (6.6) and (6.7), may con-
tain 5 functions only due to the I „„"[see (2.11)):

2du )0
—5

(6.17)

In other words, only the G„„component contains a 5
function; so extracting the 0 /Bu term only, we have,
using Eqs. (6.6) and (6.7),

G„„=R„„=—(ln+deta;& ) „„. (6.10)

Integrating the uu component of the Einstein equation,
we obtain the desired junction equation

[(ln+deta;, ) „]= —8mlrS„„

All other components of the tensor

S„=lim T„du
5~0 —5

(6.1 1)

are equal to zero. We see that the lightlike shells have
the specific structure of the surface energy-momentum
tensor S ~ with the S„'=g'"S„„being the only nonzero
component.

Let us find now the connection of the S ~ to the (pos-
sible) discontinuities of T„[i.e. , the analogue of Eqs.
(2.29) and (2.30) for a lightlike shell]. Integrating the
T~ continuity equation (2.7), we obtain, finally,

[T.']= [T "]=o (6.12a)

(g„„Qdeta;JS„'), +[T„"]=0.
g„„+deta;,

(6.12b)

B. Spherical shells

The spherical symmetry means that the spacetime V
is the product V= V S, where S is a two-
dimensional sphere, so the interval is

ds =2H(u, v)du dv r(u, v)dQ—

and the junction equation (6.11) takes the form

[J,Q] = —471K)'S„„

(6.13)

(6.14)

Multiplying Eq. (6.14) by g""r, we obtain the invariant
form of the junction equation:

[b, ]= 4vrarS„'r, =——4ml~S . (6.15)

Note that- the shape of the phase separation surface is
now completely determined. Given the metrics inside
and outside the bubble, Eq. (6.15) gives the junction.

Let us consider in more detail the junction of two de
Sitter metrics with different values of vacuum energy
densities. It follows from Eq. (6.15) that

Therefore, r, /H)0. Recall that we have chosen the
coordinates v and u in such a way that the tangential
vector to the v-coordinate line is directed along the shell
and is future directed while the tangential vector to the
u-coordinate line is directed from the in region to the
out region.

Let the shell be moving in such a way that the coordi-
nate space diminishes. The physical size of the shell (its
radius) will then decrease if the motion takes place in the
R+ region or in the T region, while it will increase if
the motion takes place in the T+ region or in the R
region. Then the u-coordinate line is future directed and
0 &0. Hence, r, &0, so that the radius of the shell (the
shell's physical size) increases along with time; more-
over, such a motion is only possible in the T+ region or
in the R region.

If on the contrary the coordinate space of the internal
region is increasing, then the u-coordinate line is past
directed (i.e., this case could be obtained from the previ-
ous one by the substitution u ~v, v ~ —u) and H &0.
Hence, r, & 0, so that the shell radius is decreasing
along with time. Such a motion is only possible in the
T region or in the R region.

Despite the fact that the considered example of the
junction of two de Sitter metrics is unrealistic it allows
some important conclusions to be drawn. First, the
coordinate volume of the fluctuation giving rise to a
nonequilibrium configuration of the scalar field in some
region of space (as in the chaotic inflation scenario)
should decrease with time, while its physical size should
increase. Therefore, the boundary of the fluctuation
should lie either in the T+ region or in the R region.
The latter case is only possible if this fluctuation forms a
wormhole or if it occupies, from the very beginning,
more than a half of a closed universe. ' Since the visible
part of our Universe is obviously in an R+ region, the
creation of such a fluctuation at the moment, say, at lab-
oratory conditions, is impossible. Second, if in the very
early Universe, when, as it is assumed, there existed op-
portunities for the creation of such a fluctuation (i.e., the
T+ region had occupied larger coordinate volume) and
the energy dominance condition was not violated (the A
term was equal to zero), then the very existence of the
T+ region requires the occurrence of an initial singulari-
ty. The detailed investigation of a more realistic model
of evolution of the nonequilibrium scalar field fluctuation
will be carried out in a forthcoming paper .

Note added. After this work was completed we be-
came aware of new important results on bubble dynam-
ics.
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APPENDIX A: EINSTEIN EQUATIONS
FOR A SPHERICALLY SYMMETRIC METRIC

Our purpose here is to derive the Einstein equations
for a spherically symmetric metric in the form con-
venient for further use.

Let the metric of spacetime be

ds =e'dt e "d—q —r (q, t)de (Al)

As was already mentioned, one can always write the
metric in this form in the case of spherical symmetry.
[Note, by the way, that the coordinate system still is not
fixed completely; namely, one may establish one more
coordinate condition. We shall not however do that,
since it is good enough for our purposes to use metric in
the form (Al).] Let us write the Einstein equations as

r—e 2
rk r 1 p+e + + = 8~xTp
r r2 r2

(A2)

—e
r + 2r

~ ~

2 —+
r 2

(A3)

rA, rv—2 + + = 877K'Tp] )r r r
tl t2 /I

v v r—e + +
2 4 r

r'A, ' r'v'2+2 v A. A, k r rv rk
4 2 4 2 2

vA,

4
= 8~x T2 ——8~~T3 (A5)

Multiplying now Eq. (A2) by r r' and Eq. (A3) by —e 'r r' and then summing, one obtains

e "(2r' 'r' —rr' v'+r r') —e (2rr"r'+r' —rr' A, ')+r'=8rrtrr (To r' —Ti r ). '
(A6)

[r(1+5)] =gear [(To + Ti ')r' —To r —To'r'] . (A8)

Equations (A7) and (A8) may be now combined in one
vectorial equation:

This equation may be rewritten in the form

[r (1+6)]'= 8mtrr [( To + T, ')r' —T, r —T, 'r'] . (A7)

Similarly, multiplying Eq. (A3) by r r and Eq. (A4) by
e r r' and then summing, one obtains

two equations in (A10). These also may be reduced to a
two-dimensional vectorial equation. One obtains as a re-
sult

T„"~ +—
( r„T2 +r T—„)=0, (A 1 1)

where the vertical bar denotes covariant differentiation
with respect to the metric of two-dimensional space
(t, q).

The set of Eq. (A9) and (All) is equivalent to the Ein-
stein equations in the case of spherical symmetry.

[r(1+6,)] „=8nar(Tr z
—T„.'r, ), p, v=0, 1 . (A9)

T„. =0. (A10)

Here a semicolon means the covariant derivative with
respect to the total four-dimensional metric (Al). In the
case of spherical symmetry we have here, in fact, only

Note that at spherical symmetry the components
T2 ——T3 are invariant under the transform ations
t =t(t, q), q =q(t, q) and therefore the sum
T =Tp +T&' is also invariant.

This vectorial equation (which is equivalent to two
scalar equations) has to be complemented by the conser-
vation equations

APPENDIX B: OUTER CURVATURE TENSOR
OF SPHERICAL SHELL FOR THK

FRIEDMANN-ROBERTSON-WALKER METRIC

2
(

~ 2 g)1i2
p

Kp ——— p+ —4nvp T„"p o .. 1+9
(

~ 2 g)i/2 2p

where

(Bl)

(B2)

Let us rewrite the expressions for K2 and Eo [Eqs.
(2.54a) and (2.58), respectively]:
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T.t'=(e+ p )u.u t' p—s.t', (83)

e, p, and u being the energy density, pressure, and
four-velocity, respectively. Thus, we need only to calcu-
late 6 and T„" for the Friedmann-Robertson-Walker
(FRW) metric

ds =dt2 a(t) — +q dO
1 —kq

and T ~ is in our case the energy-momentum tensor for
a perfect Quid:

(p:—dpidr, r being the proper time on the shell).
It is convenient to put Eq. (82) for Eo in the form

ICo = — p — +4vrtrp(E+p)(u +1)0 o .. 1+6 2(. 2 g)l/2 p

(88)

where u =u"= —u„. To calculate u we need to trans-
form the FRW metric (84) into the normal Cxaussian
form, and after some algebra we obtain the relation

0 1p=aq, u =uo ——1, u p=aq(I+u )' —u(1 —kq )' (89)
From the Einstein equation for the FRW metric,

(i +k Sm.x

a

we hand easily that x =—IHpp+[H p p +b. —b(p +H )]'1
(810)

Solving the above equation for x =(1+u )'/, we obtain

so

8m'6= —1+ ep
3

o- . 2 8m~
X2 ————p +1— ep

p 3

' 1/2

(86)

(87)

where H=a/a is the Hubble radius. We must choose
the lower sign in this expression to be sure x is positive
both in R (b, &0) and T regions (b, ~ 0) and to have a
nonsingular transition through the surface 6=0. There-
fore, we obtain the following expression for Ko:

Ko ——— p — +4ntrp(E+p .
) 1+2

o. .. 1+6 ~2p2p 2

(
~ 2 g)1/2 p Q2

1
tp +H +2Hpp[H p p +~' —~(p'+H')l'"I (811)

In the pure vacuum case (e+p =0) only the first two terms survive.
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