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The eA'ective-vector-boson method for high-energy collisions is precisely formulated by using fac-
torization of the helicity amplitudes. All approximations related to kinematics are eliminated. Com-
pact formulas for exact vector-boson distribution functions are derived. The on-mass-shell continua-
tion of the vector-boson hard-scattering cross section is isolated and clarified. Improvements over the
leading-logarithmic approximation are dramatic. Application of the new formalism to heavy-fermion
and Higgs-boson production processes illustrates its extended range of accuracy and usefulness.

INTRGDUCTIGN

For high-energy collisions in the TeV range and
beyond, the vector gauge bosons 8' and Z play an in-
creasingly important role. They will behave very much
like the usual partons, but their unique couplings to other
particles (especially Higgs bosons) will make them particu-
larly valuable for tests of the standard model and also for
"new physics. " These considerations motivated the intro-
duction of the "eff'ective-vector-boson" (EVB) approxima-
tion for calculating high-energy processes initiated by vir-
tual W's and Z's (Ref. 1). The original formulation of
this approach uses a number of approximations of uncer-
tain accuracy such as leading-logarithmic expansion,
nonunique definition of vector-boson polarization, neglect
of off-diagonal terms in summing the polarization indices,
etc. Comparisons of this approach to full Feynman-
diagram calculations on a case-by-case basis yield en-
couraging results, ' but do not provide an understanding
of the reliability and the limitations of this method.

Applying a recently published factorization technique
for analyzing Feynman diagrams, we have developed a
precise formulation of the EVB method. This formula-
tion does not invoke any kinematic approximations such
as those mentioned above. It leads to exact vector-boson
distribution functions which greatly improve the accuracy
and significantly extend the range of applicability of the
EVB approach. The only approximation invoked is the
dynamical one concerning the on-mass-shell continuation
of the vector-boson hard-scattering cross section (which
can be process dependent). ' '

In this Brief Report we summarize the general formal-
ism, present compact expressions for the exact distribu-
tion functions, compare these with the commonly used
leading-logarithmic formulas to highlight the limitations
of the latter, apply the new formalism to two examples
(heavy-fermion and Higgs-boson production) illustrating
its accuracy and usefulness, and discuss further applica-
tions.

EXACT RESULTS

fermions (leptons or quarks), A is any light particle, and
X is an arbitrary final state with large invariant mass.
The tree diagram [Fig. 1(a)] can be regarded as a two-step
process:

f (k) f'(k')+ *&(q),
(soft)

*V(q)+A(p) ~ X(p ),
(hard)

where 'V denotes the virtua/ vector boson. The ampli-
tude for the overall process can be written in the factor-

X

(a)

X

(b)

Consider the vector-boson-exchange contribution to the
generic process f+ A ~f'+X where f and f' are light

FIG. 1. General Feynman diagrams relevant for (a) single-
vector-boson and (b) two-vector-boson hard-scattering processes.
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ized form
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meed 1(g)m
T =J (q', Mx ), j"(q ),

q +M&
(3)

where j"(q ) = (k'
~

J.e"*
~

k ) is the helicity vertex func-
tion for "emission" of the ' V [Eq. (1)] and J (q, MX ) is
the corresponding amplitude for the "hard process" [Eq.
(2)]. The factor in the middle originates from the vector-
boson propagator. The numerator corresponds to ele-
ments of the "spin-1" representation matrix of the little
group of the vector-boson momentum q". For spacelike
q, the group is SO(2, 1). Its elements are characterized by
a Lorentz boost along the x axis by the hyperbolic angle g
and a rotation around the z axis by the angle P, both
defined in the brick-wall (BW) frame where q"=(O, O, O, Q)
(Refs. 3 and 4).

%'e are interested in the cross section for a given hard-
scattering final state, integrated over the unobserved fer-
mion momentum k'. A distinct advantage of using the
factorized form of the amplitude, Eq. (3), is that the
group-theoretical expression suggests that the helicity den-
sity matrix J J e' '~ should diagonalize upon in-
tegration over the angle i)). To prove this important re-
sult, it is necessary to establish that the exponential factor
e' '~ contains the only P dependence in the cross-
section formula. This is not obvious as the BW frame is
not "inertial": the frame varies with the integration vari-
able k'. Thus, the integration measure, in general, de-
pends on g and P. However, it can be shown that the BW
frame angle P coincides with the c.m. azimuthal angle

provided the mass of the particle 3 vanishes
(M„=O). Hence, the relevant phase-space integration
measure is simply dP, and the proof goes through. Even
if Mz is nonzero, the off'-diagonal elements of the density
matrix will be negligible compared to the diagonal ones at
high energies, as they will be suppressed by a kinematic
factor of order M„ /s resulting from the i)) integration.

The cross section for a given hard-scattering final state
can then be written as a one-dimensional integral over the
remaining variable, say q (or g). The integrand consists
of the cross section for the ' V-initiated hard process (2)
(proportional to the trace of the density matrix, J J )

multiplied by a known function [proportional to the
square of the remaining factors of Eq. (3)] which will be
identified with the EVB distribution function. (See the
next section. )

I „=g y„(1+y,)/2+gL y„(1—y5)/2 (5)

and carry out the calculations described in the last two
sections, we obtain the following exact distribution func-
tions:

fo=(gL'+gR') 2(1 —x)g

2b(2 —co)
1

x
Ql

fr=f+i+f i =(gL, '+gR )(hl+Ii2)

f~ =f+ i f i=(gi' —g—~')-(h i
—I 2)

where

h) ——
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ln
(1—~o )(g —co')

tains a singular factor such as in the case of the longitudi-
nal cross section where we have 'eo(q)=(

~ q ~,0,0,q )/
+q for the virtual vector boson. We can take care of
known singularities by keeping all rapidly varying factors
inside the integral, and applying the continuation only to
a regularized hard-scattering cross section. In the case of
longitudinal polarization, this amounts to writing

eo(q)=eo(q)(Mv/)/q )—where eo(q)=(
~ q ~

0,0 q )/
Mz is the longitudinal polarization vector for an on-shell
vector boson —and keeping the singular factor (Mi /+q )

inside the integral. In this way we obtain the EVB for-
mula

do. (s, . . . ) =f„(x)d & "(s, . . . ) dx,
where s = —(k+p)', s= —p, =Mx, x =s/s. do" is
the hard-scattering cross section for an on-shell V of heli-
city n (n =1,0, —1). f„(x) is the exact vector-boson dis-
tribution function (VBDF); it has the usual parton inter-
pretation as the probability of finding a vector boson of
helicity n with fractional momentum x in a incoming
high-energy fermion f.

Since f„(x) is defined as an integral of known factors, it
can be precisely determined. If we write the elementary
coupling between the fermions and the vector boson as
%l-„0 V~ with

THE EFFECTIVE-VECTOR-BOSON FORMULA
AND THE EXACT VECTOR-BOSON

DISTRIBUTION FUNCTIONS

A precise EVB formula is obtained by replacing the
hard-scattering cross section of the virtual vector boson
* V with that of an on-shell vector boson V, and bringing
it outside the q integral described above. This procedure
is reliable provided the ' V cross section is a smooth func-
tion of q over the important range of integration. Be-
cause of the propagator factor in the amplitude, Eq. (3),
the significant range is 0&q &M~ . The continuation of
the cross section to its on-shell value is safe unless it con-

g —2xco 1
ln

CO x

—(1—x)(2 —co) g x
ln

co (1—co) co
(10)

co=x —6, g=x +b„b,=M&2/s, 6'=5/(I to), and t—he
+1,0 subscript on f refers to the vector-boson helicity.
The parity-odd amplitude ft, is a measure of the polariza-
tion of the vector boson induced by its chiral coupling.

The above distribution functions reduce to those of the
"leading-logarithmic" (LL) approximation in the limit
5~0. Unfortunately, the LL approximation can be quite
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misleading except in certain restricted kinematic ranges,
as we will discuss in the next section.

The above formalism can clearly be applied to the two-
vector-boson process f&+f2~f, +f2 +X, where both f&
and f2 serve as the source of a vector boson [Fig. 1(b)].
The EVB formula takes the general parton-model form

o.(s, . . . )= J dk~ J dkf (nk~)f m(k) o" (s, . . . ) .

Because of factorization, the VBDF's f„(g) are exactly the
same as obtained above.

LIMITATIONS OF
THE LEADING-LOGARITHMIC FORMULAS

Numerical calculations show that the commonly used
LL formula for the longitudinal distribution approximates
fo given in Eq. (6) fairly well for x & 0.05 at, say,
(s )' = 1 TeV—a typical "high-energy" value for parton-
parton subprocesses in next-generation colliders. The
discrepancy grows rapidly as x decreases, reaching a factor
of about 4 at x =0.01 (see Fig. 2). The situation for the
transverse distributions is much worse: for the same
(s)'~, the LL expression is more than a factor of 2 aboue
the exact result for all x, and the discrepancy grows to
more than an order of magnitude when x (0.01. The
case-by-case tests of the EVB approximation in the litera-
ture usually yield satisfactory results because almost all
cases studied so far are dominated by the longitudinal
cross section, and all involve x ranges above 0.05. In ad-
dition to providing a general understanding of this fact,
our results clearly mark the limits beyond which the usual
LL approximation must break down. The gross overesti-
mate of the transverse distributions in the LL approxima-
tion shown here was not noted before. A close examina-
tion of the relevant formulas, Eqs. (7)—(10), reveals that
this unexpected large discrepancy results from the near
cancellation of the LL term with the neglected "constant
term" in the small b, ( =M v /s) expansion. (Terms
neglected in the corresponding expansion for the longitu-
dinal distribution function are of order 6, and hence are
indeed small. )

ACCURACY OF THE IMPROVED EVB FORMULA

Adopting the exact VBDF's in the ejective vector-
boson formulas, Eqs. (4) and (11), avoids all approxima-
tions which are kinematic in origin. The only source of
error comes from the on-shell continuation of the regular-
ized hard-scattering amplitudes. We have examined the
accuracy of this "improved" EVB method by comparing
its numerical predictions with full Feynman-diagram cal-
culations for two cases: (i) heavy-fermion production by
single-vector-boson scattering and (ii) Higgs-boson pro-
duction by 8'+ W fusion.

In case (i) the use of the exact VBDF's, Eqs. (6)—(8), in
the improved EVB formula is found to lead to an accura-
cy better than a few percent for longitudinal polarization
(vs a factor of 2 for the LL approximation), and better
than 25% for transverse polarization (vs a factor of 10 for
the LL approximation).

Case (ii), Higgs-boson production by W+ W fusion
[Fig. 1(b)], is of much interest for collider physics and has
been calculated in the LL approximation of the EVB
method' as well as in full Feynman-diagram evaluation.
We have repeated the relevant calculations pertaining to
the EVB method and compared the results with those ob-
tained with our improved VBDF's. Some typical results
on the total cross-section ratios, o(LL)/o (full) and o(im-
proved EVB)/o(full), are presented in Fig. 3. As expect-
ed, the baulk of the error of the LL-EVB approximation is
eliminated by using the exact VBDF's, Eqs. (6)—(8). We
observe the following. (i) The error of our EVB formula
is expected to be of order M~ /MH, due to the on-shell
continuation. The numerical results confirm this expecta-
tion. (ii) Most LL calculations in the literature ignore the
contribution from the transverse polarization. ' This is
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FIG. 2. Comparison of exact vector-boson distribution func-
tions, Eqs. (6)—(10), with their leading-logarithmic approxima-
tions for (s)' =1 TeV.

FIG. 3. Ratios of EVB cross sections to full Feynman-
diagram calculations for Higgs-boson production as a function of
S )1/2
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safe for heavy Higgs bosons (say MH & l TeV). However,
the transverse contribution rises rapidly with decreasing
MH, reaching about 30% of the total cross section for
MH of the order 300 GeV (not shown in the figure).

CONCLUDING REMARKS

The precise formulation of the EVB method preserves
the calculational simplicity and the attractive physical in-
terpretation of the parton-model approach. The use of the
exact distribution functions reduces the errors of this ap-
proximation to truly negligible proportions. This
significantly increases the range of applicability of the
EVB method —to cover almost all regions of interest.

Our formulation of the problem clearly identifies the
on-shell continuation of the hard-scattering amplitude as
the only source of error in the EVB approach. Thus, the
method is guaranteed to work if potential singularities in
the variable of continuation are handled appropriately.
We have explicitly treated the kinematic singularity asso-
ciated with the longitudinal-polarization vector. It is not
hard to see that certain dynamical singularities can be
treated in a similar fashion. There are questions raised by
the fact that Feynrnan diagrams o. the general kind
represented in Fig. 1 are not strictly gauge invariant by
themselves. We have treated the problem in the unitary

gauge which is normally the natural one to use for tree di-
agrams. For certain processes, care might be required to
make sure that the relevant diagrams are indeed the dom-
inant ones, and that the q continuation is smooth in the
particular gauge used for the calculation. These con-
siderations are, of course, process dependent. One of the
advantages of our approach is the natural separation of
the precise handling of the kinematic (process-
independent) factor from the approximate treatment of the
dynamic (process-dependent) factor. An important appli-
cation of the EVB method in which most of the above
considerations come into play is 8'8' scattering. "' The
presence of a dynamical singularity due to the photon ex-
change in the t channel, 11 12 and the complications arising
from gauge dependence have both received attention re-
cently.
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