
PHYSICAL REVIEW D VOLUME 36, NUMBER 10 15 NOVEMBER 1987

Algorithm to search for gravitational radiation from coalescing binaries
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This paper describes an algorithm to search for gravitational radiation from coalescing compact
binary stars. As two stars rotate about each other they emit gravitational radiation, causing the
stars to spiral together. One's best chance of detection is in the binary's last few moments, when

the signal is strongest and the frequency is changing rapidly. This algorithm will track the change
in frequency, no matter what the masses of the stars in the binary; thus, one can conduct a search
for coalescing binaries without making assumptions about the stars' masses. This algorithm is

capable of analyzing the data in real time.

One promising source of gravity waves is coalescing
compact binary stars. ' The event rate has been pre-
dicted to be approximately 3 X 10 per year per galaxy.
If a binary star coalescence were detected then the Hub-
ble constant could be directly measured. As two stars
rotate about each other they emit energy in the form of
gravitational radiation, causing the stars to spiral togeth-
er. As the stars get closer together their angular veloci-
ty co increases; hence, the radiation they emit changes
frequency. The frequency of the radiation changes as

; —3/8

f,.d =fo

where fo th=e radiation frequency at t =0, and r=the
time at which the two stars would collide, if no tidal dis-
ruption occurs. This calculation assumes nonrelativistic
velocities and ignores the eccentricity of the orbit. Since
emission of gravity waves tends to circularize the stars
orbit it is reasonable to assume that by the time the stars
are about to coalesce their orbits are nearly circular. It
also treats the stars as point particles, a good approxi-
mation for compact stars such as black holes and neu-
tron stars. The frequency of the stars orbit is a function
of their masses and the time until coalescence:
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where

The amplitude of the radiation is also a function of the
star masses and z. The strain has maximum ampli-
tude. ~'2
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(in geometrized units G =c =1, Moo
——4.9255 @sec).

The gravitational radiation will have twice this frequen-
cy:
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(See Figs. 1 and 2.) The exact amplitude of the strain
depends on the observers position relative to the binary.
The expected signal at the detector would be

S (t) =ah (t)cos 2m. j(f„,d )dt

where a depends on the orientation of the detector rela-
tive to the binary and tt is the signal's phase. The larger
the stars masses the greater h and the slower the fre-
quency. The radiation will be elliptically polarized; since
detectors tend to be sensitive to only one linear polariza-
tion this implies the strain measured at the detector will

be at most h/2. The signal strength will almost certain-
ly be less than this, since it is unlikely the detector will

be optimally aligned with the source.
Although the strain is largest in the binary's last few

moments, when the frequency is greatest, the Fourier
transform of the strain does not increase with frequency.
Because the frequency is changing more rapidly as the
stars get closer to coalescence, the Fourier transform of
the strain is larger at lower frequencies. To optimize the
signal one should search through low frequencies and in-
tegrate the signal for as long as possible. If one searches
for binaries long before coalescence then the frequency is
nearly constant. Clearly the easiest way to search
through many frequencies is to do a Fourier transform
of the detector output. This will separate the signal
from background noise at other frequencies. Unfor-
tunately when the frequency of the gravitational radia-
tion is nearly constant it is below the frequency at which
Earth-bound detectors would probably be limited by
gravity gradient noise.

One's best chance of detection is in the binary's last
few moments. At this time the frequency is high enough
to be separated from seismic noise. For two neutron
stars, each with mass 1.4Mo, the frequency is above 500
Hz for approximately 0.03 sec. The frequency remains
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Max-Planck-lnstitut, Garching (near Munich). These
detectors currently have a frequency range from approx-
imately 500 Hz to 5 kHz, and ultimately may be sensi-
tive to frequencies as low as 50 Hz. They have strain
sensitivities down to 10 ' /&Hz. Larger detectors are
being proposed which could have a strain sensitivity
better than 10 /&Hz (Ref. 9).

A major difticulty in searching for coalescing binaries
is that i) and r are unknown (recall that i) contains in-
formation about the star masses and that ~ is when the
coalescence occurs). In order to track the changing fre-
quency both g and ~ must be fixed, so one must search
through all the possible values of g and ~. If one as-
sumes a value for ~, then ignorance of g is the same as
ignorance of the initial frequency fo [fo ——(i)r) /n],
so one must search through many frequencies. If the
frequency were constant this would be simple, one would
perform a fast Fourier transform (FFT):

F(S,f)= f S(t)e ' 'f'dt .

However, the frequency is not constant, so a normal
Fourier transform will not work. The way to get around
this is by changing variables. Instead of working with
real frequency and real time, characterize the signal
with initial frequency fo and a timelike variable
X= ——8r(1 —t/r) then the signal will appear periodic
when mapped versus X:

S(X)=ah(X)cos(2~foX+P) .

M, M~
(&n Mo)

Seconds from f =f;„until coalescence
f;„=500 Hz f;„=200 Hz f;„=50Hz
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f;„=the
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0.03 0.34
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minimum frequency of the detector

200
79
24
14
9.4
0.52

nal strength is approximately equal to 1 standard devia-
tion of the noise in the data set (it varies from 1.2o to
3cr), the filter integrated from t =0.5 sec (when the fre-
quency is 173 Hz) to t =0.99 sec, with &=1.0 sec. The
sampling rate was 10 kHz. The peak can clearly be seen
above the background noise, its relative height is ap-
proximately

f [S(t)]2dt
30

(X=1/&5000 Hz, S(t)=( —r t) ' cos[2vr 1 (f„d)dt]).
This filter's output gives astrophysically relevant infor-
mation immediately. When a signal is detected fo and r

TABLE I. The length of time a signal will have f &f;„ if
no tidal disruption occurs.

This timelike variable 7 works for all binaries, regardless
of the stars mass. Resampling the data in even steps of
7 allows one to perform an FFT:

F(S,fo)= f S(X)e " dY .

This transform will track the gravity-wave frequency,
and separate it from background noise at other frequen-
cies. (I have neglected the Doppler shift due to Earth' s

motion, but over an integration period of 100 sec it
causes a change in frequency of approximately
0.000 001%%uo, which is negligible. ) This filter assumes
that one knows the time of coalescence, so one must
search through ~ in discrete steps. To use this filter fix

~, then resample the data in even steps of 7. One can
then perform an FFT, which will search through all
values of fo, and hence r), simultaneously. Using an
FFT cuts down on computation time, but at the cost of
integrating all the signals over the same time period.
Since different binaries will emit signals in the detector s

frequency range for different time periods it is impossible
to optimize the integration period for all binaries simul-
taneously (see Table I). How critical this problem is de-
pends on the frequency range of the detector used.

Just as the optimal filter for a sine wave of unknown
frequency is a Fourier transform, an optimal filter for a
coalescing binary is a Fourier transform using the vari-
ables fo and X. Figure 3 shows the output of this sort of
filter when applied to a data set consisting of computer-
generated white noise with Gaussian distribution (to
simulate shot noise in a detector) plus a signal. The sig-
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FIG. 3. Output of the filter when there is no error in ~. The
input was computer-generated white noise with a Gaussian dis-
tribution plus a signal equal to that predicted for a binary
made of two 1.4MO neutron stars. The signal amplitude
varied from 1.2o. to 3' (o is the standard deviation of the
noise). The filter analyzed from ( ~—t ) =0.5 sec until
(r t)=0.01 sec. Th—e peak can be seen at fo =133 Hz which
implies that g=1.0 sec ', as expected for a binary made of
two 1.4Mo stars.
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are known. From these g can be immediately calculat-
ed, giving information about the mass of the stars in the
binary. The peak in Fig. 3 is at fo ——133 Hz which im-

plies that g=1.0/10 sec as expected for a binary
made of 1.4M& stars. (It is important to note that there
is nothing special about m, =mz ——1.4Mo, this filter will

work for any mass combination; for example, if
m, =m2 =10M~, a peak would appear at 39 Hz. ) The
filter's performance will deteriorate if there is an error in

If there is a 0.1-sec error in ~ then the peak will only
be 40%%uo as high.

The speed of this algorithm was checked on a
Masscomp 500 computer. A detector frequency range of
200 to 2000 Hz was assumed, and the filter was opti-
mized for two 1.4MO stars. The FFT was performed
from (r —t) =0.34 sec (at which time a binary with two
1.4Mo would have f =200 Hz) until (r —t) =0.01 sec.
This was repeated every 0. 1 sec. The data were sampled
at 10 kHz. The algorithm analyzed 10 sec of data in 8.2
sec (5.3 sec were spent reading in the data and 2.9 sec

were spent performing the calculation). The Masscomp
500 computer has an array processor which is capable of
performing a 1024 element FFT in 4.5 msec.

Consider the signal from two 1.4 solar mass neutron
stars. Assume one has a detector with spectral noise
density N =10 /+Hz, which is sensitive down to 200
Hz. Also assume the strain at the detector is 0.25&(the
maximum strain (due to polarization and orientation
considerations this is a reasonable estimate of the strain
which could produce a signal at the detector). The
range of the detector is 57 kpc. If the spectral noise
density were N =10 /&Hz then the range would be
57 Mpc, given an expected event rate of approximately 3
coalescences per year.
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