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In an effort to characterize the large-scale structure and composition of the QCD plasma at zero
baryon-number density in the vicinity of the high-temperature phase transition, we have carried
out a numerical simulation in SU(3) lattice gauge theory with four flavors of low-mass staggered
fermions on a 6 10° lattice. A small data sample was also collected on 6 10?20 lattices. The
simulation uses the Illinois hybrid microcanonical algorithm, adapted for measurements of ha-
dronic screening lengths. Measurements were carried out at three values of the gauge coupling 3
and at three values each of the bare quark mass. The principal quantities measured are the static
screening masses in several color-singlet channels with quark valence ¢g and qqq. Clear evidence
for a hadronic screening spectrum is found, suggesting the presence of hadronic plasma modes.
The spectral multiplets, extrapolated to zero quark mass, are consistent with a restoration of the

SU(N) X SU(N) chiral symmetry.

I. INTRODUCTION

At high temperature and zero baryon-number density,
hadronic matter is expected to undergo a phase change
to a new form of matter called the quark plasma. Re-
cent efforts to produce quark matter in high-energy
heavy-ion collisions' have heightened the importance of
developing a solid theoretical understanding of the struc-
ture and properties of this novel phase, not merely for its
intrinsic theoretical interest, but to suggest and criticize
possible experimental signals for plasma formation.

A popular model of the plasma is based upon a naive
interpretation of the consequences of asymptotic free-
dom that obtains an extremely high temperature. Ac-
cording to this “‘deconfinement folklore,”” the quark plas-
ma is to be regarded as a gas of weakly interacting
quarks and gluons. However, it has been known for
some time that long-range nonperturbative effects dis-
rupt this simple picture even at the highest tempera-
tures.>> Indeed, one of us has proposed that the quark
plasma may be ‘“dynamically confined,” so that only
color-singlet modes produce poles and branch points in
linear response functions; i.e., color-singlet modes con-
trol the long-distance behavior of plasma disturbances.?
Hadronic plasma modes have also been suggested by
Hatsuda and Kunihiro in the context of a
Nambu-Jona-Lasinio model, but with quarks also ap-
pearing explicitly at low and high temperature.*

Studies of the phase boundary separating the low- and
high-temperature phases provide additional strong evi-
dence supporting the confined, hadronic nature of the
quark plasma.’ Recent Monte Carlo simulations suggest
the presence of a gap in the phase boundary.®~% (See
Fig. 1.) Such a break permits a smooth passage from the
low-temperature to the high-temperature regime, and re-
quires that there be a rigorous one-to-one correspon-
dence between the poles and branch points in linear
response functions on either side of the phase boundary.
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In particular, if quarks and gluons do not give rise to
normal threshold branch points in color-singlet response
functions at low temperature, they must not be present
at high temperature either.

Knowing the long-range structure of the plasma is
tantamount to knowing its large-scale composition. A
great deal depends upon these degrees of freedom: the
equation of state, the rate of entropy production upon a
phase change, plasma transport properties, multiplicities
and flavors of low-energy particles, and production rates
of low-energy lepton pairs, to name a few.

To identify the low-lying modes of excitation of the
equilibrium plasma requires studying the finite-
temperature, real-time response of the quark plasma:

S.p(x,0)=( A(x,1)B(0,0)) —{ 4(0,0)){B(0,0)) ,
(1.1)

where 4 and B are local operators and the averages are
taken over the Gibbs ensemble at temperature 7. Al-
though great strides have been made in developing nu-
merical techniques for simulating the high-temperature
statistical ensemble of QCD, we are still unable to simu-
late real-time response, but must content ourselves with
measurements of spacelike, imaginary-time propagation.
A useful imaginary-time response function is the correla-
tion product of static operators (static susceptibility)

S 4p(z)=(A(2)B(0))—{4(0)){B(0)) , (1.2)

where the imaginary-time and transverse-plane averages
are given by

_ . B L L A(x,y,z, —iT)

The large-distance behavior of this correlation,

Saplz) ~ bexp[—u(T)|z|], (1.3)

lz|—
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FIG. 1. QCD phase diagram in quark mass vs 3. The dots
represent the parameter values in the present study. The solid
error bars indicate the approximate locations of a first-order
phase transition (Refs. 6 and 7). The dotted error bars indicate
the location of a rapid crossover in {(gg ). The “gap” is in the
region of rapid crossover. The phase boundary is thought to
extend to high mass from the point at m =~0.25 and to low
mass from the point at m =0.025.

gives a screening ‘‘mass” or inverse screening length
u(T).

To see the connection between the screening mass and
the real-time response, consider the dispersion relation
of one of the normal modes n of the plasma, given by
fnlk,0,T)=0, where k = | k | and w are the momentum
and frequency of the real-time response (1.1). The
screening mass obtained in (1.3) is found by analytic con-
tinuation to be a solution to

fn[tl,un(T),O,leo

for the longest-range mode n in the channel determined
by the quantum numbers of the operators 4 and B.?
Just as the plasmon in an ordinary electrodynamic plas-
ma is associated with the phenomenon of Debye screen-
ing, and the pion is associated with the Yukawa poten-
tial, so we expect low-lying excitations of the quark plas-
ma to be related to the screening effects that we mea-
sure. Of course, such an analytic correspondence tells
nothing about the lifetime of the associated real-time ex-
citation. Further arguments are needed to determine the
widths.® Hydrodynamic modes present an exceptional
case. The phonon and thermal diffusion modes decouple
from the energy-density correlation function at zero fre-
quency and so do not appear in the static energy-density
correlation or in any of the correlations we measure.’
They must, however, be present at nonzero frequency.
To measure the static response function (1.2) of the
quark plasma, we have carried out a numerical simula-
tion of QCD on small lattices (6 10° and 6 102 20)
at temperatures near the phase transition. Measure-
ments were made at three values of the gauge coupling
B, namely, 5.10, 5.175, and 5.25, and for each of these, at
three values of the bare quark mass m, 0.05, 0.075, and
0.10. Fermions were incorporated in the staggered
scheme!© using a modification of the Illinois hybrid mi-
crocanonical algorithm.!! We measured several hadron
propagators at large spacelike separation. Although our
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methods for measuring hadron correlation functions are
well known in studies of the zero-temperature hadron
mass spectrum!2~!'* to our knowledge, ours is the first
deliberate application of these methods to the quark
plasma.

Let use see where our measurements are made in rela-
tionship to the phase transition. Shown in the m vs 8
phase diagram to Fig. 1 are the points at which the
simulations were run and the current best estimate for
the location of the phase transition for the SU(3)-color,
four-flavor, N, =6 lattice.>’ Since we will be extrapolat-
ing results to zero quark mass along lines of constant f3,
it is important to know which phase is realized in the ex-
trapolation. It is suspected that there is a first-order
phase transition at low bare-quark masses m <0.025, as
shown, but that the phase transition is not found for
0.10>m >0.05 and 5.35>83>5.175. This low-mass
phase transition is expected to persist to zero mass,
where it is associated with a restoration of the chiral
symmetry. At higher quark mass m >0.25 there is
again a first-order phase transition, which is expected to
persist to infinite quark mass, where it corresponds to
the static deconfinement phase transition of the pure
gluon theory. The existence of such a gap in the
infinite-volume limit in the phase diagram of the four-
flavor theory is not firmly established, since its extent in
present lattice simulations may be exaggerated by finite-
size effects. Nevertheless, for the lattice sizes in the
present study, the extrapolation to the zero mass limit
should be smooth. Therefore, an extrapolation to m =0
at B=5.10 is likely to reach the low-temperature,
“deconfined,” broken-chiral-symmetry phase and an ex-
trapolation at the two higher values of S, the high-
temperature, ‘‘quark plasma,” or chirally symmetric
phase, without encountering the singularity associated
with the phase transition.

In addition to studying the quantitative variation of
the screening masses with temperature and quark mass,
a principal objective of this study was to see how the ex-
pected high-temperature restoration of chiral symmetry
in the quark plasma affects the spectrum of screening
masses in the chiral limit of zero quark mass. With N
flavors of massless quarks, QCD is symmetric under a
chiral SU(N)XSU(N)xU(1)xU(1) group. The U(1)
X U(1) chiral symmetry is explicitly broken by the gauge
anomaly, and the SU(N) X SU(N) symmetry is spontane-
ously broken at zero temperature, resulting in the ap-
pearance of a massless Goldstone boson. A modified
version of the Goldstone theorem applies at finite tem-
perature as well, with the Goldstone boson appearing as
a zero-frequency excitation at zero wave number, i.e.,
the screening mass of the Goldstone boson must vanish.
A restoration of the SU(N)X SU(N) symmetry would al-
low the plasma mode vestige of the corresponding Gold-
stone boson, should it survive, to have a nonzero gap
frequency, and therefore nonvanishing screening mass.

It has been argued that both chiral symmetries are re-
stored at high temperature.!”> Although the restoration
of SU(N)XSU(N) is likely to occur through a phase
transition, the gauge anomaly occurs at all temperatures,
so that the restoration of U(1)x U(1) is apt to be only
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TABLE 1. Expected SU(2) X SU(2) chiral multiplets.
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TABLE II. Scope of the data sample.

-0

b,-0

p-a,
N(1*)-N(17)

asymptotic. Nevertheless, a suppression of the gauge
anomaly through a phase transition could lead to in-
teresting consequences.'®

It has been known for some time from numerical
simulations that the flavor-singlet chiral-order parameter
(gq ) drops abruptly with increasing temperature at the
supposed phase transition in QCD (Ref. 6). Such behav-
ior signals a restoration of either the SU(N)XSU(N)
symmetry or the U(1) X U(1) symmetry or both. Fur-
thermore, symmetry restoration requires the formation
of chiral multiplets of states related by the larger sym-
metry. One way to discover which symmetry is restored
is to examine the multiplet structure of the excitations in
the high-temperature phase (Table I). It is obvious that
when a symmetry is manifest, i.e., the density matrix is
invariant under the symmetry transformation, hadron
channels related by symmetry must have identical spec-
tral properties and, in particular, identical screening
masses. The chiral-multiplet structure is determined ex-
plicitly by the valence-quark assignments for the various
states. We describe the calculation, the measurement of
the static correlations, and the fitting process in Sec. II.
In Sec. IIT we discuss the extrapolation to the chiral lim-
it and present the main numerical results. Section IV
gives our conclusions. A synopsis of our results has
been given in a Letter.!” Here methods are described
and detailed results given.

II. DATA COLLECTION AND FITTING

A. Algorithm, parameters, and data sample

Simulations were carried out with the Illinois hybrid
microcanonical algorithm,® using the following parame-
ter choices. The microcanonical time step was
dt =0.02, the interval for random refreshing of the
gauge field was Az =0.74, and the interval for the pseu-
dofermion field was At =0.60. Evolution of the pseudo-
fermion field was computed using the conjugate-gradient
algorithm with a residual tolerance of 5% 10~* for the
microcanonical evolution.!® Hadron propagators and
various other observables were computed at intervals of
At =1 and saved for subsequent analysis. For this pur-
pose a second conjugate-gradient inversion was neces-
sary to compute the quark propagator. To assure
sufficient convergence in this step, the residual tolerance
in the conjugate-gradient inversion was set to 2 10™* in
most instances on the 6 103 lattice and to 2 10~° on
the 6 10%% 20 lattice.

The size and scope of the data sample are summarized
in Table II. To increase the distance of hadron propaga-

Iterations Microcanonical
Lattice B m (thousands) time
6x10° 5.10 0.05 14.5 290
0.075 13.5 270
0.10 9 180
5.175 0.05 35 700
0.075 25 500
0.10 10 200
5.25 0.05 32.5 575
0.075 15 300
0.10 16.5 330
6x10°%x20 5.10 0.05 2.5 50
0.075 2 40
0.10 1 20
5.175  0.05 3 60
0.075 2 40
0.10 1.5 30
5.25 0.05 3 60
0.075 2.5 50
0.10 3 60

tion, all lattices were doubled in the z direction by repli-
cating the gauge-field configuration. This step is taken
at the risk of introducing some systematic finite-size er-
rors, which we discuss below. Because periodic bound-
ary conditions were used, the greatest effective distance
of propagation on the doubled 6x 10 lattices was 10 lat-
tice units and on the doubled 6x10?x20, 20 lattice
units.

B. State propagators for mesons and baryons

In this study we consider only hadron operators
formed from local products of quark operators. The
basic meson operator is thus

M (1,7)=X (1, 7)X(1,7) ,

where X,(r,7) is the one-component fermion Grassman
field with color index a. The basic meson correlation
product is

S(r,7)={(M(0,0)M (r,7)), (2.1

The subscript v in (2.1) indicates that only the quark
valence part of the propagator is computed; i.e., the
correlation product is pieced together from the quark
propagator from (0,0) to (r,7) and the antiquark propa-
gator between the same end points. The restriction to
the quark valence part of the propagator affects only the
propagation of the mesons with vacuum quantum num-
bers, i.e., only the o meson in our study. In that case,
omitting the quark-antiquark annihilation part, i.e., the
mixing with the glueball of the same quantum numbers,
distorts the propagator. For this reason we have labeled
the o screening masses ¢,. To obtain the omitted glue-
ball component requires considerably more computation-
al effort, and is left for future work. At zero-quark mass
in the high-temperature phase in which the chiral sym-



metry is restored, glueball mixing is forbidden by chiral
selection rules. Therefore, this deficiency does not alter
the end point of our extrapolation to the chiral limit in
the high-temperature phase and does not affect the
identification of chiral multiplets in the propagators we
measure. However, at least to some degree, it does affect
the determination of screening masses for the o meson
in the low-temperature phase and at nonzero bare-quark
mass.

The projection onto channels with various quantum
numbers is readily adapted from the zero-temperature
analysis. We define the six correlation functions:

S, (z)= 3 S(x,p,z,7), (2.2)
X, )0, T
Suolz)= > (=)S(x,,2,7) , (2.3)
X, P, T
Sy(z)= 3 [(=)V'+(=Y1S(x,y,2,7) , (2.4)
X )0, T
Spo(z)= 3 (=) "S(x,3,2,7), (2.5)
X, 0 T
Spi(z)=3F (=P "+(=Y*"1S(x,p,z,7),  (2.6)
X, T
S(z)= 3 (=278 (x,p,2,7) . (2.7)
X ) T

The subscripts 0 and 1 refer to the helicity components
for the vector and pseudovector mesons. The helicity is
the component of angular momentum about the z direc-
tion, the direction of the momentum vector. Using the
methods of Ref. 19, it is straightforward to determine
the above phases appropriate to the relevant Dirac ma-
trices.

The above correlation functions are then fit to a series
of nonoscillating and oscillating spectral terms of the
general form

T,(z)=b,{exp(—pu,z)+exp[ —u,(L —2)]} ,
U,(z)=b,(— V{exp(—p,z)+exp[ —p, (L —2)1} ,

where L =20 for the smaller lattice and 40 for the larger
lattice. The fitting functions are

Shie,ps(2)=T,(2)+T(2), (2.8)
Sauo(2)=T, (2)+ U, (2), (2.9)
St1(2)=T, (2)+ U, (2), (2.10)
St,po(2) =T, (z2)+ Up;,(Z) , (2.11)
Sﬁt,pvl(z)zTa”(z)—i—Up;(z) , (2.12)
Sht,s(2)=T, (2)+ U,(2) . (2.13)
The measured data S(z) is folded to the interval

z€[0,L /2] before fitting. We have used the familiar
language of SU(2) flavor to label the screening masses.
The above expressions are similar to those used in deter-
mining the hadron mass spectrum,!>!® except that the z
direction is the direction of propagation, and there is a
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splitting of the helicity O and 1 channels for the vector
and pseudovector mesons, owing to the breakdown of
full Lorentz invariance in the medium.

In principle, the p meson couples to both the vz and pv
channels and the 7 meson couples to both the ps and s
channels. One technique for reducing the number of
fitted parameters'? is to force p_=pu_ ., Pog=Hyp and

Hp =M We preferred instead to allow the ‘“duplicate”

masses to vary freely in the fitting process. We routinely
threw out the measured points for small values of z in
order to reduce the influence of higher spectral com-
ponents. If we allowed all masses to vary freely, we
found consistent results when we started the fit at an
even or an odd value of z. Forcing the masses to agree
introduced unwanted biases in the determination of the
nonoscillating spectral components. Furthermore, forc-
ing equality presumes that the specified component is
indeed strongly present in both channels, which may not
be the case. This point is discussed further in the next
section.

The expressions for the baryon correlation are also
similar to those used in determining the hadron mass
spectrum, except that propagation is in the periodic z
direction, and it is necessary to compensate for an-
tiperiodicity in the average over the imaginary-time
direction.!* The basic baryon operator is

B (r,7)=€,5,Xo(r,7)Xg(r,7)X (1, 7)
and the baryon static correlation
Sz(r,7)=(B(0,0)B(r,7))

is averaged over imaginary time at the lowest fermion
Matsubara frequency 77 and over the spatial directions
x and y as

Sp(z)= 3 cos(w7/N,)B(x,y,2,7),

X0 T

where N,.=6 for our lattices. This correlation function
is then fit to the form

Sh,p(z)= by {(—)exp(—pegn 2)
+expl — ey (L —2)]}
+by_{exp(—pegn 2)
+(—Yexpl —perny (L —2)1}, (2.14)

where the effective screening masses thus obtained must
be corrected for fermion antiperiodic boundary condi-
tions to get the ‘“‘physical” screening masses BN, and

Uny_as
(et v ) =py>+sin®(m/N ) .

For the effective masses determined in this study, the
correction is insignificant.

C. Correlations, covariances, and statistical errors

To assure proper equilibration of the lattices, wherev-
er possible, starting lattices were taken from previous
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long runs, or from runs at adjacent parameter values.
For the 6 10?X 20 lattices starting configurations were
obtained by doubling a previously equilibrated 6 10
lattice. In most cases a few thousand microcanonical
iterations representing a time sequence of 50 to 100 units
were discarded before taking measurements. The pa-
rameter (gg ) measured from the pseudofermion field is
quite slow to equilibrate and was used as an indicator of
equilibrium. Furthermore, for the 610’ lattices quite
long runs were made to guard against overlooking long-
time correlations. Because the runs for the 6 10?20
lattices were short, this assurance was not always possi-
ble. For this reason measurements on the larger lattices
were used only to cross-check some of the results found
on the smaller lattices.

A careful analysis is required to determine the sys-
tematic and statistical errors in the screening masses.”®
There are strong correlations in the measurements of all
observables over microcanonical time ¢ and over distance
z. Because measurements of observables were taken at
regular intervals of one time unit, in all cases consider-
ably less than the decay time of the time correlation, the
time series could be followed and the decay of the fluc-
tuations could be studied. Among all of the propaga-
tors, the propagator S;(z) was found to have the longest
decay time, taking typically about 10 time units or less
to decay. However, at 3=5.175 and m =0.05, the de-
cay time was 50 time units. This point lies on the cross-
over region. (See Fig. 1.) Therefore, this finding can be
attributed to an incipient critical slowing down associat-
ed with a nearby critical point. Before carrying out fur-
ther analysis, all of the propagator measurements were
accordingly averaged in bins over an interval of 10 or 50
time units (representing 500 or 2500 iterations), as need-
ed, to give observations that we took to be statistically
independent in ¢.

L/2

X*=3 [S(2)—Su(2)][S(z')—Sg(z)]h(2,2') /0(2)o(z") ,

z2,2'=0
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To treat the correlations in z we carried out an
analysis of covariance. For each channel in which M in-
dependent measurements at microcanonical time bin j
were made, define the mean, variance, and normalized
residual at each value of z, respectively, as

M
(§(2))= 3 S;(z)/M ,

j=1

M
o= [(S;%2)) —(S(z))*]/( M —1),

i=t
Aj(2)=[S;(2)—(S(2))]/o(2) .

The covariance matrix is

M
r(z,z')= 3 A;(2)A;(z")/(M —1) .
j=1

(2.15)

Table III gives a typical covariance matrix for measure-
ments folded on the interval z&€[0,L /2]. It is clear that
the correlations are extremely strong for measurements
at adjacent values of z and fall off rather slowly with sep-
aration. A study of the eigenvectors of this matrix (prin-
cipal factor coefficients) reveals that the fluctuations of
the propagator measurements are rather like the modes
of a vibrating string with the largest variance associated
with a mode in which the points all fluctuate in phase
with about equal percentage variation, and the smallest
variance associated with a mode with several nodes. The
contrast between the largest and smallest principal fac-
tor variance is very large. In the case illustrated, the
largest three variances are 9.5, 1.2, and 0.12.

Because of these strong correlations in z, it is incorrect
to assume that the points measured at different values of
z are statistically independent. Therefore, we have used
the following definition of X? for fitting the data:

(2.16)

TABLE III. Covariance matrix for measurements of the pion propagator on the 6 X 10° lattice over

the distance z =0 to z = 10.

z=0 1 2 3 4 5 6 7 8 9 10 z'
1.00 0.93 0.89 0.86 0.80 0.73 0.68 0.63 0.58 0.56 0.57 0
1.00 0.95 0.90 0.83 0.76 0.70 0.65 0.59 0.57 0.58 1

1.00 0.97 0.93 0.87 0.82 0.78 0.75 0.73 0.73 2

1.00 0.98 0.93 0.89 0.86 0.82 0.80 0.80 3

1.00 0.98 0.95 0.93 0.91 0.89 0.89 4

1.00 0.99 0.98 0.96 0.95 0.95 5

1.00 0.99 0.98 0.97 0.97 6

1.00 0.99 0.99 0.98 7

1.00 1.00 0.99 8

1.00 1.00 9

1.00 10
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where h(z,z')=r "Yz,z') is the reciprocal of the covari-
ance matrix. The estimated variance of the best-fit pa-
rameter values was obtained in the usual way from the
Hessian matrix at the minimum of this statistic. One
might expect that using this expression, rather than the
usual uncorrelated form, would change the best-fit pa-
rameter values and the values of their estimated vari-
ances. However, in most cases that we checked the
difference was only slight, but the actual value of X? ob-
tained from Eq. (2.16) is certainly more meaningful. As
a check of the estimate of statistical errors in the param-
eter values, the data sample was broken into a few large
segments, typically of 50 to 100 or more time units long,
the propagator in each segment was fit using (2.16) and
the standard deviation from the mean of these values
was compared with the values obtained from the Hessian
matrix based on the entire data sample. No significant
difference was found.

In order to construct a nonsingular covariance matrix
(2.15), it is necessary to have at least as many statistical-
ly independent observations in j as the dimension of the
matrix. Some of the data samples taken with the
610?20 lattice were too small to satisfy this require-
ment. In this case we constructed a nonsingular matrix
by the following standard device:?! In the spectral
decomposition of the covariance matrix, make a trial
matrix by keeping only the terms corresponding to the
largest one or two eigenvalues (dominant principal fac-
tors). Then in this trial matrix replace all of the diago-
nal elements by one to get the matrix r (z,z’). In effect
this procedure is intermediate between taking all points
uncorrelated and including correlations completely.

D. Other systematic errors

Other systematic errors arise from various sources.
Among these are the neglect of higher spectral com-
ponents and finite-size effects. Shown in Fig. 2 is the
correlation function S, (z) at B=5.5 and m =0.05 from
the data for the 6 10° and 6 10?20 lattices. The fit
is to Eq. (2.8) with a single spectral component T, start-
ing at z,;, =4. To reduce the influence of higher spec-
tral components, several trial fits were made, over the
range zg,, <z <20, for z,;,=0,1,2,... . As the start-
ing point for the fit was increased, the fitted value of u,

1 T I
10°t ™ —
B =525
m = 0.05
o' e 6x103 —
a 6x10% 20
102
3|
. 10
w
104 —
165 -
108
IO_7 111111111]1||1I1111
0 5 10 15 20

z

FIG. 2. The static correlation (1.2) in the pion channel,
averaged over x and y, as a function of the separation z in the
high-temperature phase. The points are from the numerical
simulation at 8=5.25 and quark mass m =0.05 in lattice units.
The errors are smaller than the symbol sizes.

decreased. The value of X? also decreased. The process
was stopped when the decrease was not larger than 1}o
of the new value.?® As a check of this process, another
fit was made with two spectral components, starting at
z=0. The value of u, for the lower component was
found to agree with the value obtained from the single
spectral component. This procedure gives us confidence
that we have control of systematic errors arising from
the neglect of higher spectral components.

The fit to the single spectral component for z,_;, =4 is
good. The larger lattice gives a screening mass of
0.765(3) (statistical error only) in lattice units with a
X*/DF=29/15. The smaller lattice gives a screening
mass of 0.754 (3) with X2/DF=20/5. Because of the
small data sample taken for the larger lattice, the

TABLE IV. Summary of measured screening masses on the 6x 10° lattice: pseudoscalar and scalar
mesons and baryons. Also given is the pion screening mass for the 6 10%X 20 lattice.

B m T ® "’ o, N($%) N($7)
5.10 0.05 0.576(2) 0.5818(3) 1.9(1) 1.3(1) 1.39(3) 2.28(2) 2.63(3)
0.075 0.694(1) 0.6899(4) 1.4(1) 1.50(6) 2.32(1) 2.67(3)

0.10 0.784(1) 0.7831(1) 1.5(1) 1.73(2) 2.39(1) 2.85(4)

5.175 0.05 0.625(3) 0.636(1) 1.74(3) 1.06(2) 1.04(2) 2.12(3) 2.23(2)
0.075 0.713(1) 0.715(1) 1.28(4) 1.30(3) 2.24(2) 2.46(4)

0.10 0.803(1) 0.802(1) 1.46(3) 1.58(2) 2.35(2) 2.65(6)

5.25 0.05 0.754(3) 0.765(3) 1.65(3) 0.95(4) 0.874(2) 1.91(2) 1.98(2)
0.075 0.779(3) 0.788(2) 1.70(4) 1.01(5) 1.07(1) 1.99(2) 2.08(4)

0.10 0.826(4) 0.841(3) 1.28(3) 1.39(2) 2.22(2) 2.44(4)

Pion screening mass for the 6 10%x 20 lattice.
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TABLE V. Summary of measured screening masses for the 6 x 10° lattice: vector, axial vector, and
tensor mesons. See Egs. (2.8)—(2.13) for a definition of the spectral terms.

B m Po P{) P1 Pl a0 an b by
5.10 0.05 1.35(4) 1.5(1) 1.30(3) 1.4(1) 1.78(3) 1.78(3) 1.6(1) 1.8(1)
0.075 1.41(2) 1.57(4) 1.46(2) 1.66(6) 1.90(4) 1.96(3) 1.8(1) 1.9(1)
0.10 1.42(3) 1.7(1) 1.47(2) 1.63(3) 2.03(3) 1.97(3) 1.9(1)
5.175 0.05 1.29(1) 1.34(3) 1.23(7) 1.28(2) 1.55(3) 1.46(2) 1.6(1) 1.4(1)
0.075 1.37(2) 1.52(3) 1.39(2) 1.40(3) 1.82(4) 1.70(7) 1.74(4) 1.40(3)
0.10 1.40(3) 1.62(2) 1.49(1) 1.55(5) 1.92(7) 1.68(6) 1.3(2) 1.8(1)
5.25 0.05 1.29(2) 1.15(5) 1.20(2) 1.29(4) 1.39(6) 1.29(2) 1.38(5) 1.6(1)
0.075 1.34(1) 1.37(5) 1.22(2) 1.314) 1.58(7) 1.37(6) 1.53(7) 1.6(1)
0.10 1.36(2) 1.47(3) 1.32(1) 1.48(3) 1.72(6) 1.59(9) 1.4(3) 1.4(4)

discrepancy could be due to either systematic errors aris-
ing from disequilibrium or a neglect of long-time corre-
lations in the larger lattice, finite-size effects in the small-
er lattice, or a combination of these. A glance at Table
IV comparing p . for the two lattice sizes reveals similar
small discrepancies at all of the gauge couplings and
bare quark masses. Thus the systematic errors of this
nature could be as large as three times the statistical er-
ror. Even so, the combined error in the screening mass
appears to be only about one percent in this channel.
Because of the small data sample for the larger lattice,
screening masses in the other channels were not deter-
mined reliably in the larger lattice, and we do not quote
those results here.

III. ANALYSIS AND DISCUSSION OF RESULTS

A. Duplicate masses

Tables IV and V summarize the screening masses ob-
tained from the correlation functions by the methods
discussed in the previous section. All masses are quoted
in lattice units unless otherwise stated. A blank entry in
the table indicates that there was not sufficient data to
obtain a statistically meaningful value. A few comments
are in order.

(1) We found no statistically significant oscillating
term in the S,; correlation. In most cases it was possible
to extract two spectral components p, and u, in this
channel, both with pion quantum numbers. The deter-
mination of the higher-mass component is, of course,
very sensitive to systematic errors arising from the
neglect of other, still higher-mass components.

(2) The p meson appears in both the vt and pv chan-
nels. Statistically, the p-meson screening mass is better
determined in the S,, correlation than in the S,y correla-
tion. Nevertheless, we see that the two determinations

of the p screening mass agree within typically three
times the stated statistical error. We attribute this
discrepancy to systematic errors in extracting the mass
from the oscillating term in the S,, propagator. In sub-
sequent analysis we use only the value obtained from the
S, correlation.

(3) The pion component appears in both the ps and s
channels. The discrepancy between the screening masses
u, and p,» found in the two correlation functions, re-
spectively, is so great in this case that we suspect that
they correspond to different states, and that the pion
couples only weakly to the S, correlation function.

B. Extrapolation to the chiral limit

Consider, now, an extrapolation to the chiral limit
(bare quark mass m =0). In most cases a linear extrapo-
lation sufficed, and the results are given in Table VI and
Figs. 3-8. For the two blank entries a quadratic ex-
trapolation was required, as explained below.

B=5.10. At B=5.10 (low-temperature phase) chiral
perturbation theory requires that the square of the pion
screening mass be analytic in the quark mass. A linear
fit to p,%(m) yielded u (0)=0.055(4) with X2/DF=24/1,
a bad fit. A glance at the plotted data in the lower panel
of Fig. 3 shows that there is some curvature in p2(m).
Constraining the intercept to be zero, as would be the
case for a Goldstone boson, we were able to fit the mea-
sured points to the quadratic

1, (m)=7.21(6)m —10.5(7)m? 3.1
with X2/DF=2.0/1, an excellent fit, as shown in Fig. 3.
Therefore, the data are consistent with the hypothesis
that the pionic plasma mode remains a Goldstone boson
up to the phase transition. Moreover, the ¢ meson is

TABLE VI. Linear extrapolation of screening masses to the chiral limit.

B T o, Po P1 a an N(%+) N(%;)
5.10 1.04(6) 1.31(8) 1.20(6) 1.53(7) 1.62(7) 2.16(4) 2.40(7)
5.175 0.445(4) 0.50(4) 1.17(3) 1.06(7) 1.14(9) 1.21(7) 1.89(4) 1.80(7)
5.25 0.674(6) 1.23(4) 1.05(4) 1.07(13) 1.04(9) 1.58(4) 1.54(6)
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FIG. 3. Pion and o screening masses at $=5.10 as a func-
tion of bare-quark mass m in lattice units. The pion screening
mass is fit to the curve (3.1) and the o screening mass, to a
straight line.

clearly not degenerate with the pion in the chiral limit.

The extrapolated and unextrapolated values for the
two helicity states of the p meson agree within statistical
errors, as do those for the a; meson. Therefore, the
masses were averaged in each instance and extrapolated,
yielding the results

FIG. 4. p- and a,-meson and nucleon screening masses at
B=5.10 as a function of bare-quark mass m in lattice units.
Two helicity states of the mesons and two parity states of the
nucleon occur. The meson screening masses are fit to Eq. (3.2),
which equates the screening masses for the two helicity com-

ponents.
line.

The nucleon screening masses are fit to a straight
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Hy(m)=1.23(10)4-2.4(13)m ,
Ha1(m)=1.56(9)4+4.5(13)m

with X2/DF=1.0/1 and 0.4/1, respectively. Figure 4
shows these fits. The intercepts are different. The two
nucleon screening masses are also statistically different.

In Table VII are summarized measurements of a
variety of operator expectation values. A linear extrapo-
lation of {(gg ), shown in Fig. 9 gives 0.69(4), quite con-
sistent with a nonzero value. In sum we find the extra-
polated spectrum and {gg ) to be fully consistent with a
spontaneous breakdown of the SU(N)XSU(N) chiral
symmetry at a temperature just below the phase transi-
tion.

B=5.175. 1If the point $=5.175 and m =0 is in the
chirally restored phase, then chiral perturbation theory
permits a linear extrapolation of the pion screening
mass. Indeed a linear fit yields

(3.2)

fo) 1 ‘
(0] O.1
m

FIG. 5. Pion and o screening masses at 8=5.175 as a func-
tion of bare-quark mass m in lattice units. The pion screening
mass is fit to the straight line (3.3) and the o screening mass, to
a straight line with the same intercept as the pion.
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FIG. 6. p- and a,-meson and nucleon screening masses at
B=5.175 as a function of bare quark mass m in lattice units.
Two helicity states of the mesons and two parity states of the
nucleon occur. The meson screening masses are fit to Eq. (3.4),
which equates the screening masses for the two helicity com-
ponents and fixes a common intercept. The nucleon screening
masses are fit to straight lines with a common intercept.

FIG. 7. As in Fig. 5, but at 8=5.25. The pion screening
mass is fit to a straight line and the o screening mass, to Eq.
(3.5) with the same intercept as the pion.
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FIG. 8. As in Fig. 6, but at §=5.25. The p- and a,-meson
screening masses are fit to straight lines with a common inter-
cept, and the two helicity states are distinguished here. The
nucleon screening masses are also fit to straight lines with a
common intercept.

1o(m)=0.445(4)+3.6(5)m (3.3)

with X2/DF=2.9/1, as plotted in Fig. 5. Also plotted
are the squares of the pion screening masses. Clearly, an
extrapolation of these points also results in a nonzero in-
tercept. Therefore, it is apparent that the pionic mode is
not a Goldstone boson at $=5.175. The o meson
screening mass extrapolates linearly at p,(0)=0.50(4), a
value within nearly 1 standard deviation of the pion in-
tercept. Repeating the fits, this time enforcing a com-
mon intercept, yields the lines shown in Fig. 5 with
X?/DF=1.8/3, and a common intercept of 0.445(4).
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FIG. 9. Measurements of {gg ) as a function of bare-quark
mass m for $=5.10, open circle, B=5.175, triangles, and

B=5.25, solid circle. The fitted curves are described in Sec.

I1I.
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TABLE VII. A variety of expectation values: plg=1—TrUUUU /3, Wilson line, chiral-order pa-
rameter, fermion energy density, and gauge-field energy density.
B m plg w (gg) e /T* €z /T*
5.10 0.05 0.520(2) 0.009(3) 0.84(2) —16(9) —0.4(4)
0.075 0.5243(7) 0.013(2) 0.94(1) —4(5) 0.5(3)
0.10 0.5332(5) 0.010(2) 1.00(2) 8(4) —4(4)
5.175 0.05 0.483(1) 0.073(11) 0.56(2) —14) 6(2)
0.075 0.4982(4) 0.017(2) 0.80(1) 3(5) 5(2)
0.10 0.5064(8) 0.012(3) 0.92(1) —4(7) —3(4)
5.25 0.05 0.4617(1) 0.238(3) 0.375(3) 8(3) 16(3)
0.075 0.4687(4) 0.153(6) 0.568(9) —3(4) 13(3)
0.10 0.4820(3) 0.030(4) 0.764(9) —1(4) 4(2)
Therefore, the results are consistent with a degeneracy of py(m)=0.674+41.0(2)m +59(3)m? (3.5)

the 7-o chiral multiplet.

A linear extrapolation of the p and a; screening
masses in each helicity channel yields values within 1 or
2 standard deviations of each other. As with the
B=5.10 screening masses, the differences between the
helicity channels is insignificant. Combining the results
for the two helicity channels permits a linear extrapola-
tion:

polm)=1.11(9)+3.5(11)m ,
Pa1(m)=1.17(6)+6.7(10)m .

(3.4)

Since the intercepts are statistically consistent with
equality, we refit with a forced common intercept, ob-
taining a common screening mass of 1.15(5) with
X*/DF=4.6/3, as plotted in Fig. 6.

The nucleon screening masses are consistent with pari-
ty doubling in the chiral limit. Refitting these masses
with a forced common intercept yields uy(0)=1.86(4)
with X>/DF=1.5/3, as plotted in Fig. 6.

Turning finally to an extrapolation of (gg ), we find
from Table VII and Fig. 9 that this quantity shows
strong curvature as a function of quark mass. Con-
straining its value to be zero and fitting the points to a
quadratic yields

(gq)(m)=14.4(4)m —51(5)m*?

with X2/DF=7/1, as shown in Fig. 9. The largest con-
tribution to X2 comes from the lowest-mass point, which
is least well-determined statistically, and lies in the
crossover region. Using the slightly higher value for
(gq ) found by Kogut and Sinclair® at this point would
improve the fit. Therefore, despite the large X? in this
instance we have confidence in our conclusion that an
extrapolation to the chiral limit at this value of 8 leads
to a phase in which chiral symmetry is manifest in the
spectrum.

[B=5.25. Finally, we turn to a chiral extrapolation of
the screening masses at the highest temperature in this
study. The pion screening mass again extrapolates to a
value clearly distinct from zero. The o-meson screening
mass requires a quadratic extrapolation, as can be seen
from Fig. 7. Constraining the intercept for the o meson
to equal the pion screening mass intercept yields the fit

at X2/DF=3.3/1, a fairly good fit.

The vector- and axial-vector-meson screening masses
are statistically consistent with equality in the chiral lim-
it. Forcing the two zero-helicity masses to have a com-
mon intercept yields p,o(0)=p,0(0)=1.21(4) at
X*/DF=2.2/3, and the two helicity-one masses, yields
Bp1(0)=p,,,(0)=1.05(4) at X>/DF=3.9/3. The con-
strained fits are shown in Fig. 8. Therefore, our results
are statistically consistent with a p-a, degeneracy in the

|5— N T
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FIG. 10. Screening masses, expressed in units of the temper-
ature, as extrapolated to the chiral limit, for the -, o-, p-, and
a;-meson plasmon modes, and the lowest even-parity (N, ) and
odd-parity (N _) baryon plasmon modes, plotted as a function
of the gauge-coupling 8. Increasing B corresponds to increas-
ing temperature. The shaded region indicates the possible lo-
cation of the phase transition. The notation “0” and “1” be-
side the highest-temperature vector-axial-vector-meson mass
indicates the helicity assignment.
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TABLE VIII. Summary of screening masses in the chiral limit with constraints. Here masses are

given in units of the temperature.

ﬁ T g, Po P1 a an N(‘%‘+) N(%‘)
5.10 0 6.2(4) 7.4(6) 7.4(6) 9.4(5) 9.4(5) 12.9(2) 14.4(4)
5.175 2.67(2) 2.67(2) 6.9(3) 6.9(3) 6.9(3) 6.9(3) 11.2(2) 11.2(2)
5.25 4.04(4) 4.04(4) 7.3(1) 6.3(2) 7.3(1) 6.3(2) 9.3(2) 9.3(2)

chiral limit. Our results also suggest a separation of the
two helicity states.

Table VI shows that the two nucleon states of oppo-
site parity are also likely to be in the same multiplet.
Forcing them to have a common intercept gives a fitted
value of uy(0)=1.56(4) with X2/DF=18/3, as shown in
Fig. 8. A quadratic fit could improve this X2.

A linear fit to (gg ) without constraint gives an inter-
cept of 0.002(10) at X2/DF=0.5/1, a result nicely con-
sistent with zero. (See Fig. 9.) Therefore, the spectrum
and (gqg) are all consistent with a restoration of
SU(N) X SU(N) chiral symmetry.

C. Temperature dependence of the spectrum in the chiral limit

Collected in Fig. 10 and Table VIII are the results of
the chiral extrapolation of the various screening masses.
Here masses are expressed as a multiple of the tempera-
ture T =1 (lattice units). Evidence for asymptotic scal-
ing for lattices of this size is scant.?? Therefore, the
coupling-constant value is not converted to a tempera-
ture in this figure. However, increasing S corresponds to
increasing temperature. If we were to use the asymptot-
ic scaling expression

aAp =(87%B/25)3/Pexp(—4n?B/25) ,

then the points B=5.10, 5.175, and 5.25 correspond to
the temperatures T /A; =188, 210, and 235, or
T/Agygs=2.47, 2.76, and 3.09, respectively (MS denotes
the modified minimal subtraction scheme), for a temper-
ature increase of 25% over the range of couplings con-
sidered. The o-meson screening mass shows the most
dramatic variation with temperature. Since correlations
in the chiral-order parameter (gg ) are mediated by this
meson, such behavior might be expected for a phase
transition that restores the chiral symmetry. The pion
screening mass is increasing more rapidly than linearly
in temperature over this range of 3, but it is not possible
with these data to tell the size of the discontinuity in the
pion screening mass at the phase transition. Finally, it is
remarkable that all of the screening masses in the chiral-
ly symmetric phase over this range of gauge couplings
are rather large—namely, a few to several times the
temperature.

IV. CONCLUSIONS AND DISCUSSION

Our results are consistent with a restoration of an
SU(N)XSU(N) chiral symmetry. In particular, we find
good numerical evidence in the chiral limit of our model
that (1) there is a cleanly identifiable pion plasma mode

in the high-temperature phase, (2) the expected 7-0 and
p-a, multiplets occur in the plasma, and, finally, (3)
there are parity-doubled baryon plasma modes with a
finite screening length for T > T,.

The static pion correlation shows a remarkably clean
fit to a single spectral component over six decades. If
there were a gg component in this channel it would have
a continuum threshold screening mass of at least twice
the lowest fermion Matsubara frequency; namely,
27T =1.05. Since the pionic spectral component seen in
Fig. 2 is obviously of a considerably lower screening
mass, it cannot be due to such a quark continuum.
However, we cannot rule out the possibility that such a
continuum occurs in addition to the pionic mode as a
higher spectral component.

Our finding of parity doubling and a nonzero screen-
ing mass in the baryon channel in conjunction with a
nonzero screening mass for the pion is in accordance
with spectral inequality theorems.??

A partial restoration of the U(1) axial symmetry, asso-
ciated with the diminution of the gauge anomaly, would
require a further parity doubling of the 7-o multiplet.'®
However, we have not examined the relevant channels,
and so cannot draw any conclusions regarding the fate
of this symmetry.

Our results strongly suggest the existence of hadronic
modes in the plasma screening spectrum. Further work
is needed to provide a more detailed picture of the tem-
perature dependence of the screening masses, to look for
asymptotic scaling of the mass-temperature ratios, to
study models with a more realistic quark spectrum, and
to search for other hadronic modes, particularly the 7-
and 7'-meson modes, to determine the fate of the U(1)
axial symmetry.

The most urgent question, whether the modes that we
observe are also important as real-time excitations of the
plasma, will probably not be answered soon by lattice-
gauge theory. The most promising lattice investigations
that will help answer this question indirectly are studies
of the QCD phase diagram. The spectral significance of
a gap in the phase diagram was emphasized in the Intro-
duction. For the moment we conclude that our findings
of hadronic modes in the screening spectrum deals a
serious blow to the naive deconfinement picture and re-
quires a reconsideration of several of its predictions of
the experimental plasma signature.

Note added in proof. In a closely related study sub-
stantially similar results were announced for two quark
flavors, while this work was going to press. [See S.
Gottlieb, W. Liu, D. Toussaint, R. L. Renken, and R. L.
Sugar, University of California, San Diego Report No.
UCSD-PTH-87/16 (unpublished).]
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