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We present results for the hadron spectrum of quenched lattice QCD on an 18'X42 lattice at
P=6.2. We compare r = —,

' Wilson fermions with quark masses in the range m, /m, =1 to 5 to

staggered fermions with mq/m, =
3

to 2. In the overlap region we find that the spectra agree, and

that both yield a '=2. 5 GeV, if we use m~ to set the scale. We also find that the flavor symme-
try of the staggered fermions is restored to a greater degree than at lower 13. However, for both
types of fermion, the nucleon to p mass ratio comes out too high, never dipping below 1.5. We
show the advantages to be gained with staggered fermions by using operators nonlocal in time.
Using these operators we uncover a second problem: an anomalously light flavor-nonsinglet sca-
lar. We also present results for the ~+ —m electromagnetic mass splitting and for the Landau-
gauge gluon propagator.

I. INTRODUCTION

The hadron spectrum in the quenched approximation
is an obvious benchmark which must be established be-
fore lattice methods can be usefully applied to less
straightforward problems of QCD. A priori we should
not expect to get physically correct answers from this
drastic approximation, yet it is important to pin down
the predictions of the quenched model before investing
in the computer time needed to simulate full QCD. Op-
timistically, if the errors introduced by neglecting fer-
mion loops are understood and shown to be reasonably
small, we might trust quenched calculations of more ex-
otic observables such as the nucleon o. term.

The endeavor to extract the quenched spectrum' is
now some five years old, and has proven to be literally
orders of magnitude harder than it seemed at first. The
lattices used to date have been both too coarse and too
small. Present calculations have not yet demonstrated
that we have reached the asymptotic scaling regime, or
the finite-size scaling regime. That the lattices used so
far are too coarse is indicated by studies of the P func-
tion of the quenched theory. Monte Carlo renormal-
ization-group studies ' suggest that one may have to use
P=6/g &6.2 or even P&7.0 in order to see universal

asymptotic scaling. Similarly, the calculation of T,
(Refs. 6 and 7) shows a lack of asymptotic scaling below
P= 6. 15. Existing spectrum calculations have primarily
explored the region P(6.0, though preliminary results
at P=6. 15 have been reported by Bowler et al.

The second limit one must take is to enlarge the box
until the masses follow the asymptotic finite-size scaling
formulas. The physical requirement for calculating ha-
dronic observables is that the box be large compared to
the pion Compton wavelength at the quark mass used.
For the physical pion (1/m =1.4 F) this is the same
size as typical lattices in today's computations. Thus
even if current P's turn out to be close to the scaling re-
gime, we are still studying QCD in a small box. Much
larger lattices are required to simulate hadrons in the
physical vacuum.

This paper presents results for the quenched spectrum
on a 18 )&42 lattice, with coupling P=6.2, using both
Wilson fermions (WF's) and staggered fermions (SF's).
This is the weakest coupling used to date, and we have
necessarily had to use a very large number of lattice
points in order to keep the physical volume roughly the
same as that in calculations at smaller P. Thus we are
pushing toward the asymptotic scaling limit, but not to-
ward the finite-size scaling limit. We have used a large
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sample of configurations, and for SF's we have pushed
the quark mass as low as finite-size effects allow. We
have also taken considerable effort to obtain reliable sta-
tistical errors. Despite this, we do not consider this
study to be definitive for the reasons listed above. We
merely offer the next data point, and await the next gen-
eration of computers to extract the true scaling predic-
tions of the quenched model.

For staggered fermions this calculation incorporates
some new techniques which are of some interest in their
own right. We consider hadron operators both local in
time, and nonlocal in time by one lattice spacing, finding
that the latter give considerably better signals than the
former. We test the dispersion relation by measuring
correlators with nonzero momenta. To obtain realistic
estimates of the statistical errors we employ the so-called
"bootstrap" and "jackknife" methods.

There are a number of encouraging features in the re-
sults. First, the spectra for Wilson and staggered fer-
mions agree, when compared in the appropriate way.
Second, the Aavor symmetry of the staggered fermions
seems to be restored to within 5%. Finally, the best
determined observables, f and mp, give the same lattice
scale to within 10%. The complete picture of the spec-
trum, however, is far from satisfactory, as we will dis-
cuss below.

II. THE ENSEMBLE

G(n;no)=(X(n)X(no)) = n
1

Q+mq
no

from two diff'erent base points separated by one timelike
link. For the propagators from one base point (ao) we
use three values of quark mass: m C I0.03,0.01,0.005I.
For the base point one time step away (a, ) we use

m~ H I0.03,0.02, 0.01 I. In both cases we impose an-
tiperiodic boundary conditions in all four directions, and

Our main ensemble of pure gauge fields consists of 36
configurations on an 18 &(42 lattice. We use the single
plaquette Wilson action with f3=6 2. The con.figurations
are generated using an optimized Metropolis multihit al-
gorithm, with 20 hits per sweep, and 250 sweeps between
analyzed configurations. Previous experiments with
infrared-dominated observables (blocked loops) at
P= 6.75 convince us that these parameters are adequate
to produce essentially independent gauge configurations.
We will discuss this further below.

For SF's, our main data sample is obtained as follows.
The first 10 lattices (2500 sweeps) after the cold start are
discarded. On each of the next 36 configurations we cal-
culated the quark propagators

solve the equations using a conjugate-gradient algorithm
with an even-odd partition. We demand an accuracy on
the propagators of

(B —m )G+m5 ~,„,„~(10 9 G (2)

III. STAGGERED FERMIONS

A. Operators

The simplest staggered fermion operators we consider
are the usual local ones, generalized to include nonzero
momentum. As is well known, these operators are not
entirely satisfactory, in that they project out not one, but
two different sets of quantum numbers with opposite
parity. Omitting for brevity the terms because of the
(anti)periodic boundary conditions in time, one parame-
trizes the local-local (LL) meson and baryon correlators
as follows:

where the norm only includes sites even relative to the
base point, and 6 is the 6-function source. This turns
out to require on average about 300, 420, 720, and 1500
conjugate-gradient iterations for m =0.03, 0.02, 0.01,
and 0.005, respectively. This accuracy is small enough
that the statistical errors dominate the systematic errors
point by point in the meson correlators. We verify this
by running to an accuracy of 10 " at mq

——0.01 and
mq

——0.005 on 7 configurations. To check whether the
sample we use for analysis is thermalized, we compute
propagators from the base point ao on the 4th to 9th lat-
tices of the 10 that we discard. There is some indication
from the convergence time of the conjugate-gradient al-
gorithm that these few configurations are not completely
thermalized, but we find no discernible effect on the ha-
dronic observables.

Because of the inherent expense we analyze fewer
configurations with WF's. After discarding the first
3550 sweeps, we examine 23 configurations separated by
either 250 or 500 sweeps. The quark propagators are
calculated from a single source point per lattice, with
periodic boundary conditions, using an accelerated
Gauss-Seidel algorithm. As our convergence criterion
we demand an accuracy of 10 in the pion propagator.
We use four values of the hopping parameter:
a. H IO. 30,0.31,0.32, 0.325 I. These require 300, 500,
700, and 900 iterations, respectively. To help speed the
convergence of the algorithm we set the Wilson chiral-
symmetry-breaking parameter to r = —,'. There is an ad-
ditional, if small, motivation for this value from strong-
coupling calculations: the ratio of nucleon mass to p
mass is smaller at r = —,

' than at r =1.

C(xtt)=p( XX(O)QX ,Xit, n) exp((np) fttt( nl

l
—C+ exp( —m+

)

t
)
)+C ( —)'exp( —m

)
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Here we omit the obvious color contractions. The
subscripts on the mass parameters indicate the contribu-
tions from pairs of states of opposite parity. The P are
the site-dependent phases which determine the spin and
flavor content of the meson channels. These five
different channels then contain m. /0+, p /B, p / 3 &,
5./e, and X/A. The antiperiodic boundary conditions
constrain the allowed momentum states p: in the
mesonic (baryonic) sector, each component p; must be an
even (odd) multiple of m/18. For the mesons we use

p E I (0,0,0), (0,0, 2), (0, 2, 2), (2, 2, 2), (0,0,4) I, while for
the baryons we measure pB I (1, 1, 1),(1, 1,3), (1,3, 3),
(1, 1,5), (3,3, 3)I. Using zero momentum, or any even
momentum, for the baryon correlator would also yield a
signal, but the allowed intermediate states would then
include particles at all odd momenta. It is preferable to
project separately onto the momentum eigenstates.

In each case we improve the signal by sum-
ming over the entire momentum orbit. That is,
the factors exp(ip n ) above are replaced by
cos(p„n„)cos(pr n~ )c os(p, n, ) plus permutations. Here
we place the 6-function source at n=0, and the an-
tiperiodic boundaries between spatial coordinates 9 and
—8. In the baryon correlator we only sum over the sub-
lattice of sites where all spatial coordinates are even.
Just as in the case of the zero-momentum baryon corre-

lator with periodic boundary conditions, ' the potential
contributions from the rest of the sites cancel in pairs,
once the average over gauge fields is performed. These
are edge points, with one or more of their components
equal to 9, which have no partners to cancel against;
these would give a small contribution in p=0 correla-
tors, but have zero weight in channels modulated by
cosines with odd momenta.

1. Local no-nlocal in time (LNLT) meson
and baryon correlators

As we have described previously, "' there is some ad-
vantage to using meson operators nonlocal in time
(NLT). Like the local operators, NLT operators couple
in general to two states (plus their excitations) with op-
posite parity. In the NLT case, however, the piece of
the lattice operator responsible for creating one of the
two parity partners corresponds in the continuum to an
operator containing a derivative. The coupling to one
state is therefore strongly suppressed relative to that of
the other, and correlation functions involving the NLT
operators are dominated by a single particle. In the
correlator of the NLT operators with the usual local
operators, the favored states turn out to be the pions and
the p's, which we parametrize as

Ctt (tp)=(X (X)+,0X(t) nt(Ut, ,) n(t Xi(, n)exp(in p)Ptt(n)) —C+exp( —m+ (t i —,
' ()( —1)' (t &0)

n

-C+exp( —m+
~

t+ —,
'

~

)( —1)'+' (t (0) .

In Figs. 1(a) and 1(b) we plot the zero momentum LL and LNLT p/3] correlators for m =0.01. We note the almost
complete absence of an 3, contamination in the LNLT channel.

In a similar fashion, one can consider time split baryon operators. Here there are two sorts of operators —one with
a single quark on the end of a link, the other with two quarks:

C '(ttt, p)=( X( X)Xg0(t, X) (nt, X)[Un(t, t) (nt ~X(,n)]exp(in p)), (6)
n

Ctt (t, p)=( (XX)+X0(t, X)[Un(t)t(tnX, i)]([Un(, t, t)(tnX, i)](exnp(i p)n
n

Unlike in the meson case, there is no reason for the NLT baryon operators to couple predominantly to one state.
Nevertheless we find some advantage over the local operators. In Figs. 2(a), 2(b), and 2(c) we show the data for the
LL, LNL1, and LNL2 correlators for m~ =0.01 at the lowest accessible momentum, p=(m. /18)(1, 1, 1). The improve-
ment in the signal is not as dramatic as in the meson case, but using LNL1 does allow a slightly more stable extrac-
tion of the nucleon mass.

2. Nonlocal nonlocal -in time (NLNLT) meson correlators

Since we compute propagators from two difterent base points on each configuration, we are able to construct corre-
lators with time-split operators on both ends as well. Whereas local meson operators have positive lattice charge-
conjugation parity, these NLNLT correlators allow us to consider states in the negative lattice charge-conjugation sec-
tor as well. Thus, in addition to obtaining four channels dominated by the usual ~, 5., p, and p, we also get four chan-
nels containing new quantum numbers which are inaccessible with local operators. ' These states are new flavors of
the positive-parity particles, which we call F, 3, , and B. The fourth channel is the time component of the exactly-
conserved vector current, which does not excite any physical state:

Cn (t p)=(X ( t)U0 0( t, Xt) )[0Z(t nX)tUt(t n)X (t + , ))+nX (t itl, n)Ut(t n)Xt(t n)]exp(in. p)Pn(n))
n

—CMexp( —mM
~

t
~

)(+)'. (8)
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In these channels we allow for the possibility of two
species of staggered fermions with different masses. We
actually compute all possible correlators with quark
masses m, HI0. 03,0.01,0.005j at one base point and
mz H I0.03,0.02, 0.01 j .at the other, though only at
y=O. For comparison with the LL and LNLT correla-
tors, in Fig. 3 we show the NLNLT (p/B) channel for
m& ——m2 ——0.01. In Fig. 4 we show the negative lattice
charge-conjugation (p/3 i) channel which is dominated

. by the A &. We emphasize that rough as the correlator
may be, using it is still better than trying to pick out the
usual flavor of A~ from underneath the p in the LL
correlator of Fig. 1(a).

Among the NLT operators are two rather special
ones: namely, the charges of the U(1) i, )& U( 1)„
staggered-fermion symmetries. The vector current cor-
responding to quark number, X„U&X„+„rj„(n)+H.c. (g„
is the phase appearing in the staggered Dirac operator),
is conserved when m, =m 2, and correlators of its charge
should be time independent except for contact terms. In
two-point functions the charge is acting on the vacuum,
and one might expect the time-independent value to be
zero. However, because we impose antiperiodic bound-
ary conditions, there are contributions from quark paths
which wrap around in the time direction. In addition to
involving propagation along the entire time extent of the
lattice, these are proportional to a spatial average of Po-
lyakov lines. This quantity vanishes (in the confined
phase) upon averaging over configurations, but is a small
number on each configuration. All in all, the correlator
should be constant for t&0, with a very small,
configuration-dependent value. We have found that
checking this identity configuration by configuration
provides a good control on the quality of the inverses for
mz

——0.01 and mq ——0.03 (when we could set m
&
——m2).

The current associated with the U(1) axial symmetry,
X„U&X„+&g„(n)e(n)+Hc [e. (.n) =+1 on even/odd
sites] is only partially conserved when m~&0, and any
state with the quantum numbers of the pion is allow'ed
to couple to it. As we go to the chiral limit, though,
conservation of the current implies that C ~ /C must
vanish like m, where C is the coupling to the pion,
and C+ is the coupling to any massive excited state.
The correlator should therefore be more and more com-
pletely saturated with only the one-particle contribution.
We confirm this expectation in Figs. 5(a} and 5(b}, where
we show the PCAC (partially conserved axial-vector
current) channel for m, =m z

——0.03, and again for
m& ——0.005,m2 ——0.01. In each case the solid line is a
single-particle fit, which tracks the data remarkably well
even at small times.

Using the good currents allows us to calculate a detail
of the hadron spectrum, the m+ —m. mass difference. '
Since quark mass differences do not contribute to lowest
order, this difference is dominated by the electromagnet-
ic contribution:

io-' I I
I

I I

10
m + m=2ce f—

T

FIG. 1. (a) The zero momentum LL (p/A~) correlator for
SF with mq ——0.01. The correlator has been symmetrized. To
show the data on a log plot, points with negative sign are mul-
tiplied by —1 and represented by a X, while positive points
are represented by a + . The data show both a p and A

& sig-
nal at early times, but for ~&10 only the p signal survives.
The two curves are even and odd time pieces of a two-state fit.
(b) The I.NLT correlator for the same parameters as (a). The
correlator has been antisymmetrized. The curve is a fit to- the
p and a radially excited p. Note the dramatic decrease in the
A ~ signal compared to (a).

where e is the electromagnetic charge and c is the
coefficient of the term e f tr(XQX Q) in the chiral La-
grangian. In terms of single flavor vector and axial-
vector currents c is calculable as

c = f d x(V„(0)V„(x) A„(0)A,(x))b„„(—0,x),4

(10)

where 6&„ is the photon propagator. This quantity van-
ishes as mq —+0 before one takes the infinite-volume lim-
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FIG. 2. The staggered baryon correlators for mq =0.01. The momentum is the lowest allowed: (m. /18)(1, 1, 1). (a) LL. Note
the clear A signal. The curves show a fit including X and A, with even and odd points connected separately. (b) LNL1. The A sig-
nal is much reduced. (c) LNL2. The A signal is slightly reduced relative to LL, but not by as much as LNL1. The signal is poorer
than for LNL1.

it, and one must extract a number by extrapolation from
finite quark mass just as one does for the chiral conden-
sate. For the photon propagator we use an approxima-
tion to the infinite lattice Feynman gauge propagator
defined by

1 e/P'x
b,„(x)=5„,—'V'

The prime indicates that we replace the divergent p =0
mode (which is an artifact of the periodicity) by the
finite constant

a/N, n. /Nt d 4

J J 4g sin (p„/2)

For the currents we use the appropriately scaled NLT
operators. At mq ——0.03 we get the result c =0.35
+0. 12, while at mq =0.01 we find c =0.31+0.13.
This is to be compared to the strong-coupling result
c =1.06 (Ref. 5) and to the physical answer c =0.79.
We believe the discrepancy simply means that these
quark masses are too large to be able to extrapolate this
sensitive quantity to the chiral limit. Indeed if we
separate out certain contributions to c which are known
to vanish in the chiral limit, we find the result changes
by 100%.
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The fitting function is in each case the sum of two ex-
ponentials. For the baryons and the LL mesons we fit to
the two opposite parity partners, while in the LNLT and
NLNLT meson channels we are allowed the luxury of
fitting to a ground state plus an excited state. In the
latter case the fit parameters of the heavy state are never
stable enough to extract a mass, but including its contri-
bution seems to increase the range of stability of the
light mass.

To estimate the statistical errors of the fit parameters,
we employ two powerful techniques: the "jackknife, " as
advocated, e.g. , by Ref. 16, and its generalization called
the "bootstrap" method. ' The latter method is con-
sidered better in general, especially when dealing with

FIG. 3. The NLNLT SF positive lattice charge conjugation
(p/1++) correlator at zero momentum and mq

——0.01. The fit

is a single particle p fit. Note the complete absence of 1++ sig-
nal.

10 I=-

p= 0 I'CAC (ni„.():l)
(a)

B. Data analysis
0. 1

To extract the mass of the lowest state in the correla-
tors discussed above, we use a least-squares fit as follows.
We begin by plotting each of the correlators and deter-
mining by eye the time slice ~,„where the signal disap-
pears into noise. Then we fit to the appropriate sum of
exponentials, including data points between some v. ;„ to
~,„, and look for a region of stability in the fit parame-
ters as ~;„ is varied. For channels with clean signals,
the region begins typically around ~;„=8. For the sake
of uniformity, we take the fit parameters for ~;„=10 as
the definitive one whenever possible.

0.01

0.001

0.0001

10
10

10 p-

p=O XLNI.T A,
p —0 PCAC (rn —.00 ('.=&)

0. 1 =

0.01 ~
0.00] g—

C

0.0001 =—

0.0 1;--

0.0001

10

10 'L-
10 20

10
10

FIG. 4. The NLNLT SF negative lattice charge conjugation
(p/A & ) correlator at zero momentum and mq ——0.01. The fit is
to a single A &.

FIG. 5. The NLNLT SF positive charge conjugation
(m. /0+ ) correlator at zero momentum for (a) mq =0.03 and
(b) mq =0.0075. These are the correlators of the axial charge.
The single particle fit works is good even at small ~.
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C. Chiral-symmetry breaking

The most simple fermionic quantity to measure is the
condensate (XX&. This satisfies the usual Ward identity

(XX& =TrG(0;0)=mz g ~
G(n;0)

~

(12)

small samples. The two should give convergent answers
in the limit of large samples, and in practice for most ob-
servables they agree already with our sample size of 36
or more. Most of the errors we quote here are comput-
ed with the jackknife; those with asymmetric errors
come from the bootstrap. We give a detailed discussion
in the Appendix.

In any statistical calculation one needs to know how
many truly independent configurations are included in
the sample. Since the gauge configurations are taken
from a single Markov chain, there are of course correla-
tions from one configuration to the next. To control this
effect we reanalyze the data after binning successive
configurations in groups of two or more. The errors ob-
tained from bin sizes of two or more all agree, and are
perhaps 10% or 15% larger than those obtained without
binning. From this we conclude that our configurations
are essentially independent, at least as far as mesonic
and baryonic observables are. concerned. We also ana-
lyze the data involving local operators treating the corre-
lators from the two different base points (ao and a, ) as if
they are independent quantities. The errors so obtained
for the pion mass are about a factor of ~2 smaller than
the true errors, and we take this is as evidence that the
second base point adds essentially no independent statist-
ical- information. This is expected since the two base
points are well within a correlation length of each other.

I . I I I I I I I I I ( I I

0.15

0.10

V

0.05

Int(XX)
i

0.00 0.01 0.02 0.03
m

Flax. 6. The four-flavor value (XX)(m~) and its extrapola-
tion to m~ =0. (XX) (m~) and Int(m~) are defined in the text.

pion mass is dominated by a contribution proportional
to the inverse volume. Alternatively, we may be seeing
the first indication of chiral logarithms. Morel' has ar-
gued that these are to be expected in the quenched ap-
proximation, and he has found that the high-statistics
SU(2) data of Ref. 20 are consistent with the expected
form. Our data point can probably be made consistent
with a similar form, but with only one errant point, we
cannot provide a test. Excluding the lowest point, we
make a linear fit and determine

As we have pointed out before, " one also gets the
derivative (Blam~)(XX& directly with no extra work.
We find it convenient to define the intercept

m =4.20+0. 15,

0 ~ 15

(16)

Int(m~ ) —= 1 —m~«Bm, &XX&, (13)

which we plot together with the condensate in Fig. 6.
Considering the four lowest quark masses, we fit the
condensate and its derivative to a cubic polynomial and
determine the extrapolated value

0.10

(XX & i,=o.olos+0. 0004 . (14)

The next most simple quantity to measure is the pion
mass, obtained from the exponential decay of 0.05

G„(t)—= (XX(0)+XX(t,n)P (n)) —C exp( m„t) . (15)—
n

In Fig. 7 we plot the square of the pion mass, as deter-
mined by fitting the correlator from time slice 10 and
beyond. At the higher values m =0.01,0.02,0.03, the
pion mass shows very good Goldstone behavior —the ex-
trapolated value at mq =0 is consistent with zero, within
errors. ' At mq 0 005 though, the pion mass lies
above the linearly extrapolated value. This may be be-
cause of finite-size rounding, as for small enough mq the

0.00
0.00 0.01 0.02

Average m

FIG. 7. The extrapolation of the SF m~' and m- to mq =0.
Only the LL values are used for m, and the fit is made
without the point at m~ =0.005.
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which together with the result for & XX & above yields a
value for f:

=0.0354+0.001 .

The physical value f =93 MeV then gives the scale of
the lattice:

a '(f )=2.6+0. 1 GeV . (18) 0.4

This fixes the physical size of our spatial box at about
1.4 F. In physical units mq

——0.01 gives a meson of mass
of about 530 MeV, which fixes m~/m, =0.6. The set of
quark masses we use then corresponds to m~ /
m, E I O. 3,0.6, 1.2, 1.8 I .

One can also compute f from the amplitude C of
the pion propagator for each quark mass and then ex-
trapolate to physical quark masses. We express this
determination by saturating the sum rule for &XX & with
the contribution of the pion intermediate state:

0.2

oo
0.0 0. 1 0.2 0.3 0.4 0 5

z 4sin (p, /2)

& XX &—:g & 0
I
XX(n )

I

m.
& & nIXX( n .

)
I
0 & /& ~

I

~ &

mqC

tanh( m /2 )
(19)

FIG. 8. The dispersion relation for the SF pion at
m~ =0.01. The line is the free meson dispersion relation given
in the text, adjusted to agree with the zero spatial momentum
data point.

The errors on this quantity are larger, but as shown in
Fig. 6, it extrapolates to the same value as &XX&, in
agreement with the expectation that the pion dominates
the channel as the quark mass decreases. Interpolating
f to the point m~/m, =0.5, we obtain the decay con-
stant for a pseudoscalar with the mass of a kaon. We
find fx/f = 1.20+0.06.

D. Nonzero momentum

By measuring correlators with nonzero spatial
momentum, we determine lattice dispersion relation
E(p) for a number of states. A priori, we do not know
what the dispersion relation in a given channel is. We
certainly expect something which reduces to the contin-
uum formula for small p, but the precise form of the or-
der

I p I
lattice artifacts is some complicated function

of the lattice action and the channel. In Fig. 8 we plot
the results for the pion energy versus momentum for
quark mass mq=0. 01. For comparison we draw the
curve appropriate to a free lattice boson with nearest-
neighbor couplings:

4sinh (E/2)=mo ++4sin (p;/2) . (20)

Fixing m o, we find for the higher-momentum states what
we consider reasonably good agreement with this disper-
sion relation. This is in spite of the sometimes poor
quality of the signals at high momentum. Using the
continuum dispersion relation gives an essentially indis-
tinguishable plot. For the proton we can draw similar
curves, but the errors on all but the lowest-momentum
state are so large that no significant test can be made.

One can also determine f as a function of lattice
momentum via the formulas

&0
I i5 I

~(p) & =—E.f.""(p»
(21)

2mq & 0
I er 5e I ~(p) & —=«.' —p'}f'.(p } .

Note that it is the Minkowski p which appears on the
right-hand side (RHS) of the latter equation. We extract
f (p) from the LL pion correlator, while from the
LNLT correlator we get [f "(p)f (p)]'~ . Table I
gives the values we obtain using these equations.
Lorentz symmetry would dictate that f should be
momentum independent, and our results are consistent
with this. We could instead demand the continuum
dispersion relation and insert m in place of E —p in
the second equation. In that case we find some momen-
tum dependence in f, though the values at the lowest
momenta still agree within errors.

E. The spectrum

The results for the hadron spectrum at zero momen-
tum are given in Tables II—IV. For the mesons the
masses are extracted from the NLNLT correlators, ex-
cept in those cases noted in the tables. For the proton
the cleanest signal comes from the LNL1 channel, while
for the A the most reliable estimate is in the ordinary
LL channel. For both baryons we extrapolate from the
p =(m /18)(1, 1, 1 } state to the state at rest using the con-
tinuum dispersion relation, though any reasonable lattice
dispersion relation would give answers indistinguishably
close. In all cases the quoted masses are consistent with
those determined from other channels, though there are
some systematic biases. The clearest bias is that the
pion mass comes out somewhat higher in the NLNLT
channel than in the LL channel (as shown in Fig. 9}.

As discussed above and shown in Fig. 7, the m exhibits
the expected Goldstone behavior. A pleasing result is
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TABLE I. Values obtained using Eqs. (20) and (21) in text.

(000)
(002)
(022)
(222)
(004)

E.(LI-)

0.208(5)
0.40(3)
0.59+os

a

m =0.01 pion
E (LNL)

0.203(6)
0.39(2)
0.55(3)
0.64(3)
0.76(4)

0.043(3)
0.047(9)
0.039(30)

(fLfNL)i/2

0.042(2)
0.043(3)
0.043(5)
0.048(7)
0.040(15)

'Signal too poor to fit.

that the Fr stays fairly degenerate with the vr at the
lighter quark masses, and seems to approximate Gold-
stone behavior as well. As shown in Fig. 7, the 5. mass
does not extrapolate precisely to zero, but is clearly
anomalously light compared to the other states. Like-
wise the p and p seem fairly degenerate except at lowest
quark mass, where the signal is rather hard to fit and the
statistical errors become large. We take this as evidence
that the SU(4)-flavor symmetry is being dynamically re-
stored.

In Fig. 9 we plot m, mpm, mz, and mz as a func-
P p'

tion of quark mass. The linear extrapolation looks
reasonable for all channels. In each channel we fit the
particle mass and its square to the form Amq+B and
extrapolate to mq ——0. These extrapolated values are
also compiled in Table II. The two different extrapola-
tions are meant to give some indication of 0 (m~ )

corrections, though we use the linear extrapolation for
fixing the scale. We note that the two flavors of p meson
extrapolate together to m a =0.31+0.03, so we get
a '(m )=2.5+0.3 GeV, which is consistent with
a '(f ). We get an independent estimate of the lattice
scale from the slope of the fits, i.e.,

2 2
m& —m

a —'= =2.0+0.5 GeV .
m ~ —m

Finally, if we use the nucleon mass to set the scale we
find a '(m&)=2. 05+0.2 GeV.

The most disturbing feature of the spectrum is the
consistently large value for the nucleon mass. The ratio
m&/mp starts out close to the heavy-quark value of —,',

and never comes down as we decrease the quark mass.
Also perturbing are the results for the F. At large

quark mass, one has mz =m~ )m . But for mq ~0.02
1

we find m =m . In other words, for small quark mass
the 8 is showing Goldstone behavior. Although the er-
rors are quite large, they are barely large enough to raise
m to the level of m . We can think of at least two ex-
planations. The first is that there is mixing with a pion
with different quantum numbers. There are indeed pions
with negative lattice charge conjugation, and with the
same g4 parity' as the e, so the signal we see could be
from such a state. However, the mixing is forbidden by
the lattice translation symmetries, and so could only
occur because we have a finite sample of configurations.
The second possibility is that our result is real, but that
m a stabilizes at around 0.2, which corresponds to phys-
ical mass of about 0.5 GeV. Only further work will dis-
tinguish these options. To our knowledge, no other
groups have looked at states with negative lattice charge
conjugation.

The remaining positive-parity states are less contro-
versial. Where we have measurements of both, the 3

&

and 2, are consistent with each other. The B tends to
be slightly lighter than the 3 &, but both are consider-
ably heavier than the p, and, at the smallest mq, are also
heavier than the nucleon. These are the expected order-
ings.

IV. WILSON FERMIONS

For WF's the fitting necessary is more straightfor-
ward. Only states of one parity contribute to each

Mass

TABLE II. Staggered meson spectrum: odd parity.

0.03
0.025
0.02
0.0175
0.015
0.0125
0.01
0.0075
0.005
0(lin)
0.(sq)

'LNLT correlator.

0.355(03)'
0.333(10)
0.287(05)'
0.3 10(40)
0.274(23)
0.270(40)
0.206(05)'
0.213(33)
0.153(09)'
0.18(2)

—0.02(3)

0.374(4)
0.340(4)
0.307(4)
0.285(6)
0.264(7)
0.242(7)
0.223(7)
0.195(9)
0.120(50)'
0.149(6)
0.057(26)

0.45(1)
0.43(2)
0.40(2)
0.41(4)
0.38(3)
0.38(5)
0.35(4)
0.35(7)
0 44+ 21a

0.31(3)
0.30(4)

0.47(1)
0.45(2)
0.43(2)
0.41(4)
0.39(3)
0.39(5)
0.36(5)
0.36(7)
0.34+' '
0.32(3)
0.31(4)
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TABLE III. Sta eStaggered mesoncson spectrum: evn: even parity.

36

0.03
0.025
0.02
0.0175
0.015
0.0125
0.01
0.0075
0.005

RLLL correlator

0.56(3)'

0.31(10)'

0.64(09)
0.56(13)
0.46(9)
0.31(6)
0.30(9)
0.25(5)
0.24(9)
0.20(7)

0.63(13)'

0.66(61)

68(11)
0.68(10)
0.69(13)
0.67(10)
0.70(10)
0.66(12)
0.70(10)
0.64(17)

0.55(13)
0.62(13)
0.65(6)
0.57(9)
0.57(10)
0.51(11)
0.52(13)
0.42(16)
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TABLE IV. StaStaggered baryonaryon spectrum.

Mass

0.03
0.02
0.01
0.005
0(lin)
0(sq)

N(p)

0.79(2)
0.73(2)
0.64(3)
0.60(4)

X(p=0)
0.73(2)
0.67(2)
0.59(3)
0.52(4)
0.48(3)
0.46(4)

A(p)

0.89(4)
0.77+,'
0.73(5)
0.72+'

A(p=0)

0.83(4)
71+7
0.67(5)

66+5
0.60(6)
0.59(7)

0.0
0.00 0.01 0.02

Average m
q

0.03

FIG. 9. LinearLinear extra olp various SF m asses to
a es II and IV.
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TABLE V. Wilson hadron spectrum.

0.30
0.31
0.32
0 325

lin
sq

mq

0.152
0.105
0.058
0.035
0
0

0.643(1)
0.507(5)
0.37(1)
0.29(1)
0.19(1)
0

0.675(5)
0.553(5)
0.443(6)
0.391(10)
0.313(11)
0.272(17)

0.82(1)
0.68(1)
0.55(1)
0.45(2)
0.37(2)
0.31(4)

0.82(1)
0.70(2)
0.64(5)

0.57(11)
0.58(13)

1.07(1)
0.90(1)
0.715(8)
0.62(1)
0.49(1)
0.42{2)

1.09{1)
0.93(1)
0.76(1)
0.70(1)
0.58(2)
0.55(2)

has come out too heavy relative to the p. Lastly, from
the slopes of the fits to m and mz we get
a =2.1+0.2 GeV. This is also in agreement with the
analogous quantity for staggered fermions, and squarely
sided with the baryons in the debate over the scale.

V. LANDAU-GAUGE GLUON PROPAGATOR

+Re TrU„(x) . (23)

On our ensemble of 36 configurations we have also
calculated the gluon propagator after changing each lat-
tice to Landau gauge. The gluon propagator is not a
physical quantity since it is not gauge invariant. Never-
theless, it is of importance for phenomenological models
of QCD. Studying it may provide some insight into the
transition between the short-distance asymptotically free
behavior and the long-distance nonperturbative physics.
We expect that the gluon will carry a screening charge
cloud along with it, and effectively appear as a massive
particle. This is what we look for in our correlators.

The Landau gauge. fixing condition, B„A„=O, can be
interpreted as the solution to the variational problem of
minimizing f d x tr(A„A„). We implement the lattice
version of the Landau gauge condition by maximizing

In the continuum, there exists the well-known problem
of Gribov ambiguities for Landau gauge. That is to say,
the differential constraint is unable to fix the gauge com-
pletely, there being more than one solution to the gauge
condition on certain configurations. The changeover to
the global integral condition is likely to get rid of this
problem in principle, but in practice finding the global
maximum without getting trapped in local ones depends
very much on the searching algorithm. We partition the
lattice into even and odd points, and then alternating be-
tween them gauge transform the lattice so as to maxim-
ize the quantity in the equation above. This process ap-
pears to converge well, though not guaranteed to do so.
We monitor the average value of l —Re Tr V(x), where
V(x) is the gauge transformation matrix at site x, and
stop the iterative process when this value falls below
10 . This typically required around 800-1000 itera-
tions. The stability of the answer was checked by run-
ning to the accuracy of 10 on some configurations and
looking at the changes in the gluon propagator.

We choose to define the gluon field as A „(x)
= [U„(x )—U„(x)]/2i The. results for the zero-
momentum correlation functions (tr[A&(0)A&(t)]) are
displayed in Fig. 12. As a consequence of the gauge-
fixing condition and the periodic boun, dary conditions,
the A p correlator is expected to be time independent.

2.0 I

!
1 I I I I

Wilson v=0.325 I I I I I I I I I I I I I I

)Vilson Ferrnions

1.5—
1.0

t- 1.0—
E

0.5— N
P

0.5

0.0
10j 20

FIG. 10. The effective mass for Wilson fermions as a func-
tion of ~. The data are for ~=0.325. m, m is de6ned in the
text. The statistical errors are smaller than the symbols.

0.0
0.0 0. 1 0.2

1/~ — 1/Ic,
0.3 0.4

FIG. 11. Linear extrapolations of the WF mass results to sc, .
The resulting values are reported in Table V.
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Its observed variation actually provides a good check on
the convergence of our iterative algorithm. The interest-
ing correlator is (tr[A;(0)A;(t)]). We note that at
short distances it is quite Aat, as is to be expected from
an asymptotically free theory. Also the correlator can-
not be fit by a sum of contributions from positive-definite
states only. Instead it is well fit by a two exponential
form containing a gluon of mass 0.241+0.034 and a
ghost of mass 0.501+0.031. Using the scale determined
by the hadron spectrum, this corresponds to a screened
gluon weighting about 600+90 MeV, and a screened
ghost at about 1250+80 MeV. Though one cannot
define a truly massless state on a periodic lattice, the
clarity of the data and the magnitude of the mass make
it unlikely that we are observing a finite-volume or some
other spurious effect.

VI. DISCUSSION

1

FIG. 12. The zero-momentum gluon propagator in the Lan-
dau gauge. The St to the space-space correlator includes one
gluon and one ghost.

to be relevant. We cannot say whether P=6.2 is in the
asymptotic scaling regime, but we note that the region
from P=6.0 to P=6.2 is not. If the perturbative two-
loop scaling formula is applicable, we get a '(P
=6.0)=0.8a '(P =6.2). Previous calculations
us'ing m~ to set the scale, give a '(P=6.0} in the range
1.6-1.9 GeV. Thus the scale is changing faster than
predicted by asymptotic scaling, a result consistent with
the well-known dip in the P function determined from
several other physical quantities.

The situation with the baryons is nicely summarized
in the so-called Edinburgh plot displayed in Fig. 13.
This plots mdiv/m~ as a function of rn~/m~ for each of
our data points. No data point is shown for SF's at
mq ——0.005, .since we have no reliable estimate for the p
mass there. For comparison we also show the curve one
gets from the' naive quark model including hyperfine
splittings. Again, the agreement between staggered
and Wilson fermions is apparent in that the points for
both form a single curve. The disagreement with the
physical value of mN/m~ is also evident. None of the
measured points lie under the line m&/m~ = I.5.

It is worthwhile comparing the masses we have been
using to the physical strange-quark mass. To do this we
find the lattice quark mass which yields a pseudoscalar
with physical mass =0.69 GeV. This is the value given
by current algebra for an ss meson in the absence of pure
gluonic intermediate states. Using the scale a '=2. 5
GeV, we find that m, a=0.016 for SF,'s and X,=0.326
for WF's. Thus for SF's our lightest-quark mass is
about m, /3, though our lowest mass with a reliable
determination of m, m~, and mIII is about 2m, /3.
These lowest masses are comparable to those used by
others with SF's at P=6 (Refs. 24 and 25}. For WF's,
our lightest mass is just above m„ in common with all

2.0

1.8—

There are a number of pleasing features ip these re-
sults. The chief among them is the consistency between
the Wilson and the staggered spectra. The extrapolated
values at mq =0 agree, but, more importantly, the results
at finite quark masses also match. The Wilson states for
«.=0.32 (m ~=0.058) match very closely the staggered
states at m~ =0.03, while «=0.325 (m~ =0.035) corre-
sponds to something slightly less than staggered
m~=0. 02 A similar ratio of m~ to m~ was also ob-
served by Hamber at P=6.0. Comparing the data for
SF 's with WF 's at corresponding points, we do find that
the signal is significantly cleaner for WF 's.

It is also gratifying that the staggered Aavor symmetry
seems to be restored at the level of =5%. This is an im-
provement over the results at P=6 (Ref. 24}. Together
with the closeness of the spectra of SF 's and WF 's this
indicates that P=6.2 the lattice spacing may be fine
enough that the details of the fermion action have ceased

1.4—

1.2—
o WF'

1.0
0.0

I I I I I I I I I

0.5
rn„/rn

1.0

FIG. 13. Edinburgh plot of both SF and WF data. The SF
point at m~ =0.005 is not included because of the very large
errors in m~. The squares are the known limiting points, and
the curve is a naive quark model.
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other large-scale calculations.
What are we to make of the apparent problem with

the baryons? One can consider several explanations. (1)
It may be that we are not in the scaling regime, even at
/3=6. 2. The ratio of nucleon to p mass may simply de-
crease towards the correct value as P increases. In view
of the agreement between staggered and Wilson fer-
mions, and of the restoration of staggered flavor symme-
try, we think this is an unlikely explanation for the large
effect. (2) The results are affected by the finite size of the
small box. This is a more reasonable explanation, partic-
ularly at the lightest-quark masses, for which the nu-
cleon states are largest. Certainly a physical proton
would have to be squashed into our small box (or rather,
crushed against its neighbors). This would raise the
mass which we measure. Indeed at the lightest stag-
gered quark mass (m~ =0.005) we may be seeing finite-
size effects in m„. We expect the (larger) baryons to feel
the finite size more strongly than the meson states. (3)
The extrapolations are from quark masses that are too
heavy. This is certainly true to some extent. It does
not, however, explain why our data points lie systemati-
cally above the curve in Fig. 13. (4) Finally, to be honest
we should consider the possibility that both the points
and their extrapolation are correct, and that we are sim-

ply seeing a defect of the quenched approximation.
Indeed there is good reason to be suspicious of the
quenched approximation. Given the present experimen-
tal value of the so-called nucleon o. term, chiral pertur-
bation theory leads one to the surprising conclusion that
one-third of the nucleon mass is due because of dynami-
cal strange quarks. The analysis is by no means uncon-
troversial, but if correct it would afFect most every oth-
er quenched observable as well.

Comparing our results with earlier work at /3=6
(Refs. 23 —25) (or work using an improved action with a
similar scale ), it appears that going to smaller lattice
spacing has not improved the agreement with the contin-
uum spectrum. It is instructive to divide the data into
two regions: (1) mz ~ m, and (2) mq & m, . Region (1)
contains all the WF data and most of the SF data. In
the Edingburgh plot this region has m /m )0.67, us-

ing the ss mass of 0.69 GeV, and m& ——1.02 GeV. In
fact, a more careful calculation, using the relativistic
quark model of Capstick, Godfrey, and Isgur, finds
that for mq ——m, one should expect m /m~=0. 75 and
m&/m =1.45 —1.48 (Ref. 30). This calculation is likely
to be quite reliable for such relatively heavy quarks, and
it is a considerable challenge to the lattice to surpass it.
Refs. 23, 25, and 27 indeed find mass ratios close to
these values for m~ =m, , while finds m~/mz slightly
too high. Our data are also too high, similar to those of
Ref. 24.

It is extremely difficult to convincingly extrapolate
from data in region (1) to m~ =0. It is in region (2) that
the quarks become truly light, and m&/mz makes its
major departure from —', . Thus it is crucial to measure
masses in this region. With SF 's, Refs. 24 and 25 have
one (maybe two) such points. Though they disagree
somewhat on m&, it is clear that they both find m&/m
to be too high. %'e have a considerable number of

points for m in region (2), though only at two do we
have mz, and only at one of these can we quote a reli-
able value for m&/m . This single point gives an even
larger mz/m than the heavier quarks of region (1).
Thus, one again, moving to larger /3 has not improved
matters.

Clearly a resolution of the problem with baryons re-
quires study on a larger lattice at the same /3, with em-
phasis on extracting ~, p, and X masses for mq (m, .
This might also shed further light on the problem of the
anomalously light e. We hope that the next generation
of dedicated machines will be able to penetrate to this
crucial region of parameter space.
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[G(t) —C(t;a)]'
a(t)'

Here G(t) and cr(t) are the mean and deviation on each
time slice, and C ( t;a ) is the function to be fit by varying
the parameters a. The errors ascribed to the best fit

values are then conventionally defined by the variation
6a in a given parameter needed to increase the P by one
unit. When the fluctuations from one time slice to the
next are correlated this estimator is seriously flawed. To
take an extreme example, suppose that the individual
correlators G;(t) were each of the form .A;exp( Mt), —
with a common exponential fall off. Then after averag-
ing and fitting, the standard method would indeed give
the correct central value M, but could give a consider-
able 6M. Clearly we need a method which would show
no variation in M.

One reasonable method is "cross validation, " which is
almost universally employed in simulations to date. One
divides the data into subensembles containing several
configurations each. In each subensemble separately one
computes the masses by fitting the average as above, and
takes the dispersion in the fit values as an estimate of the
statistical errors. There are at least two objections to
this method. A practical drawback is simply the size of
the samples required —each subensemble must contain
enough configurations to show a reasonable signal, and
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then one needs several of these subensembles to make an
estimate of the dispersion. In our case, one needs suben-
sembles of 10 or more configurations in some channels
to see a signal worthy of being fit, which would then give
only three or four points whose scatter is to give the er-
ror. Another problem is that these three or four points
are drawn from an unknown distribution, and the con-
ventional relationship between the error of the mean and
the width of the distribution may not hold. Only in the
limit of very large subensembles should we expect the
fluctuations in the fit parameters to become Gaussian.

The first problem is cured in the so-called jackknife
method, named for its versatility and all around useful-
ness. As described, e.g., in Ref. 16, this method
proceeds by considering the N subensembles of N —1

configurations obtained from the original sample by re-
moving a single configuration. One then fits to the aver-
age of each subensemble, and obtains a distribution of 1V

values for each fit parameter. In Fig. 14(a) we show the
jackknife distribution for the p mass at mq

——0.005. The
jackknife estimate of the errors is given by a suitable re-
scaling of the variance in the fit parameters:

1 0

0
0.26 0.28

I I I I I I I I I I I I I I

0.30 0.32 0.04 0.36
p Mass

(b)

I I I I I I t I I I I I I I 1

(0)—

[N((~2) (~)2)]1/2 (A2)

The advantage over cross validation comes in that one
can get stable results for the central value even with rel-
atively small samples. However, the jackknife distribu-
tion need not be Gaussian, as is evident in Fig. 14(a).
One could use the histogram to extract asymmetric er-
rors, but with such a small population the results for the
errors may be unstable.

The bootstrap method' is a generalization and im-
provement of the jackknife. It requires somewhat more
work, but is known to be a more robust method than the
jackknife. In fact the jackknife is an approximation to
the bootstrap. Starting from the original N configura-
tions, one considers the huge set of all possible sets of N
configurations obtained by drawing from the original set
with replacement. That is, these bootstrap samples can
contain a given configuration once, several times, or not
at all. On average, a fraction 1 —[(N —1)/N]+
=(e —1)/e =—,

' of the N configurations will be represent-
ed in a given bootstrap sample. One extracts fit parame-
ters from each sample, and obtains the bootstrap distri-
bution for each parameter. The resulting distribution is
the best approximation one can make to the true distri-
bution obtained by taking a large number of completely
independent sets of X configurations each, as one would
in applying cross validation to a huge ensemble. One
course there are far too many [N /N! =exp(N}] possi-
ble bootstrap samples to actually perform the computa-
tion. Instead one estimates the bootstrap distribution by
(what else) a Monte Carlo simulation. That is, one gen-
erates representative bootstrap samples by drawing X
configurations at random from. the ordinal set. Then
from each sample one extracts a mass in the usual way.
The bootstrap distribution for the m =0.005 p mass is
shown in Fig. 14(b}. Note that it has a shape similar to
the jackknife distribution (since the latter ensemble is ba-
sically a carefully chosen subset of the full bootstrap en-
semble), but is sufficiently well populated that we need
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FIG. 14. Histogram of m- obtained from (a) 36 jackknife
samples and (b) 1000 bootstrap samples of the mq ——0.005 zero
momentum SF LNLT data.

not use the usual mean and variance as estimates of the
fit parameters and errors. Since the distribution is non-
Gaussian in general, the median turns out to be more
robust estimate of the central value than the simple aver-
age. Likewise we obtain the robust estimates of the er-
rors by asking what values 5+M and 5 M from the
median include the middle 63% of the distribution.

In practice we find that the jackknife and bootstrap
distributions for most observables look fairly Gaussian
with our ensembles of only a few dozen configurations.
In these cases the two error estimates agree. However,
for those channels where the signal shows large fluctua-
tions we definitely prefer to use bootstrap. In every case
the errors we obtain using either jackknife or bootstrap
methods bear little or no relation to naive error esti-
mates.
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