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Baryons in QCD are three-quark color-singlet bound states and any two of the quarks are neces-
sarily in a 3 color state. These 3 diquark states form bound states which, if they are of sufficiently
low mass, will play a significant dynamical role in the structure of baryons. Here we estimate
these diquark masses by using an approximate homogeneous Bethe-Salpeter (BSj equation. A new

technique for determining the mass of a bound state from the BS equation, which avoids the need
to numerically solve the integral equation, is introduced and its validity demonstrated by applica-
tion to various meson states. Our diquark mass values are compared with those determined from
analysis of experimental data on inclusive production of protons.

I. INTRODUCTION

The standard model of hadrons is quantum chromo-
dynamics (QCD) and in this model hadrons are under-
stood as color-singlet bound states of quarks with the
force between the quarks arising from the exchange of
self-interacting gluons. In particular, baryons and
mesons are primarily qqq and qq color-singlet states, re-
spectively. The binding of these states is related to the
color algebra of QCD. The baryon states of QCD are
interesting because, in contrast, quantum electrodynam-
ics does not bind three electron states. This feature of
QCD may be understood by noting that in a color-
singlet baryon any two quarks are necessarily in a 3
color state and that for 3 qq states, gluon exchange is at-
tractive and believed to lead to the formation of bound
states which are named diquarks. If, as the evidence
suggests, diquarks have sufficiently low eff'ective masses,
then they will play a significant dynamical role in the
structure of baryons. Of course, because the diquarks,
like the quarks, carry color charge they are assumed to
be confined; that is, they may only be "observed" as con-
stituents of baryons. The purpose of this paper is to es-
timate the masses of these diquark states by using a
well-defined approximation scheme for QCD and to
compare our diquark mass predictions with those ob-
tained from the analysis of experimental data.

Diquarks were introduced by Ida and Kobayashi' and
by Lichtenberg and co-workers and in recent years it
has become clear that diquarks may provide a means for
understanding baryonic properties and reactions. For
example, Fredriksson, Jandel, and Larsson have sug-
gested that the diquarks could explain the trends in
high-energy data that are usually attributed to gluon
processes as described by perturbative QCD. They have
also shown that the bulk of data from deep-inelastic ep,
eD, pp, pN, vp, and vN scattering data is fitted with a di-
quark model of nucleons. Fredriksson and Jandel have
shown that there is evidence for diquarks from the slow
decrease in probability for double collisions with increas-
ing number of hadrons produced in the first projectile-
nucleon collision. An analysis of experimental data on

inclusive production of protons by Laperashvili
confirms the dominant role of hard scattering of quarks
by diquarks in regions of large transverse momenta of
hadron production, and extracts a scalar (ud) diquark
mass bound of )400 MeV. Dziembowski, Metzger, and
Van de Walle show that diquarks can provide a quanti-
tative interpretation of the negative charge radius of the
neutron.

Calculations of diquark masses have used potential
models and the MIT bag. However, the validity of and
the relationship to QCD of these model calculations is
not clear. Here we will attempt to calculate diquark
masses using an approximate form of the covariant
homogeneous Bethe-Salpeter (BS) equation for qq bound
states in QCD, and so the nature of our approximations,
which is to neglect nonplanar graphs and n ) 2 gluon n-
point functions, is clear. Of course, such integral equa-
tions can only be solved by difficult numerical computa-
tions. To overcome this problem an analytical pro-
cedure is introduced which reformulates the BS integral
equations as a variational problem for the bound-state
mass functional ~ While variational calculations then
determine the bound-state masses and the corresponding
form factors, these mass functionals also allow bounds to
be easily placed on these masses. The calculation of
these bounds exploits particular nonperturbative features
of QCD related to the manner in which chiral symmetry
is realized.

Any approximate treatment of QCD always attracts
criticism of the validity of the approximations employed.
Hence we also apply the same treatment to the mesons.
We obtain masses for the pseudoscalar meson octet (the
Nambu-Goldstone bosons of QCD) and the p and co

masses. For the pseudoscalar octet their masses are
shown to automatically satisfy the Cabell-Mann —Okubo
mass formula. Thus our approximation procedure is
shown to work both qualitatively and quantitatively for
the mesons, and so we may attach some significance to
our diquark mass results.

In Sec. II the Bethe-Salpeter equations for mesons and
diquark states are presented along with the Schwinger-
Dyson (SD) equation for the quark propagator, which
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plays a vital role in our analytical treatment of the BS
equation. It is the interplay between the SD and meson
BS equations which allows one to understand the dual
role of the pseudoscalar mesons in QCD, namely, that of
qq bound states and of Nambu-Goldstone bosons. The
SD equation solutions indicate the structure of the QCD
vacuum manifold and thus the mode of realization of
chiral symmetry in QCD. In Sec. III explicit expres-
sions for meson mass functionals are obtained and the
results mentioned above derived. In Sec. IV the tech-
niques are applied to the calculation of various diquark
masses. The significance of the results is discussed final-
ly in Sec. V.

II. MESONS AND DIQUARKS

We intend to estimate meson and diquark masses by
truncating the SD equation for the quark propagators
[Fig. 1(a)] which are then used in the truncated homo-
geneous BS equations for the mesons [Fig. 1(b)] and the
diquarks [Fig. 1(c)] by keeping only the planar gluon ex-
changes. &e are thus neglecting nonplanar gluon ex-
changes and the n & 2 n-point gluon functions D '"'.
This of course means that we are using a non-gauge-
invariant approximation to QCD. We are unaware of
any practical way of making gauge-invariant approxima-
tions in QCD. However, in one attempt to address this
problem, Cornwall' has considered the possibility of
selectively summing terms in a gauge-invariant manner.
At best we shall assume that the 2-point function D(p)
we use is an effective one arising from a scheme such as
that of Cornwall.

The usual Feynman rules, in Euclidean metric, give
for the diagrams in Fig. 1 the following equations. For
the quark propagator we have

d q A.'y" 1 y"A, '
X(p) =M+ f D (p —q)(2~)' 2 if+ X(q)

(2.1)

where the quark propagator is G(q)=[if+X(q)]
is the quark mass matrix and I A'/2, & = 1, , & I a« the
generators of SU(3), the color group. Equation (2.1) is a
nonlinear integral equation in spin, flavor, and color
space. For massless quarks (M =0) the solution of Eq.
(2.1) has the form"
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FIG. 1. Feynman diagrams for the various integral equa-
tions: (a) the nonlinear Schwinger-Dyson equation [Eq. (2.1)]
for the quark mass function; (b) the Bethe-Salpeter integral
equation for qq meson bound states [Eq. (2.4)]. The quark an-
nihilation diagram, which is shown but not used in Eq. (2.4),
only contributes to the isosinglet mesons. The neglect of this
process means that Eq. (2.4) is only valid for isovector mesons.
Misapplication of Eq. (2.4) to the isosinglet meson leads to the
U & ( 1) "problem": namely, the underestimation of the
pseudoscalar-meson mass. (c) The Bethe-Salpeter integral
equation for qq diquark bound states. In (b) and (c) the non-
perturbative quark propagator from (a) is used. The i,j, . . .
denote color indices while a,P, . . . denote flavor indices. The

+ . denote higher-order gluonic processes.

8(p) = f,D(p —q)
3 (2~) A q +8 (2.3b)

where we have used A.'A, '= —", 1.
For the case of small quark masses the solution of Eq.

(2.1) has the form X(q)=i [A (q) —l]/+M+8 (q),
with A =A and 8 given by

symmetry and the presence of the matrix V indicates
that a mixed, partial Nambu-Goldstone (NG) realization
of chiral symmetry occurs. This and other aspects of the
hidden chiral symmetry of QCD are discussed in Ref.
12. The functions A (q) and 8(q) are solutions of the
coupled integral equations

d4
[A( ) —1]p = —f D( — )

3 (2n) A q +8
(2.3a)

X(q)=i[A (q) —1]g+ VB (q),
where the matrix Vis

(2.2) 16 dq M+8 (q)
(p) = D (p —q)

(2n. ) A 'q'+(M +8 )'

V=exp[iy5(g+n. T")) .

b = 1, . . . , NF —1 I are the generators of
SU(N~) where NF is the number of quark flavors. Here
g and m' are arbitrary real constants. In the massless
limit QCD has exact global G =UL (N~)Uz(N~) chiral

I

(2.3c)

Except in the critical case of the NC» bosons we shall use
the approximation B =B.

For the qq meson bound states the integral equation
corresponding to Fig. 1(b) is, using matrix notation,

1(p,&)=—f,D(p —q)
d q k'y"

(2m )
iA f ——+M+8

2

I (q, P)

iA g+ —+M+8
2

A,'y"
2

(2.4)
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~il ~jk ~ji ~kl (2.5)

with summation convention for repeated indices. This
makes it clear that antiquarks transform as the 3 and
quarks as the 3 irreps of the SU(3)-color group. Using
the algebra of the color generators Eq. (2.4) may be
separated into a color-singlet state and color-octet states,
since 33=18. For this purpose it is sufficient to use
the form (2.5). Write

in which we use the convention that, for example, the
first A and B functions have argument (q P—/2).

In Eq. (2.4) we have neglected the q-q annihilation
terms, which are shown in Fig. 1(b), and which can only
contribute to isosinglet meson states. Hence Eq. (2.4) is
to be used only for isovector mesons. If Eq. (2.4) is in-
correctly used for the isosinglet pseudoscalar g' meson,
for example, then a mass is predicted which is much
lower than the experimental value. This is of course the
well-known Uz (1) problem.

The matrix notation of Eq. (2.4) obscures one impor-
tant point: namely, the difference between quarks and
antiquarks. For example, the color structure of Eq. (2.4)
has the form

Then using A.'A, '= —", 1 and A.'A, "A,'= ——,'k we obtain two
uncoupled integral equations:

(2.6)

b =1,. . . , 8 . (2.7)

Equations (2.6) and (2.7) cryptically denote equations of
the form in (2.4) but with the A, matrices now removed.
The sign in Eq. (2.6) is significant as it indicates that
gluon exchange is an attractive force in color-singlet qq
states. This can be seen by noting that for these states
Eq. (2.4) is identical to the BS equation for e+e bound
states in QED, provided D (x) becomes the photon prop-
agator. Conversely, the opposite sign in Eq. (2.7) indi-
cates that gluon exchange is repulsive in qq 8 states.

Note that in the meson equations above, and those for
the diquarks below, the quark propagators from Eq. (2.1)
are used. This is important because, as we shall see
later, it leads to the emergence of current-algebra results
for the Nambu-Goldstone bosons. It is also related to
the confinement problem of quarks.

For the qq diquark bound states which, because they
always carry color charge, can presumably only occur as
dynamical constituents of color-singlet states, the equa-
tion for Fig. 1(c) is

d'q gaT~VT
I (p, P)= —f,D(p —q)

(2ir )' 2
iA g+ — +M+B

2

I (q, P)

iA —g+ —+M+B
2

A.'y"
2

(2.8)

using matrix notation and where T denotes the transpose. Defining I '= Ct where C =y y is the charge-conjugation
matrix, and using C 'y"C= —y", Eq. (2.8) becomes

I'(p, P) = —f,D (p —q)
A,
' y"

(2' ) 2
I"(q,P)

iA g+ ——M B-P
2

i A —g+ —+M+B
2

X'y"
2

(2.9)

The color structure of Eq. (2.8) or (2.9) is explicitly
shown by

(2.10)

which may be separated into 3 and 6 SU(3)-color states,
since 33=3+6, which are simply the antisymmetric
and symmetric parts of I,&, respectively. Using
&~;&I,i

——2(51,;6~~ —,'5qI5, J ), E—q.(2.10) becomes

baryon are necessarily in a 3 color state is seen by noting
that one can simply rewrite the color state of such a
baryon:

1—(RBG RGB +GRB —GBR +BGR —BRG)—v'6

1 1
R —(BG —GB)+G —(RB BR)—1

v'3 v'2 2

3 q
E 3 a = 1,2, 3 (2.11) +B —(GR —RG )

1

v'2
r6 ———', r6, b =1,. . . , 6, (2.12)

which denote equations of the form (2.8) or (2.9) but
with the k matrices removed. Again the difference in
sign between Eqs. (2.11) and (2.12) results in gluon ex-
change being attractive in 3 states, but repulsive in qq 6
states. The justification for these statements is given in
Sec. IV.

That any two quarks in a three-quark color-singlet

where [(1/v'2)(BG GB), . . . I are rec—ognized as three
basis states for the 3 representation.

The determination of meson masses from Eq. (2.4) and
the diquark masses from Eq. (2.9), after finding solutions
of Eq. (2.3), is not an easy computational problem.
Hence in Sec. III we introduce an analytical technique
for obtaining approximate solutions to Eq. (2.4). The
same technique is applied to diquarks in Sec. IV.
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Of fundamental significance in QCD are the pseudoscalar isovector meson states which emerge from Eq. (2.4). Ex-
perimentally, in the limit of NF ——3 light-quark masses, these are the three pions, four kaons, and one g meson form-
ing the well-known pseudoscalar-meson octet. They have low mass because in the limit of massless quarks they are
the massless Nambu-Goldstone bosons which arise from the hidden chiral symmetry of QCD, as we now show.

Because Eq. (2.4) is only valid for isovector mesons we must project out the required states. For the color-singlet
pseudoscalar states we thus write I = I Tfiy5, and Eq. (2.6) becomes

I f(p, P) =—f 4
D (p —q)trsF

8 d4q

(2m. )
iA g ——+M+8

2
iA f———+M+8

2

rg(q, P), (3.1)

where we have used tr(T T )= —,'5fg, Iy", yqI =0, and
y"y"=4. Now consider the case M =0. Then for P =0
Eq. (3.1) becomes, after calculating the spin-fiavor trace,

16 f d q If(q)
(27r) A q +8

which, on comparing with Eq. (2.3b), is seen to have
solutions I f(q)=B(q). Thus the crucial result emerges
that in the limit of massless quarks the pseudoscalar-
meson equation (3.1) has solutions for P =0; that is,
these mesons are massless, and furthermore their form
factors 1 f are the quark mass function 8 (q). This result
was in fact already apparent from the Im'I occurring in
the solution (2.2) of the SD equation in the massless lim-
it. This important result was first obtained in a four-
fermion model by Nambu and Jona-Lasinio' and fur-

ther studied by Delbourgo and Scadron. ' It arises natu-
rally in the approximate bosonization of QCD in Ref. 11
and in the bosonization discussed in Refs. 12 and 15. It
is also intimately related to the fact, discussed in Ref. 12,
that the vacuum manifold of QCD has the structure of
the coset space G /H =U„(Nz ) where H =Uy(NF ) is a
subgroup of the chiral group G. This is most easily seen
in Ref. 11, though there the language of coset spaces was
not used.

In the case of low-mass quarks, M =0, these pseudo-
scalar mesons acquire mass, and we now present a tech-
nique for obtaining these masses. Consider first the
simpler case of equal-mass quarks, M =m 1, so that the
fiavor trace in Eq. (3.1) is easily evaluated. Now expand
the A and 8 functions in Eq. (3.1) as power series in P„.
We obtain

2 d'q
1 f(p)= ——f D(p —q)[P Io(q )+4(P q) 1&2(q )]2I f(q)(2~)'+,Ds —q

16 d4q
I f(q)+

2m Aq q+ m+8 q
(3.2)

where

I, (s)= 3
(A s+8 ) ds

2

2Q+B'
ds

Io(s)= z ~ ~
3A +286 2 dB

(A s+8 ) ds

2s+

(3.3)
2

M„[r]'=—24 d q I (q)'
f„(2m.) A (q) q +[m +8 (q)]

9 f 4 I (x) (3.4)

where

I

that the eigenvalue has value 1, in order to recover the
original form of these equations, determines P = —Mf,
and gives the meson mass spectrum IMf j. The useful-
ness of Eq. (3.2) is that it may be converted into a varia-
tional problem. By taking Fourier transforms, multiply-
ing throughout by 1 f(x)/D(x), and integrating we ob-
tain, using the rest frame [in which P =(iM, 0)], the
pseudoscalar mass functional M„[I ]:

where s =q and terms involving d 2 /ds are not shown.
Changing the left-hand side (LHS) of Eq. (3.1) [or Eq.

(3.2)] from I to A,r, these equations become eigenvalue
problems with eigenvalue A.(P ). Then the requirement

d4qf„[I] = f 4 [Io(q )+4qs Ii(q )]I (q), (3.5)

where 1 (q) is the form factor in the rest frame (P=0).
It is easily checked that the variational equation
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5M[I ] /5I =0 reproduces Eq. (3.2). The advantage of
the variational formulation is that we can use approxi-
mate forms for I to estimate masses rather than numeri-
cally solve the eigenvalue problem of Eq. (3.2).

We will assume that f„M [I ] )0, and thus

fd xI /D &0. This relates to the stability analysis of
the "vacuum" which arises in the bosonization ap-
proach"' ' to these mass functionals and is more ap-
propriately considered in that context. Later, analogous
assumptions are made for other mass functionals.

In the limit of zero-quark masses we have already
determined that the pseudoscalars are massless and that
their form factor is 1 =B. Noting that Eq. (2.3b), after
Fourier transforming, has the form

8 (x)= ", D (x)F—T 8(q)
A (q) q +B(q)

(3.6a)

and using I =8 we find that Eq. (3.4) also gives M =0
as required.

For low mass quarks Eq. (3.6a) becomes, from Eq.
(2.3c),

8 (x)= ", D (x)FT—
m +8 (q)

A (q) q +[m +8 (q)]

m
2 7

(3.7)

where

( ) 24
d q B(q)

(2m) A(q) q +B(q)

where we have finally used 8 =B. Eq. (3.7) reproduces
the standard current-algebra result for NG
pseudoscalar-meson masses.

It is important to notice that we have used the identi-

ty

(3.6b)

and using the approximate form factor I =8, Eq. (3.4)
gives

which is valid when I (x)=8 (x), and follows from Eq.
(3.6b). This is why the gluon propagator D(x), which
specifies the nature of the force between the quarks, does
not appear explicitly in Eq. (3.7). It is significant that
the same result, Eq. (3.7), emerges from the bosonization
of QCD in Refs. 11 and 15, where Eq. (3.8) is also used.

The above techniques can be extended to the case of
unequal-quark masses and we again obtain Eq. (3.7) but
with 2tr(MT TI) (no f summation) in place of m. For
NF ——3 and a diagonal quark mass matrix M with ele-
ments m„, md, m„with m„=md, this result gives states
which we identify as the three pions, four kaons, and
one g, with their masses given by

2 2m„ =pm„, mz ——p
mu +ms

m„+2m,
m~ =p qqp—

It is to be noted that these masses satisfy the Gell-
Mann —Okubo mass formula 4m& ——3'„+m

By the same technique mass functionals may also be
obtained for non-NG bosons such as the p, co, a&, . . .
mesons. We briefly present the results for the p meson.
For this color-singlet, spin-1, isovector state, we use Eq.
(2.4) with I „=(5„,—P&P /P )y, I /T/. Projecting out
this state in Eq. (2.4) and again expanding the P depen-
dence of the A and B functions in the quark propagators
we obtain, by the above procedures, the p-meson mass
functional

24 d4q —,'sA'+(m +8)'
fp (2n) [sA +(m +B)~]~

where

d4 I x~
f~ D(x) (3.9)

f , 1.(x)' 16 f d'q 8-(q)[m+8-(q)]
D (x) 3 " (2m)' A (q)'q'+ [m +8 (q)]'

(3.8)

A +s dB
ds

dB d'B
ds ds2

2 A +28 ( —'sA ~+Bi)dB
ds

(sA +8 )

4q& ( —', s A '+8') 2(sA '+8') dB
ds

2

(sA i+8')'
2 '

Bd'B A2 2BdB+ ~
— +

(sA'+8')4 1(q) + '''

where terms involving dA /ds are not shown. Repeating the above derivation for the isosinglet cu meson we obtain
the same mass functional. Hence in the above approximation to QCD the p and co mesons are degenerate. We show
elsewhere that this degeneracy is split by p~vr~~p fluctuations which lower the p mass.

We also present the mass functional for the a
&

meson (previously known as the A
&

meson) as it will be used, in the
next section, to provide a useful lower bound on the spin-1 diquark mass. For the a& meson we project the state
I z

——(5„„P„P„/P )y iy&—I IT/ from Eq. (2.4) and use again the above techniques to obtain the following mass func-
tional:
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where

q ~( )2
9 d4 I(x)4 —'sA —(m +8 ) 2

f, (2') [sA +(m+8 )2]2 f, 2 f D(x) (3.10)

2
dB 2BdB d B

( A 2+82)2

2 A +28 ( —'sA2 82—)
ds

(sA +8 )

4q4 ( —,'sA —8 ) ~ 2(sA +8 ) +
ds

2

A +2B dB
ds

(s A '+8 ')4 1(q) + .

(3.1 1)

The above p, co, and a&-meson mass functionals, and as
well expressions for various coupling constants, have
been previously derived from the bosonization in Ref.
15. Hence the connection between the BS approach to
mesons and the more powerful bosonization methods of
Refs. 11, 12, and 15 becomes apparent.

We now use the above mass functionals to estimate
some bounds on meson masses. In principle this first re-
quires D(x) to be specified and A (q) and B(q) to be
found by solving Eqs. (2.3). For simplicity we here use
analytic forms for A and B which follow from the ana-
lytic arguments of Ref. 11 and by numerical studies
which have used forms for D (x) which model its asymp-
totic freedom and infrared slavery characteristics. The
forms used are

A(s)= .

X2
2 for s~

1/2
X2

1+ 1+2
2 s

(X —4s)' for s &s

x'
fors &

(3.12)

8 (s) = 4mD'
ln

s
for s ~s

Here A is the usual mass scale parameter of QCD and X
is another mass parameter determined indirectly by A.
The value of the parameter y=1.8 follows from the
asymptotic behavior of 8 (s) found in the numerical
studies. We note that this value for y is different from
that obtained by the operator-product expansion'
whereby

3C2(R)r=1—
11——'NF

c' —1
C2(R) =

C

which for NF=0 and Nc ——3 gives y= —,', & l. (N =0
means only that quark loops are neglected in the evalua-
tion of the QCD P function. ) The OPE result can be ob-
tained exactly from Eq. (2.3b) if the method of Ref. 17 is
used. This amounts to supposing the validity of the ap-
proximation

f dQ~D((p —q) )=0(p q)D(p )—

+ &(q' —p')D(q'), (3.13)

for the angle integration in Eq. (2.3b), and that
D(q ) =a(q )/q with the running coupling constant
a(q ) having the usual asymptotic dependence on q .

Numerical solutions of Eq. (2.3), without this approxi-
mation, give y ~ 1, showing that this approximation
gives the incorrect asymptotic behavior for 8 (q ). We
note also that the OPE asymptotic form for B would
cause (qq ) and thus m to diverge, whereas the form in
Eq. (3.12) gives finite values. That one must employ a
bad approximation to obtain the OPE result suggests a
shortcoming of the OPE approach.

Once A, 7, and y have been set ma and s are deter-
mined by requiring the functions B and dB/ds to be
continuous at s =s . For A=0. 19 GeV and 7=1.14
GeV we obtain mD ——0.483 GeV and s =0.258 GeV .
For different values of A the other parameter values fol-
low by appropriate scaling. An important feature of A

and B is that the quark propagator has no poles, and in
this manner, quark confinement occurs.

For the pion we obtain the values f =84 MeV and
(qq ) =(333 MeV) . Equation (3.7) then gives the bound
m & 162 MeV for a quark bare mass of m = 5 MeV,
which compares well with the experimental value of
m =140 MeV.

We shall estimate the p mass by evaluating Eq. (3.9)
with the approximation I &=I „=B, which might be
reasonable since the p and the ~ mesons differ only by a
spin fIip by one quark. This allows us to easily evaluate
the mass functional by using the identity of Eq. (3.8)
and, by noting that for this approximation the integrand
may be written in an O(4)-symmetric form and thus after
analytic angle integrations, we are left with a simple
one-dimensional quadrature. In general, the integrand
has O(3, 1) symmetry. We obtain mz & 878 MeV for
m =5 MeV ( &847 MeV for m =0) and the same values
for the co meson, which are to be compared with the ex-
perimental value m =783 MeV. Our calculations indi-
cate that the p mass is decreased by some 20 MeV when
m.n intermediate states are included.

Finally, for the a
&

meson the approximation I
&
=B
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which, unlike that for the p, has no physical justification,
gives the excessively large upper bound of m, & 6.4
GeV. This only serves to indicate that the structure of
the a

&
is very different from that of the p or ~ mesons.

To determine the proper form factor for the a& clearly
requires a numerical variational calculation using
M, [I ].

IV. DIQUARK MASS FUNCTIONALS

We now come to the main results of this paper: namely, the estimation of diquark masses using the techniques
developed in the previous section. The 3 state diquark masses are determined by Eq. (2.8) [or Eq. (2.9)] where the re-
sults of the color algebra are given in Eq. (2. 11). For reasons that will become apparent shortly, the J =0+3 qq
states can be of low mass. To extract these states from Eq. (2.11) we write I =I oCiy& to explicitly display the flavor
and spin matrix structure of I . That this is the correct Dirac matrix form for a J~=O+ isoscalar diquark state is seen
by showing that u (1) Casu (2), where u (1) and u (2) are two-quark spinors, is a scalar under Lorentz transforma-
tions. Projecting the above state from Eq. (2.11) we obtain

I (p, P)= —f D(p —q)tr „4 d4q

(2~)
iA g+ —+M+B

2

z 0

iA —g+ —+M+B
2

T I o(q, P), (4.1)

9 4 1(x)
, fdx

where fo[1 ]=f [I ] which is defined in Eq. (3.5). We
shall use Eq. (4.2) to estimate an upper limit for the di-
quark mass by using the approximation I 0=I „=B
rather than performing a proper variational calculation.
We may then use the identity of Eq. (3.8) to considerably
simplify the calculation, giving

24 d'q Bm (2m +B
0 & ) 4 (4.3)f (2') sA +(m+B )

as an upper bound on m0, the scalar diquark mass. We
may also use Eq. (4.2) to obtain a lower bound. Using
Eq. (3.4), the pion mass functional, Eq. (4.2) becomes

M, [r]'=M [I ]'+ f d4x
2fo2 D (x)

(4.2)

where To ——[I/Q(2NF)]1, i.e., tr(T T )= —,', and in

which, in order to make a comparison, we have made

the change of variables: q,p ~—q, —p, respectively.

Noting that Eq. (4.1) differs from Eq. (3.1), the pion

equation, for equal-mass quarks, by only a factor of 2,
we see why the J =0+ diquark state is expected to be a
low-mass state: if this factor of 2 were included in Eq.
(4.1), and in the limit of massless quarks, then this bound
state would be massless. This factor of 2 is of course
due to the color algebra, and means that in 3 qq states
the gluon force is attractive but somewhat weaker than
for color-singlet qq states. Conversely the opposite sign
for the 6 qq states in Eq. (2.12) shows that gluon ex-
change is repulsive for these states.

We may now apply the method of Sec. III to convert
Eq. (4. 1) into a variational problem and we obtain, for
equal quark masses, the diquark mass functional.

24 d q 1(q)~

fo (2~) A (q) q +(m +B )

and we obtain, from Eqs. (4.2) and (4.4),
&Mo[B ] which, using B =B and Eq. (3.12) for A and
B, gives 140 MeV & m0 & 742 MeV for m =5 MeV. In
the case of zero-mass quar ks these bounds become
0 & m0 & 708 MeV, giving some indication of the depen-
dence of the scalar-diquark mass on the quark bare
masses. These results are to be compared with the value
m 0 & 400 MeV, extracted by Laperashvili from the
analysis of experimental data on inclusive production of
protons, which used the dominance of the hard scatter-
ing of quarks by diquarks. While our upper bound
could be lowered by a detailed numerical minimization
of Mo[I ], the above bound certainly indicates the
dynamical importance of the scalar diquark in baryon
structure, as argued by Fredriksson and by Lichtenberg
and their co-workers.

It is also important to consider the J =1+3 diquark
state since it is, in principle, also a possible constituent
of color-singlet spin- —,

' baryons if its mass is sufficiently
low. For these states we project the state 1 = (6

2 P P~
P„P„/P )y„C—i y 51 [Tg from Eq. (2.11), and using

again the method of Sec. III, we obtain the mass func-
tional

d 4q —,'s A ' (m +B —)
M) [I ] = — 1 (q)~f ) (2~) [sA +(m+B ) ]

+ d x
Ig „, r(x)'

(4.5)

where we find f, [I ] =f, [I ].
Again one upper bound on the mass is obtained by us-

ing the form factor I
&
= I =B which allows the iden-

tity of Eq. (3.8) to be used. Similarly to the spin-0 di-
quark, Eq. (4.5) may be used to obtain a lower bound on
the spin-1 diquark mass. Using Eq. (3.11), the a, -meson
mass functional, Eq. (4.5) gives

)2
M, [r]'=M. [r]'+ f d x &M, [r] &m. ',

&M [1] &m (4.4) (4.6)
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and we obtain m, & m
~

&M[B ], which gives 1.27 GeV

&m, &9 GeV (m =5 MeV). Our upper bound is, like
that for the a, meson, excessive, indicating that the
spin-1 diquark form factor is very different from that of
the pion, and thus should be determined from a proper
minimization of M, [I ] or, if its mass is indeed very
large, by solving the BS integral equation. Nevertheless,
the lower bound is very useful, indicating that this di-
quark state is unlikely to play a significant role in nu-
cleon structure, and thus supporting the same conclusion
by Fredriksson, Jandel, and Larsson. ' Our lower bound
is also to be compared with m& &500 MeV obtained
from experimental data by Laperashvili which, while
consistent with our bound, does not by itself argue for or
against a role for spin-1 diquarks in nucleon structure.

V. CONCLUSION

The growing experimental evidence that the 3 J =0+
diquark state may play a significant dynamical role in
the structure of nucleons has now been supported by the
detailed theoretical analysis reported here.

Our study of the diquark masses has been based on a
well-defined approximation scheme for QCD. This may
be extended, in a systematic manner, to include higher-
order gluonic processes, if desired. The analysis used the
covariant Bethe-Salpeter equation for bound states. To
overcome the difficult computational problems in solving
these integral equations we have introduced the tech-
nique of mass functionals, which allow simpler variation-
al computations. In these equations it is important to
use the nonperturbative quark propagators which are
determined by solving the Schwinger-Dyson equation.
This is because it is through this equation that the mode
of realization of the hidden chiral symmetry and the
quark confinement are manifested. These features are
consequences of the infrared slavery and asymptotic-
freedom characteristics of the gluon propagator.

To illustrate the usefulness of our mass-functional for-
mulation of the bound-state problem, we have also ap-
plied the technique to the mesons. One significant result
for mesons is that the interplay of the Schwinger-Dyson
equation and the Bethe-Salpeter equation, in its mass-
functional form, allows one to understand the dual role
of the pseudoscalar mesons in QCD: namely, that of qq
bound states and also of Nambu-Goldstone bosons. This
dual role appears to have led to some confusion in the
literature. ' The mass functionals for some non-
Nambu-Goldstone bosons were also derived, and in the
case of the a& meson, were useful in allowing a lower
bound on the mass of the 3 J =1+ diquark state to be
determined, which implied that this state, because of its
large mass, is unlikely to play a role in nucleon struc-
ture. This is an agreement with conclusions drawn from
the analysis of experimental data.

Io contrast the 3 J =0+ diquark state is certainly of

sufficiently low mass to be important to nucleon struc-
ture. In this paper we have not performed numerical
studies using the variational formulation but instead
used the mass functionals to provide analytically deter-
mined bounds on meson and diquark masses. These
analytical bounds exploited a particular nonperturbative
feature of QCD related to the manner in which chiral
symmetry is realized: namely, that the quark mass func-
tion, in the chiral limit, is the same as the Nambu-
Goldstone qq pseudoscalar-meson bound-state form fac-
tor, a result that does not appear to be well-known
despite its extreme importance in QCD. For example, it
is an essential step in deriving an expression, known
from current algebra, for the Nambu-Goldstone pion
mass. This nonzero mass arises when the chiral symme-
try is explicitly broken by giving the quarks small
current masses. In the three-flavor case this dual role of
the quark mass function is essential to our derivation of
the Gell-Mann —Okubo pseudoscalar-octet-meson mass
formula. Of course the analogous current-algebra result
for the isosinglet pseudoscalar meson, the g', underesti-
mates the mass of this meson —the U„(l) "problem. "
But, as we have emphasized in Sec. II, the current-
algebra result follows from Eq. (2.4), and this is only val-
id for iso vector mesons, because for the isosinglet
mesons there exists the additional term corresponding to
the q-q annihilation process shown in Fig. 1(b).

These results, along with all of our other results, in-
volve convergent integral expressions for the masses (and
in our other works, coupling constants) where the con-
vergence comes about because of the presence of the
bound-state form factors. While this is a seemingly ob-
vious and trivial property it is, amazingly, a feature that
is often ignored by other workers, leading to arbitrary
cutoff procedures and the loss of testable numerical re-
sults.

Finally we wish to emphasize that many of the results
reported here for the mesons have been previously ob-
tained by us from our bosonization technique, which
generates effective actions for the meson sector. This
bosonization is a considerably more powerful technique
for analyzing the meson sector of QCD, leading not only
to the mass functionals we have derived here, but also to
various meson couplings and to a clear understanding of
chiral anomalies. It has also allowed us to construct a
refutation of the very topical Sky rmion model for
baryons. The essential point being that this model does
not adequately incorporate the color algebra, which is so
clearly a feature of QCD, and which we have seen here
is so essential to understanding the diquark role in
baryon structure.

We hope that our rederivation here of some of the
meson mass functionals arising from our bosonization of
QCD, by a different but perhaps more familiar Bethe-
Salpeter equation starting point, may facilitate an under-
standing of our bosonization of QCD.
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