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Statistical and dynamical aspects of hadronic clusters in high-energy collisions: Statistical methods
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Statistical aspects of production and decay of hadronic clusters in high-energy collisions are dis-

cussed. It is shown in particular that, by applying statistical methods, multiplicity distributions and

multiplicity correlations of different kinds of hadrons observed in different rapidity windows can be

used to obtain useful information on the properties of such clusters.

I. INTRODUCTION

There has been a persistent interest in studying ha-
dronic cluster production in high-energy collisions since
the early 1970s and it seems that there even has been
an increase in interest recently. There are a number of
reasons why the hadronic clusters have attracted, and
still are attracting, so much attention. Some of them are
listed below. In fact, these are the ones which made us
decide that a contribution in this field would be
worthwhile and helpful.

(A) Short(-rapidity)-range correlations between the ob-
served hadrons have been observed in multiparticle pro-
duction processes in diFerent energy ranges, and it has
been seen that the main properties of such correlations
are independent of the energy. One simple, and indeed
very attractive way of describing this fact is to assume'
that clusters are produced and subsequently decay into
final-state hadrons. But, in spite of the long history of the
cluster notion, not very much about its nature is known.

(B) Because of the difficulties associated with the mea-
surements and the data analyses of three- and four-
particle short-range correlations, it seems difticult to find
out experimentally whether clusters consisting of more
than two charged hadrons exist, and if so, how good is
the chance of observing them (compared, for example, to
the chance of observing a two-charged-hadron cluster).

(C) Most of the properties of the clusters (for example,
size, charge, distribution in rapidity space, etc. ) are as-
sumptions which are not directly associated with measur-
able quantities. Perhaps this is also the reason why there
has been little discussion on problems such as why such
hadronic clusters exist in high-energy collisions and why
they have the assumed properties which fit the correlation
and multiplicity distribution data.

(D) Based on the analysis of their electron-positron an-
nihilation experiment, Derrick et al. have recently raised
the question of whether the usual cluster picture is valid
for e +e annihilation processes. This implies that the
clusters produced in different reactions may be diFerent in
nature. Can this question be checked experimentally and
theoretically with other methods?

In order to answer the questions mentioned above, we
think it would be helpful to establish more direct links
between the assumed characteristics of the clusters and
the experimentally measurable quantities. Such an at-

tempt has been made and will be reported in this and in
a subsequent paper. In this paper we propose a method
with the help of which the characteristic properties of
hadronic clusters can be studied in a systematic manner.
Here, standard statistical concepts and methods are ex-
tensively used. This is because a systematic analysis of
the multiplicity and (low Er jet) t-ransverse-energy distri-
bution data ' ' has led us to the conclusion that such
concepts and methods are useful in describing the data,
and that in fact a considerable part of the observed phe-
nomena in high-energy multiparticle production process-
es are nothing but pure statistical eFects. We show in
this part that, by applying statistical methods, useful in-
formation on the intrinsic properties (such as the size
and the charge) as well as the (multiplicity and rapidity)
distributions of such clusters can be obtained from mul-
tiplicity distributions and multiplicity correlations of
diFerent kinds of hadrons in diFerent rapidity intervals.
We make every eFort to avoid theoretical bias when we
carry out the statistical analysis in this part of our work.
[For example, the ansatz for aii, ,„(l),used in Sec. II to
solve the equation system for a ii, ( l ) and P (N), is
motivated by experimental facts. Its final value is found
by trial and error in the successive approximation men-
tioned there. ] Possible dynainical pictures will be dis-
cussed in a subsequent paper.

II. STATISTICAL ANALYSIS
OF MULTIPLICITY DISTRIBUTIONS

Multiplicity distributions of charged hadrons in limit-
ed rapidity intervals (windows) have been measured by
the UA5 Collaboration in connection with critical tests
of the Koba-Nielsen-Olesen (KNO) scaling at the present
CERN pp collider energies (&s = 200 —900 GeV). Simi-
lar measurements have also been made for e+e annihi-
lation processes at &s =—29 GeV by the High Resolution
Spectrometer (HRS) group at the SLAC storage ring
PEP, for pp and mp reactions at &s =22 GeV by the
NA22 Collaboration, for p, +p reactions for (total had-
ron final-state) energies up to 20 GeV by the European
Muon Collaboration' (EMC), and for hadron-nucleus
reactions at p&,b

——200 GeV by Dengler et al. "
Inspired by the striking results obtained in the above-

mentioned experiments ' ' and the corresponding
theoretical activities, ' ' a systematic analysis of these
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data was made which has led us to the following con-
clusions.

(i) Standard statistical methods, in particular, the bino-
mial distribution law, can be used to describe the observed
rapidity dependence of multiplicity in hadron-hadron, '

electron-positron, lepton-hadron, ' as well as in hadron-
nucleus" processes.

(ii) The concept of hadronic clusters is very useful. In
fact, it turns out that simple and naive assumptions (such
as that there are only neutral clusters which decay into
two charged hadrons; the rapidity distributions of such

clusters are Aat, and the "decay width" of the clusters in
rapidity space can be neglected) are already sufficient to
give a very good description of the multiplicity distribu-
tions for the charged hadrons. (Such assumptions have
for example been used in the first two papers of Ref. 7.)

(iii) In accordance with the facts mentioned in (i) and
(ii), the multiplicity distribution Pw(n w ) for charged had-
rons produced at a given total center-of-mass-system
(c.m. s.) energy &s (we omit s in Pw as well as in other s-
dependent quantities in this paper) in a given rapidity
window W, can be written as

Pw("w=2Nw)=
N =0, 1,

P(N)N!/[Nw!(N —Nw)!](1 —qw) qw

C

n w = g 1Nw(1
I
N»

l=0

while

(2)

C

N=g Nw(l IN)
I' =0

(3)

is the number of clusters in that event. We note that n~
is a function of the rapidity window 8, while N is in-

provided that there is only one emitting system which
contributes to this window. Here P(N) is the multiplicity
distribution of the neutral clusters which decay into one
positively and one negatively charged hadron, q ~
= (Nw ) l(N ) = (n w) l(n ), where (n w ) is the average
multiplicity of charged hadrons observed in the rapidity
window W, and (n ) is the average number of charged
hadrons produced by the emitting system.

(iv) A general formula for processes in which more than
one independent emitting system exists and more than
one kind of cluster is produced can be explicitly given.
For sake of completeness, the formula is included in Ap-
pendix A. Details can be found in the second paper of
Ref. 7, where it is also shown that the experimental re-
sults given in Refs. 6 and 8—12 can be well described by
this formula.

We now propose a method to study the cluster proper-
ties in this framework. In order to see how it works in
practice, we explain the method by discussing at the same
time a concrete example.

For a given reaction (for example, e+e annihilation)
at a given energy (for example, its =29 GeV), consider
a rapidity window W (for example, 0&y &0.5), where
the hadrons observed in 8 are contributions from one
emitting system (in this case, one jet). Let us consider
an event in which N clusters —each of them is assumed
to decay at most into c charged hadrons —are produced
by the emitting system. Let Nw(1

I
N) be the number of

clusters which contribute I charged hadrons to the rapi-
dity window 8 in such an X-cluster event. Then, n~,
the number of charged hadrons in 8' is

dependent of 8'.
Let P(N) be the probability of the emitting system to

produce N clusters, and aw(l) be the average probability
for any one of the Nw(l

I
N) clusters to exist where a w(l)

is taken to be independent of N, then the probability for
~ observing n ~ charged hadrons in the rapidity window 8
1s

) =y g' P (» N 'l Q N (1
I
»'

N I =0

C

X g aw(1)
1=0

where the sum is first taken over Nw(l
I

N). The prime
on the summation sign indicates that the condition given
in Eqs. (2) and (3) should be satisfied.

As we shall see in this section, Eq. (4) is the basis of a
successive approximation, with the help of which aw(l)
and P(N) can be estimated from the experimental data for
Pw(nw). In practice, the Pw(nw) data are always taken
for a series of rapidity windows 8' including that for the
entire rapidity space and/or those for every one of the in-
dependent emitting systems [for example, Pw(nw) for the
half-rapidity space with respect to the jet axis in e e an-
nihilation processes, that is, Pw(nw) for each of the two
jets]. One simple and convenient way to carry out the suc-
cessive approximation is to start with an ansatz for
aw (1), where the index W,„stands for the largest pos-

max

sible rapidity window (with respect to the relevant emit-
ting system), and see whether the corresponding solution
for aw(l) and P(N) is consistent with the experimental
distributions Pw(nw) for all other rapidity windows. Be-
fore describing this approximation, the following points
concerning Eq. (4) should be mentioned.

(a) Equation (4) is a natural generalization of Eq. (1),
the validity of which has been shown in Ref. 7. In fact,
this is the reason why we are confident in using Eq. (4) as
the basis of our method of analysis.

(b) The average probability aw(l) for having a cluster
which contributes exactly l charged hadrons in a given ra-
pidity window 8' is a useful quantity. On the one hand,
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it is closely related to the intrinsic properties of the clus-
ters and, on the other hand, it rejects the relative impor-
tance of the different kinds of clusters contributing to the
given rapidity window. For example, extraordinary large
clusters and/or clusters with extremely wide rapidity dis-
tributions may or may not exist in the reaction discussed
here, but the role such clusters play statistically is prob-
ably not an important one. Hence, these clusters can be
neglected in the first-order approximation.

(c) This formula for Pw(n w) can be readily generalized
to include cases in which more than one independent
emitting system contributes to the given window. Obvi-

ously, it should be similar to that given in Eq. (Al) in Ap-
pendix A.

(d) Since ( nw), the average value of nw (the multiplici-
ty of charged hadrons observed inside the rapidity win-
dow W), and (nw ) (A. =2, 3, . . . ), the higher moments of
n ~ are the measured quantities in experiments, it is clear
that direct links between these quantities and the un-
knowns will be very useful. As can be readily shown (de-
tails are given in Appendix B, the following relations be-
tween (n w) (A, =1,2, 3, . . . ), (N ) (cr=1,2, 3, . . . ), and
a w(l) (l =0, 1,2, . . . ) are direct consequences of Eq. (4):

( n w ) = (N ) g la w(l),
1

2

(5)

(n w( nz
—1))=(N(N —1)) +law(l) +(N) g l(l —1)aw(l),

I 1

3

(nw(nw —1)(nw —2)) =(N(N —1)(N —2)) g law(l)

(6)

C

+3(N(N —1)) g law(l)
1

C C

g 1 (l —1)a w(l) + (N ) g l (1 —1)(l —2)a w(l) .
1 l

Pw(1) =g P (N)Naw(0) 'a w(1), (8)

Pw(2) =Q P (N)Na w(0) 'aw(2)

+ —,
' Q P (N)N (N —1)aw(0) a w(1)

These, as well as similar equations which include higher
moments of the n ~ and those of the X distributions are
extremely useful in carrying out the successive approxi-
mation mentioned above.

(e) For the purpose of carrying out this successive ap-
proximation it is also useful to consider the distributions
Pw(nw= 1) and Pw(nw=2). From Eq. (4) we have

Inserting this into Eqs. (5) and (6), we obtain

(n „)=2(N) =2(N &'",

((. ,„)')=4(N'& =4(N'& ",
(12)

(13)

Pw, „(nw „)=P (N =, n w,„l2). (14)

For rapidity windows 8' other than the full rapidity
space, the above-mentioned clusters and/or their decay
products may or may not "fall into 8'." In fact, if we
completely neglect the cluster decay we have'

where we denote the moments (N") (k =1,2, . . . ) for the
cluster distribution P(N) in this zeroth-order approxima-
tion by (N")' ' (k =1,2, . . . ). In fact, we can write in
this case

Now, since neither P(N) nor aw(l) (l =0, 1, and 2) can
be negative, it follows from Eqs. (8) and (9)

Pw(1) aw(1)
(10)

Pw(2) a w(2)

aw(l)&0 for 1=2 and 0,
a w(l) =0 otherwise .

But, in general, we should have

(15)

which is a lower bound for the ratio o.'~(1)/a~(2), pro-
vided that a w(2) does not vanish.

Based on the fact that the measured multiplicity distri-
bution P~( n ~ ), for diff'erent rapidity windows W, in
different reactions (including the e+e annihilation pro-
cesses we consider here) can be fairly well reproduced by
assuming that all the observed charged hadrons are pro-
duced via neutral clusters which decay into a pair of op-
positely charged hadrons, we start our successive approxi-
mation by setting, for full rapidity space W'(max),

o wm. .(&)=1 .

aw(l)&0 for 1=2, 1, and 0,
a ~( I ) =0 otherwise .

(16)

This is because there should be an appreciable chance
also for one of the two charged hadrons to enter 8' after
the cluster decay, provided that the hadrons from the
same cluster exhibit the usual type of short-range-
rapidity correlations. In fact, we can calculate, for every
given W, the quantities aw(2) and aw(1) by inserting
into Eqs. (5) and (6) the experimental values of (n )w
and (nw ), and the values (N)' ' and (N )' ' which
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FIG. 1. The calculated result of a'~'(1) and a'~'(2) as func-
tions of the size of the rapidity window y~ ( ~y ~

(ys ). The
values and the corresponding error bars are calculated from the
data given in Ref. 6. The value for the full rapidity space is used

as input. Here, the corresponding y~ is indicated by "full."
The lower limit for a'~'(1) is obtained from the inequality given

in (14) taken together with the above-mentioned data. The
hatched area shows the possible values for the lower limit. The
boundaries are determined by the error bars of P~{1)and P~(2)
given in the data.

are the zeroth-order approximation of (N ) and (N )
obtained in Eqs. (12) and (13), respectively. We denote
the calculated values in this approximation by a'II'(2)
and aIII'( I ), respectively. The results are given in Fig. 1.
As we can see, some of the calculated values of a'II)(1)
are lower than the lower limit obtained from (10). The
most probable reason for this inconsistency is that the
input, the zeroth-order approximation based on the as-
sumption given in Eq. (14), is not sufficient. In Fig. 2 we
show the first-order approximation for aii (2) and a II (1)
which we obtain from the ansatz

FIG. 2. The calculated result of a'~'(1) and a'~)(2) as func-
tions of y~. The set of data as well as the notations are the
same as those in Fig. 1.

35.0

25.0—

15.0—

5Q-
J[X~(

aII, ,„(1)given in Eq. (17) and the experimental data for
P~( n Ii, ) for W = W(max). j In Fig. 3 we plot the
difference A~ between the expression on the left-hand
side and that on the right-hand side of Eq. (7). The er-
ror bars are obtained from the corresponding directly
and/or indirectly measured quantities. It should be
mentioned that in this example (e+e annihilation pro-
cesses) only the presently available PIi(nii, ) data, that

a II,„(2)=0.75,
a II „(1)=0.25

(17)

We note that Eq. (17) implies that 25% of the produced
"hadronic clusters" are nothing else but charged
hadrons —a result which supports the observation of Der-
rick et al. in their e+e annihilation experiment.

The quality of the approximation can be tested by in-
serting into Eq. (7) the experimental data for (ns ),
(niv ), (nii, ), and the first-order approximation for
aII, (l) given in Fig. 2 and that for (N), (N ), and
(N ). [The latter are denoted by (N)'", (N )"', and
(N )"', respectively. They are determined by inserting
into Eqs. (5), (6), and (7) the values for IzII,„(2)and

-15.0
0

I

1.0 2.0
yw

3.0

FIG. 3. b, ~, the di6'erence between the left-hand side and
the right-hand side of Eq. (11), as a function of the size of the
rapidity window y~. The values and the error bars of the left-
hand side are obtained from the data of Ref. 6 for ( n ~ ),
(na ), and (ns '). The right-hand side is obtained from the
calculated values for (N)"', (X')"', (X')"', ag'(1), and
a'~'{2). As we can see h8' is not always zero. This would be
the case if the first-order approximation were already
sufficiently good.



2706 CHAO WEI-@IN et al. 36

is, the Pw(nw) data for symmetric rapidity windows

(yw ——0. 1, 0.25, etc. ), have been used. We recall (see
Ref. 7 for details) that for symmetric rapidity windows
the result for one emitting system and that for two emit-
ting systems are the same.

If the error bars shown in Fig. 3 were so small such
that we could conclude that this approximation is
definitely insuScient, we would proceed one step fur-
ther. ' That is, we would try to determine
aw, „(l=1,2, 3) from Eqs. (5), (6), and (7) in the second-
order approximation and check the quality of this approx-
imation by inserting in the corresponding equation for the
moment ( n w(n w —1)(n w —2)(n w —3) ), etc. In this
sense, we can carry out a successive approximation to find
aw(l), l =0, 1,2, . . . , and P(N} from the experimentally
measured Pw(nw} for diff'erent rapidity windows W. It is
clear that such a method can be applied to different reac-
tions at different energies, provided that there are precise
measurements of multiplicity distributions as those rnen-
tioned above.

III. STATISTICAL ANALYSIS
OF MULTIPLICITY CORRELATIONS

As we have shown in the second paper of Ref. 7, a pos-
sible way to learn more about the clusters is to study the
charge-multiplicity correlations defined as

Cw( w+ w —} Fw( w+ w —}

Pw+(nw+)Pw —(nw —) .
Here, Fw(nw+, nw ) is the (normalized) probability of
finding n~+ positively and n~ negatively charged had-
rons in rapidity window W [at a given total center-of-
mass-system (c.m. s.) energy &s.] It is simply the prod-
uct of the corresponding probabilities Pw+(nw+) and
Pw (nw ) for finding nw+ positively and nw nega-
tively charged hadrons, respectively, if these two kinds
of hadrons are produced independently. (We note, also
in this section that all s in the, in general, s-dependent
quantities such as Fw, Pw+, and Pw are omitted. )

Similar to the general expression given in Eq. (4) for the
probability Pw(n w ) for observing n w charged hadrons in
the rapidity window 8; we can express Fw(nw+, nw ) as

p n p n N~(j k
I
NjF (nw, n )=g &'P(N} N' g Q Nw(j k l»' H H w(j k} (19)

j=Ok=0 j=Ok =0

Here P (N) is the probability for the emitting system to
produce N clusters —each of them is assumed to decay
at most into p positively and n negatively charged had-
rons. Nw(j, k

l
N) is the number of clusters which con-

tribute j positively and k negatively charged hadrons to
the given rapidity window 8 in a ¹ luster event.
a w( j,k ) is the average probability for any one of the
Nw(j, k

l
N) clusters to exist. Here, aw(j, k) is taken to

be independent of 1V. The prime on the summation sign
indicates that the summation over Nw(j, k

l
N) has to be

taken under the conditions

p n

aw(j k)=aw(k j) . (25)

It follows from the general expression for (ew ) [see Ap-
pendix C, Eq. (C8)] and Eq. (25) that

ly nothing else but those discussed in the preceding sec-
tion, it is expected that Qw(ew) and/or (ew ) should
yield additional information on the clusters. As an illus-
trative example, we consider the case in which there is
symmetry between the positively and the negatively
charged hadrons in the rapidity window 8' in the sense
that

nw+ = g g jNw(j k N)
k =0 j=O

p n

nw = y Q kNw(jk lN),
j =Ok =0

P 11

N= g g Nw(j, k lN) .

(20)

(22)

and

(ew ') =0 for o =0, 1,2, . . .

n

(e ')=(N) yy(j —k)'a (j,k}.
j k

(26)

(27)

j=Ok =0

In order to show how Eq. (19) can be used in practice,
we consider the sum

Taken together with the corresponding expression for
( nw ) [see Appendix C, Eq. (C7)], we obtain

and the difference

ew=ne'+ —nw—

(23)

(24)

p n

g g (j —k) aw(j, k)
ew j k

( ) g g (j +k)a w(j, k)
j k

(28)

of nw+ and nw, as well as their distributions Pw(nw ),
Qw(ew), and moments (nw ), (ew ), A, , cr =1,2, 3, . . .
It can be shown (see Appendix C) that these measurable
quantities are also closely connected with the cluster dis-
tribution P (N) and the average probabilities a w(k, 1 )
mentioned above. While Pw( n w ) and ( n w ) are obvious-

Hence, in particular, if all clusters are charge neutral,

&ew') ~0 for sufficiently large W .
nw

(29)

Further examples will be discussed in connection with
dynamical models in a subsequent paper.
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APPENDIX A

It has been shown in the first and second papers of Ref.
7 that the multiplicity distribution Pw(nw', s) at a given
(total c.m. s.) energy &s, for a given rapidity window W
(yt &y &yt, ), which may or may not be symmetric with
respect to y =0, can be written in the general form

tems such that c;, P;(n;/c;;s), and q;w can directly be
taken from the experimental data, then Pw(nw, 's) can be
calculated from Eqs. (Al) —(A5) without introducing any
free parameter.

It should be emphasized that the general formula for
Pw(nw, s) given here is an idealization. For example, it
is certainly oversimplified to assume that in a given emit-
ting system i, there is one and only one c, , which implies
that all clusters in the system i are the same. It is of
course also an oversimplification when we neglect the ra-
pidity distribution due to cluster decay in our calcula-
tion.

Pw(nw', s) =g' Q P;w(n w, s) . ' (A 1) APPENDIX B

The right-hand side of this equation is a sum of products
of P;w(n;w;s). Here, P, w(n, w;s) is t. he probability of ob-
serving n;~ charged hadrons from the ith emitting sys-
tem (which is independent from all other emitting sys-
tems) in the rapidity window W. The prime on the sum-
mation sign means that the sum over all possible n;~'s
(which contribute to nw) should be such that the condi-
tion

Gw(t)=
n~ ——0, 1, .

Pw(nw)t

C

=gP(N) g aw(l)t'
N 1=0

'N

(81)

In order to calculate the average of nw, (nw &, as well
as its higher moments (nw & (i(, =2, 3, . . . ), it is con-
venient to use the generating function

n'~ —n~ (A2) the normalization condition of which is

is satisfied. P;w(n;w, 's) is a weighted sum of binomial dis-
tributions:

Gw(1)=1, (82)

P;w(;w, )=

where

n, /c, =1,2, .
P; ( n; /c;; s )B ( n; /c;, n; w /c;; q; w ),

(A3)

(nw &= t Gw(t)—~.dt

(nw(nw —1) (nw —A. + I) & = Gw(t) ~,
d
dt

(83)

(84)

B(N;,Nw qw)= N qw
i W'

i
(w1 )

i i& (A4)
where A, is a positive integer.

APPENDIX C

(n, /c, & (nw&

(n/ (A5)

The weights P;(n;/c;;s) in Eq. (A3) is the probability for
the system i (at energy &s) to emit n, /c;=N; clusters,
where each cluster decays into c; charged hadrons. Ob-
viously, n; is the number of charged hadrons produced
by the system i, (n, & is the average value of n, , n, w is
the number of charged hadrons observed inside the rapi-
dity window W, and (n;w & its average value. We note
that the average values (n, &, (n~ & are in general func-
tions of the total c.m. s. energy &s.

That is to say, the right-hand side of Eq. (A 1), taken to-
gether with Eqs. (A2) —(A5), is the general form for the
multiplicity distribution at a given (total c.m. s. ) energy
&s in a given rapidity window W. This means the prob-
ability Pw(nw, s) to find n w produced particles at energy
+s and in window W can be obtained from Eqs.
(A 1)—(A5) provided that the number of independent em-
itting systems and the properties of the produced cluster
in each system [that is, c;, P, (n, /c;;s), and q;w] are
known. In particular, if there is only one system, or a
fixed number of (in phase space clearly separated) sys-

To calculate the moments ( n w+ &, ( n w
(A. = 1,2, . . . ), and/or their algebraic combinations, we in-
troduce the generating function

H (xy)= g g F(nw+, nw —)x y

p n iN

=g P(N) g g aw(j~k)x'y
N j k

the normalization condition of which is

Hw(1, 1)=1 .

From Eqs. (Cl) and (C2) we obtain

(nw+'&=(x ~)/Ox)'Hw(x, y) ~. =,=),
(nw & =(y 8/By) Hw(x, y)

~ y

(C2)

(C3)

(C4)

The generating function of the distribution Pw(nw) of
the number of charged hadrons nw (that is the sum of
nw+ and nw ) and the distribution Qw(ew) of the net
charge (that is the difference between nw+ and nw ) in
the given rapidity window 8' can be readily expressed in
terms of the generating function Hw(x, y):
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Hw(x, x)=yPw(nw)x " The corresponding moments (nw ) and (ew
(A. =1,2, . . . ) are

r

n

=gP(N) g paw(j k)x'
N j k

Hw(x, 1/x) =g Qw(ew)x
8'

p n

=g P(N) g g awj(, k)x'
j k

N

(n ) =(x t)/t)x) H (x,x) ~,

(ew ) =(x )t/ )tx) H (x, 1/x) I
„

(C7)

(C8)

*On leave from Institute of High-Energy Physics, Academia Sin-
ica, Beijing, China.

On leave from Peking University, Beijing, China.
~Permanent address: Hua-Zhong Normal University, Wuhan,

China.
See, e.g. , the following review articles: A. Bialas, in Proceed-

ings of the IV International Symposium on Multiparticle Ha
drodynamics, edited by F. Dulrnio et al. (La Gollardica
Pavese, Pavia, Italy, 1973), p. 93; L. Foa, Phys. Rep. 22, 1

(1975); J. Whitmore, ibid. 27, 187 (1976); G. Giacomelli and
M. Jacob, ibid. 55, 1 (1979), and the papers cited therein.

2See, e.g. , K. Bockmann and B. Eckart, in Proceedings of the
XVth International Symposium on Multiparticle Dynamics,
Lund, Sweden, 1984, edited by G. Gustafson and C. Peterson
(World Scientific, Singapore, 1984); G. Ekspong, in Mulitpar-
ticle Dynamics 1985, proceedings of the International Syrn-

posiurn, Kiryat Anavim, Israel, 1985, edited by J ~ Grunhaus
(Editions Frontieres, Gif-sur- Yvette, France, 1985); L. K.
Mangotra, I. Otterlund, and E. Stenlund, Z. Phys. C 31, 199
(1986); W. Bell et al. , ibid. 32, 335 (1986); L. van Hove and
A. Giovannini, ibid. 30, 391 (1986); C. C. Shih, Phys. Rev.
D 34, 2710 (1986); 34, 2720 (1986); S. Barshay and E. Eich,
Aachen report, 1986 (unpublished), and the papers cited
therein.

3See, e.g., the experimental review articles given in Refs. 1 and
2 and the references given therein.

4Data on three-particle distributions can, e.g. , be found in K.
Eggert et al. , Nucl. Phys. B86, 201 (1975); T. Kafka et al. ,
Phys. Rev. D 16, 1261 (1977). Difticulties in obtaining pre-
cise information on three-particle correlations have been re-
ported in these papers. It has, for example, been pointed out
by Kafka et al. that an analysis of their data based on the
conventional correlation formalism gives the following re-
sult: The three-particle densities can be given in terms of
the one- and two-particle densities; and it is difficult to assess
to what extent this fact is a reflection of a collision dynamics
and to what extent it is influenced by phase-space limita-
tions.

5The only exception we know is the rapidity-gap distribution
proposed by C. Quigg, P. Pirila, and G. H. Thomas, Phys.
Rev. Lett. 34, 290 {1975). Obviously, this should be con-
sidered as the most direct evidence for independent emission
of small hadronic clusters.

M. Derrick et al. , Phys. Lett. 168B, 299 (1986); K. Sugano, in
Strong Interactions and Gauge Theories, proceedings of the
XXI Rencontre de Moriond, Les Arcs, France, 1986, edited
by J. Tran Thanh Van (Editions Frontieres, Gif-sur- Yvette,

1986), p. 37; M. Derrick, in Proceedings of LESIP II Interna
tional Workshop on Local Equilibrium in Strong Interaction
Physics, Santa Fe, 1986, edited by P. Carruthers and D. Strott-
man (World Scientific, Singapore, 1986).

7Chao Wei-qin, Meng Ta-chung, and Pan Ji-cai, Phys. Lett. B
176, 211 (1986); Phys. Rev. D 35, 152 (1987); Phys. Rev.
Lett. 58, 1399 (1987).

8UA5 Collaboration, G. J. Alner et al. , Phys. Lett. 160B, 193
(1985); 160B, 199 (1985); G. Espong, in Multiparticle Dynam-
ics 1985 (Ref. 2); P. Carlson, in Proceedings of the 23rd Inter
national Conference on High Energy Physics, Berkeley, Cali-
fornia, 1986, edited by S. Loken (World Scientific, Singapore,
1987).

W. Kittel, in Strong Interactions and Gauge Theories (Ref. 6),
p. 205; F, Meijers, ibid. , p. 219; NA22 Collaboration, M.
Adamus et al. , Phys. Lett. B 177, 239 (1986); W. Kittel and
F. Meijers (private communication).

'oEuropean Muon Collaboration, M. Arneodo et al. , Z. Phys. C
31, 1 (1986); I. Derado (private communication).

''F. Dengler et al. , Z. Phys. C 33, 187 (1986).
'~UA1 Collaboration, G. Ciapetti, in Proceedings of the 5th Topi

cal Workshop on Proton-Antiproton Collider Physics, Saint
Vincent, Italy, 1985, edited by M. Greco (World Scientific,
Singapore, 1985), p. 488; UA1 Collaboration, F. Ceradi,
CERN Report No. CERN-EP-85-196, 1986 (unpublished),
and references given therein.

A. Capella and J. Tran Thanh Van, Z. Phys. C 23, 165
(1984); A. Capella, A. Staar, and J. Tran Thanh Van, Phys.
Rev. D 32, 2933 (1985); C. S. Lam, in Strong Interactions
and Gauge Theories (Ref. 6), p. 241; K. Fiatkowski, Phys.
Lett. B 173, 197 (1986); J. Dias de Deus, ibid. 178, 301
(1986); Cai Xu, Chao Wei-qin, Meng Ta-chung, and Huang
Chao-shang, Phys. Rev. D 33, 1287 (1986); C. S. Lam and
M. S. Zahir, Mod. Phys. Lett. A1, 15 {1986);A. Bialas and
A. Szczerba, in Proceedings of the XVII International Sympo
sium on Multiparticle Dynamics, Seewinkel, Austria, 1986,
edited by M. Markytan, W. Majerotto and J. Macnaughton
(World Scientific, Singapore, 1987); L. van Hove and A.
Giovannini, ibid.; P. Carruthers and C. C. Shih, Int. J. Mod.
Phys. A (to be published); G. N. Fowler, E. M. Friedlander,
R. M. Weiner, and G. Wilk, Phys. Rev. Lett. 56, 14 (1986).
G. Pancheri and C. Rubbia, Nucl. Phys. A418, 117 (1984); G.
Pancheri and Y. Srivastava, Phys. Lett. 159B, 69 (1985); F.
W. Bopp, P. Aurenche, and J. Ranft, Phys. Rev. D 33, 1867
(1986); Siegen Report No. SI-86-6, 1986 (unpublished); Cai
Xu, Wu Yuang-fang, Liu Lian-sou, and Hua-Zhong, N. U.
Report No. HZPP-86-5, 1986 (unpublished); L. Durand and



36 STATISTICAL AND DYNAMICAL ASPECTS OF HADRONIC . ~ . 2709

Pi Hong, Phys. Rev. Lett. 58, 303 (1987); R. Hwa, talk given
at Aspen Workshop on Multiparticle Strong Interaction Dy-
namics, 1986 (unpublished); G. Pancheri, ibid.

~sIn this case, we have as (2)=(na ) l(n a,„), =(na ) I
[2(N )' '], as (0)= 1 —a a (2), and a a (1)=0 for 1&0,2.

We asked ourselves the following question: Is it possible to

make h~ zero by choosing a nonvanishing a~,„(3),that is,
by assuming that there is a small percentage of clusters which
decay into three charged hadrons~ The answer we found is
yes. This, as well as other possible solutions will be discussed
in detail in connection with dynamical models.


