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The K+-N interaction is calculated with a quark potential model using the resonating-group
method (RGM). For the central interaction, 2'~ mixed-symmetry harmonic-oscillator com-
ponents of the nucleon wave function and 2fico components of the kaon wave function are included
in the calculation of the RGM kernels. These components make a significant contribution to the

interaction kernels. The total isospin I =0 S-wave phase shifts are in good agreement with the ex-

perimentally determined phase shifts. The I = 1 interaction does not exhibit enough repulsion.

I. INTRODUCTION

Since the stunning success of the quark model of had-
rons and the development of quantum chromodynamics
(QCD) there has been a growing interest in the role of
quark degrees of freedom in nuclei. The direct applica-
tion of QCD to few-nucleon systems, nuclear chromo-
dynamics, ' uses perturbative techniques to study high-
momentum-transfer reactions. Since low-energy nuclear
physics is concerned with separation distances which lie
outside of the perturbative regime, perturbative QCD is
not applicable. Monte Carlo calculations of local gauge
theories on a space-time lattice are presently used to
study QCD in the nonperturbative regime. These lat-
tices gauge calculations can be thought of as a bridge be-
tween QCD and some of the quark models of hadrons.
These "QCD-inspired" models essentially eliminate
gluon degrees of freedom in favor of a parametrized po-
tential ' or bag which confines the constituent quarks.
Results obtained from potential and bag models suggest
that many of the basic features of the nuclear force can
be understood from the underlying quark structure. '

The simplest calculations of the N-N potential using
quark potential models give short-range repulsive cores
for the central potentials ' and qualitatively correct
spin-orbit potentials. '" These calculations use simple
Gaussians for the internal nucleon wave functions and
usually a variant of the resonating-group method'
(RGM). Some intermediate-range attraction is found
when more complete nucleon ground-state wave func-
tions are used. ' ' The effects of channel coupling '
and pion-quark coupling' '' have been studied for the
N-N system.

It has been shown' that potential models which use
simple two-body color-confining potentials give rise to
unphysical long-range "color van der Waal" forces be-
tween hadrons. This force arises due to the coupling of
colorless hadrons to colored-hadron virtual intermediate
states. Since the confining potential is long ranged, the
interaction between the colored hadrons in the inter-
mediate state is also a long-range force. Lipkin' has
pointed out that the erroneous prediction of color van
der Waal forces is more fundamentally due to the loss of
local gauge invariance and explicit gluon degrees of free-

dom. He points out that the gluon degrees of freedom
are unimportant when color and space completely fac-
torize such as in a qq or qqq system, but are crucial
when there are correlations between space and color in a
multiquark wave function.

Greenberg and Hietarinta have developed a link-
operator formalism which retains some of the features of
the simple potential model, but avoids color van der
Waal interactions by providing a way for the quarks and
antiquarks to know whether or not they are in the same
hadron. Robson' has made a connection between the
link operators of Greenberg and Hietarinta and lattice
gauge fields. The resulting many-body confinement po-
tential has been successfully applied to the nucleon-
nucleon interaction.

We present a calculation of the K+-N central interac-
tion using the resonating-group method and the quark
potential model of Stanley and Robson. The use of a~
"additive" potential model here has the advantage that if
no meson exchange is included no new parameters are
required in the prediction of K+-N interactions. On the
other hand, we know' the additive model must violate
local gauge invariance in spatial regions where strong-
coupling expansions become valid. At this time it is not
known from QCD to what extent local gauge invariance
is important at short hadronic separation distances. In
any event the K+-nucleon system appears to involve rel-
atively small interquark separations compared to the
baryon-baryon systems studied by most workers using
quark models. In addition, the K+-N system has several
features which make it a good prototype for studying
hadron-hadron interactions with the additive assumption
at the quark level. ' ' ' Since the kaon is a pseudoscalar
meson, one-pion exchange is forbidden. Since the primi-
tive quark content of the positive kaon is us and that of
the nucleon is udd or uud, there is no qq annihilation as
in, for instance, the ~+-N interaction. There is no ten-
sor term in the K+-N interaction due to the zero spin of
the kaon. Finally, there is a reasonable amount of K+-
N scattering data.

Bender and Dosch have used a quark model to cal-
culate K+-N S-wave phase shifts. They use Gaussian
internal wave functions for the nucleon and kaon, the
short-range "one-gluon-exchange" part of the quark-
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quark potential, and a local approximation for the po-
tential. Unlike the work presented here, they also allow
the parameters of their model to vary throughout the
calculation in order to fit the scattering data. This cal-
culation has subsequently been improved ' by using the
generator-coordinate method" to obtain nonlocal re-
sults.

Realistically, hadronic interactions will no doubt have
to be described by a combination of quark-exchange and
meson-exchange contributions. In current "hybrid"
models, although meson exchange is included in a para-
metric way, it is believed to arise more fundamentally
from qq production. The interleaving of contributions
will not be fully understood until meson-exchange cou-
pling constants and form-factor parameters can be de-
rived from the more fundamental quark structure of
hadrons.

By using the potential model of Stanley and Robson,
more complete nucleon and kaon wave functions can be
included in the RGM interaction kernels in a
parameter-free way. In this calculation the internal
wave functions are extended to include 2Aco oscillator

II. POTENTIAL MODEL

The quark-quark potential and hadron wave functions
used are those of Stanley and Robson. Their phenome-
nological potential is of the form

V( r; ) = [ VsR ) + VLR + ( Vw & (2.1)

where the short-range (SR) term, which is associated
with one-gluon exchange, is averaged over an effective
quark size. The long-range (LR) part is a linear
confinement term. ( V~ &, which is included to account
for certain meson annihilations, is zero for two quarks or
for a quark and antiquark of different flavors. After
averaging over a finite quark size, V(r;l ) becomes

components. The 2%co mixed-symmetry nucleon wave-
function components accounted for some attraction in
even-partial-wave N-N potentials. '

Section II describes the potential model used in this
calculation and Sec. III applies the RGM to the K+-N
system. Results are presented in Sec. IV and conclusions
are drawn in Sec. V.

V(r; )=F;.F I V '"'(r&)+ V""(r~)+o; o V (rv )+L; (cr;+ o)V (r; )

+[(cr;.r; )l(o~.r,j ) —r (o; o. )/3]V (r,
& )], (2.2)

and

V '"'(rj ) = A, (m;+m~ )fc,„&(r~ )/r~,
V""= —3, ( m; +m, )r;//«0

(2.3)

(2.4)

where F is the eight-component generator of SU(3)
color. The color Coulomb, confinement, and spin-spin
(SS) terms contribute to the central interaction. The ra-
dial dependence of these terms are given by

TABLE I. Nucleon basis states, n=0, 2 (from Ref. 6), p~=0. 150.
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where the effective quark size parameters are p„=1.202
GeV and P, =1.493 GeV.

where Css ——0.814 GeV and r0 ——3.753 GeV '. fc«~
and fss are functions of the quark size parameters.
A, (m;+mj ) is a spin-dependent effective coupling con-
stant and the m's are parametric effective quark masses.
The quark masses are m„=md ——m„=0.240 GeV and

m, =0.460 GeV. For this calculation, the coupling con-
stants, A, (m;+ml), are approximated by their spin-
independent averages.
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TABLE II. Kaon basis states, n =0,2 (from Ref. 6),
% =0.153.

SU(4)

O(3)

SU(4)g O(3)

I

~ ).,= I
( -,', —,

'
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I
n =0)„

I
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For m, =m =m„, A (m„+m„)=1.783,

fc,„)(r)= 1 —e ~"——,'Pre (2.8) FICx. 1. Cluster coordinates for the E+-X system.

(2.9)

where /3= 1.250 GeV.
The nucleon state is factored into SU(3)-color, SU(4)-

spin-isospin, and O(3) spatial subspaces:

IN & = IN &, IN &., I
». . (2.10)

with
I
K )„given as an oscillator expansion. The kaon

basis states are given in Table II.
The parameters of this model were fixed by the meson

spectra. The baryon spectrum was subsequently calcu-
lated. The parameters are not adjusted in this calcula-
tion, these results are a parameter-free model prediction.

The SU(4)O(3) wave function is given as an expansion
in symmetric basis states which are products of three-
particle harmonic-oscillator states and SU(4) states of
appropriate symmetry. The nucleon SU(4)IDIO(3) basis
states used in this calculation of the K+-N interaction
are given in Table I.

The kaon state is likewise factored into subspaces

(2.1 1)

1(=~ IN& IIC&F(R), (3.1)

3
2=1—g P4, (3.2)

where quarks 1, 2, and 3 are the constituents of the nu-
cleon, and quark 4 and antiquark 5 are the constituents
of the kaon. Figure 1 gives the relative coordinates used
for the K+-N system.

The single-channel RGM equation is'

[TR + VD (R ') —E]F(R')+ f E (R', R")F(R")d R"=0,

where

(3.3)

where
I
N ) is the internally antisymmetrized color-

singlet nucleon wave function,
I

K ) is the color-singlet
kaon wave function, F(R) is the wave function of rela-
tive motion of the two clusters, and 3 antisymmetrizes
the wave function with respect to the interchange of a
quark in the nucleon with the quark in the kaon:

III. THE RESONATING-GROUP METHOD

For the K+-N system, since the quarks and antiquark
asymptotically form a physical kaon and nucleon, the
Ave-body wave function is first approximated by the
single-channel, two-cluster wave function

IC ( R', R" ) =H ( R', R" ) —ET N ( R', R"),
E =ET—(M~+M~) .

(3.4)

(3.5)

M~ is the kaon's mass and Mz is the nucleon's mass.
VD(R') is zero for color-singlet hadrons.

The RGM kernels are

H (R', R")
N(R', R")

3

NK6(R —R') x Pa Xi 6(R—R")),] i4 (3.6)

where

H= g T, + g g V(r;, ).
& &JJ=1

H (R', R" ) is, therefore, a sum of kinetic and potential kernels:

(3.7)

H(R, R")=T(R,R")+V(R',R") . (3.8)
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Using the permutation symmetry of the nucleon wave function, the kernels become

N(R', R")=—(NK5(R R'—)
~

3P34
~

NK5(R —R")),
T(R', R")=—(NK5(R —R')

~
(Tg+Tg+Tp+T„)3P34

~

NK5(R R—")),
and

(3.9)

(3.10)

V(R', R")=—(NK5(R —R')
~

(3V3g+6V, s+3V35+6V,4+3V,2+6V, 3+3V4s)P34
~

NK5(R R"—)), (3.1 1)

where

V,"=V(r;J ) and T„=p /(2p, ) .

5

Ti(R', R")= Q Tf(R', R"),
p =2

w~ere

(3.15)

~NK)= QC„I, ~n, k)
n, k

(3.13)

The seven terms in the expression for V(R', R"), Eq.
(3.11), can be represented by the quark-exchange dia-
grams in Fig. 2.

When the kaon and nucleon wave functions are explic-
itly written as a sum over components

Tj'(R', R")= g A )r (n, k
~

TpP34
~

n k )

and

12

VI(R', R")= g Vf(R', R"),
p=6

where

(3.16)

(3.17)

the interaction kernels become (with the 5 functions
suppressed)

Vj'(R', R")= g A~ r(n, k
~

VpP34
~

n', k') 'r
r

(3.18)

NI(R, R")= g A ~z (n, k
~
P34 "~ n', k') (3.14) Here I is the total isospin and y labels the set

(n, k, n', k'). Azz includes permutation multiplicity, fer-
mion phase (= —1) and wave-function amplitudes. T~
and Vp are operators as given in Table III.

IV. RGM KERNELS AND S-WAVE PHASE SHIFTS

2 3 4 5

V34P34 V) 5 P34 V35P34

The color Coulomb, confinement, and spin-spin com-
ponents of the quark potential contribute to the central
K+-N interaction kernel.

Factoring the wave function and permutation operator
into color (c), spin-isospin (err), and spatial (x) factors,

~n, k)= ~n, k), ~n, k), ~n, k)„, (4.1)

~34 34 34~ 34 (4.2)

the kernels become

V)PP34

TABLE III. Kinetic and potential operators Op.

Tp Vp

V45 P34

FICy. 2. Quark-exchange diagrams corresponding to the
terms in Eq. (3.11).

TR

Tp
T~
T.

6
7
8
9

10
11
12

V34

Vis
V3s

V14

Vi2

V4s
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TABLE IV. Matrix elements included in the central kernels,

(n, k 0 n', k')„.
k'

TABLE V. Coefticients 3» in Eqs. (4.3)—(4.5).

0'
0'
Os

0'
0'
2m+
2m

0
0
0
0
2
0
0

0$

0$

2m +

2m

0$

Os

Os

0
2
0
0
0
0
0

1

2

3

4
5

6
7

1

2,5

3,6
4,7

—3ao Po
2 2

3a—o'PoP2
—3aoaz Po'/&2
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NI(R', R")=f;""gA, rf, , (n, k P34
' n', k')„, (4.3)

TJ(R', R")=f;"'"g g A, rf, r(n, k T~P3~
l

n', k')„,
and

(4.4)

y (R', R")= g g f'"""g (f, (n, k
l

V'P3~
l

n', k') +fp, ~
(n k

l &p P34 n', k') ), (4.5)

where V'= V '"'+ ~"".
The color matrix elements

f '"= (n', k'
l
P34 n', k'),

and

(4.6)

f color ( n F; F~P34
l

n', k'), (4.7)

are given in Appendix A. The SU(4) matrix elements

f, r ——(n, k P3~ l

n', k') (4.8)

fp, , ——(n, k a, o)P,4 l

n', k')r, r, (4.9)

0.6- 3.0

0.4) 2.0)
(D

0.2 I.O

0.0 0.0

I

0.60.0
I I I I I I

0.2 0.4
R (tm}

FIG. 3. Quark-exchange potential I=0: (a) includes the

y = 1 ((Hier ) matrix elements only; (b) includes y = 1 —7
((Hier+ 2ficu) matrix elements.

0.0
I I I I I I I

0.2 0.4 0.6
R (t~}

FIG. 4. Quark-exchange potential I= I: (aj includes the

y = 1 (Okapi ) matrix elements only; (b) includes y = 1 —7

(Ohio+ 2Ac~) matrix elements
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(4.10)

which contain the isospin dependence of the interactions, are given in Appendix B. The spatial matrix elements are

(n, k5(R —R')
~
OP3~

~

n', k'5(R —R")&, = I iI'j„„{A,,p, r)5(R —R')OP34$„„(A,,p, r)5{R—R")dpd j.dr dR

i
K & =Po

i
0&+P~

i
2&,

where Pa=0.9710 and and P~=0.09006.

(4. 12)

and the spatial wave functions are given in Tables I and
II.

The central kernels were calculated with the nucleon
wave function truncated to include Olid ( n =0) and
mixed-symmetry 2irtco (n =2) components:

t
X&=ao

~

0'&+aq (I/&2)[
~

2 + &+
~

2 &], (4.11)

where ao ——0.9878 and a2 ———0.1560. The
~

2'& com-
ponent contributes a negligible amount to the nucleon
wave function. The kaon wave function was also trun-
cated to include OAco and 2A~ components:

The product wave function is then, truncated to the
lowest 2Aco terms,

~

XK & =aoPO
~

0', 0 & +aoP2
~

0', 2 &

+a2 po(1/&2)(
~

2 +,0&+
~

2,0&)

+a2 p2(1/&2)(
~

2 +,2&+
~

2,2&) . (4. 13)

In calculating the central kernels, the matrix elements
with two or more 2%co components were not included be-
cause these matrix elements were suppressed by the
product of two small amplitudes. The matrix elements
included are given in Table IV.

The coefficients A in Eqs. (4.3), (4.4), and (4.5) can
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FIG. 5. Contour plots of the RGM kernels I=O: (a) potential kernel, in GeV, with @=1 matrix elements only; (b) potential

kernal, in GeV, including y = 1 —7 matrix elements; (c) normalization kernel, in GeV, including y =1—7 matrix elements; (d) kinet-

ic kernel, in GeV, including @=1—7 matrix elements.
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FIG. 6. Contour plots of the RGM kernels I=1: (a) potential kernel, in GeV, with y=1 matrix elements only; (b) normaliza-
tion kernel, in GeV, with y =1 matrix elements only; (c) kinetic kernel, in GeV, with y = 1 matrix elements only; (d) potential ker-
nel, in GeV, including y =1—7 matrix elements; (e) normalization kernel, in GeV, including y=1 —7 matrix elements; (f) kinetic
kernel including, in GeV, y =1—7 matrix elements.
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TABLE VI. Color factors.

color

TABLE VII. Isospin factors g (I12 ).

12

+—4
9

+—2
9
4
9
2
9

—1

+1
+1
+—1

3

10

12

2
9

2
9

where 0 is the angle between R' and R".
The S-wave phase shifts for the quark exchange poten-

tials and the nonlocal RGM kernels are given in Figs. 7
and 8.

The I=O results are repulsive for each approximation.
The OA'co+2Aco interactions give more repulsion than the
OA~ interactions for both the quark-exchange potentials
and the nonlocal kernels. The I=1 OAm and Ofico+2Aco
quark-exchange potentials are both repulsive, the
OAco+2Aco potential being more repulsive than the OAcu

potential. The I=1 nonlocal result is attractive giving
the positive phase shift. This is due to the attractive na-
ture of the kinetic kernel [Fig. 6(c)). When the 2A'co ma-
trix elements are added, the repulsion in the potential
kernel increases and compensates for the attraction in
the kinetic kernel giving a net repulsive interaction.
This repulsion is still too weak to give the I=1 phase
shifts.

V. CONCLUSIONS

The ultimate goal of this work is to determine which
aspects of the K+-N interaction can be derived from a
quark potential model. If the potential model chosen in
such a calculation is oversimplified or underspecified, in
that it retains many free parameters, the results derived
are most probably inconclusive. These drawbacks were
avoided by using a potential model in which the Hamil-
tonian was determined by fitting the entire meson spec-
trum and the internal wave functions are expanded in
terms of a complete set of harmonic-oscillator basis
states.

The preliminary calculation of S-wave phase shifts

the S-wave expansions of the kernels defined as
1

ki(R', R")=2vrR'R" f K(R', R")P~(cosO)d cosO,—1

(4.24)
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APPENDIX A: COLOR MATRIX ELEMENTS

The potential and normalization color matrix elements
are

and

fp"" (N, K F; Fi——P3~
~

N, K ). , (A 1)

f;""=&N,K ~P;, N, K), .

Using the SU(3) permutation operator

P = —,
' +2F; -F~,

the color factors become

fcolor
3

(A2)

(A3)

(A4)

from the local quark-exchange potentials was encourag-
ing. The I=O and I=1 phase shifts were in qualitative
agreement with the data. The nonlocal RGM calcula-
tion gave more repulsion for I=O, but not for I=1. In
fact, the I=1 RGM kernel is attractive when only the
0%co components of the hadron internal wave functions
are included. This can be attributed to the way in which
the kinetic-energy kernel contributes to the interaction.
The kinetic-energy kernel does not contribute to the
I=O OAco interaction. It should be noted that, as seen in
Fig. 6(c), our I= 1 OAT@ kinetic kernel is attractive,
whereas the corresponding kernel in Ref. 21 is repulsive.
When 2Aco internal hadron components are included, the
I=1 interaction has a net repulsion and the I=O S-wave
phase shifts are brought into good agreement with the
data. The repulsion is still too weak for I=1. This ex-
tra repulsion could be due to meson-exchange contribu-
tions or to the violation of local gauge invariance im-
plied in additive potential models.

TABLE VIII. Spin factors v„(S12,Sk.,S'», S& ).

S12 S S12

10 12

1

&3/2

3
2

3
2

&3/2

3
2

&3/2

3
2

3
2
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TABLE IX. Spin-isospin matrix elements f,' r

10 12

I=O 1,2,5

3,6

4,7

3
2

I

2

1

2
1

2

1

2

1

2
3

2

1,2,5

3,6

4,7

1

6
1

2
1

6

&3y3

2
3

1

6
1

6

f„""'=2(NK
i
F;.F F3.F4

i
NK ),

8 8 1

2 8 8 1 (N~F F3 N) (IC IFj F4IK&.
1 1 1

(A5)

for p=6, 7, 8, and 9 and

and the SU(3) recoupling coefficient

8 8 1

8 8 1

1 1 1

The results are given in Table VI.

(A10)

(Al 1)

fp"" —,'(NK
~

——F; F, NK), (A6)
APPENDIX B: SPIN-ISOSPIN MATRIX ELEMENTS

for p=10, 11, and 12. These factors are evaluated using
the identity

(c
~

F„F c ) =(c
~

F„c)5„
(c [(F F

F)
~

c )(1——5„),

The central spin-isospin matrix elements are

fr, =&n, k ~P;; ~n, k ).,

f =(n, k
t

cr; o P34 n', k')

(B1)

(B2)

the matrix elements

&1~F'~1&=0,

(3 iFii 3) = —', ,

(A8)

(A9)

where y labels the set (n, k, n ', k') and is defined in Table
IV. p specifies the set (i,j ) and is defined in Table III.
The nucleon and kaon SU(4) states are given in Tables I
and II.

It is helpful to define the spin factors

v, (S&z«Sx. , S&&«S~ ) = ((S&z« —, ) 2 «Sz
l
P34

l
(S,z« —, ) 2 «Sz )~ =i)(S,2«Sz«Sz ) (B3)

v&(S&&«Sz«Si&«S& )= ((Siz« —, ) 2«S+ l

o'1 o'&P34 (S,z«T) 2«Sz )~ «

where S&2 is the total spin of particles 1 and 2 and S~ is the spin of the kaon. Also, we define the isospin factor as

v (I1,q '«I2)~« —,)—:((I,~« —, ) —,', ', I
~
P34

I
(I,z« —, )——,', —,', I )z q(I~&«I&2)=q ——(I,2)61

12' 12

Using
CT 0 jP3& 2Pj'P 34 P34

v~(S, 2 Sx«S,2«S„)—((S,i«2)i«(~ i)Sac« —,
l
2P;, P34

l
(S„«—, )2«(2«2)Sx —,')~ rI(S, 2 S~ Sx. )

The isospin factors are given in Table VII and the spin factors v, and vz are given in Table VIII.
The matrix elements f„r (x =c,p) can be constructed from the v's and ii's:

(B4)

(B5)

(B6)

(B7)

f, , q 5
———,'[v (1,0;1,0)g (0)+v„(0,0;0,0)rI (0)],

f &=3 6 ———,'[v (1,0;1,0)q (1)—v (0,0;0,0)ri (0)],

f r 47 ———,'[v (1,0;1,0)i) (1)+v (0,0;1,0)r}1(0)] .

These matrix elements are given in Table IX.

(B9)

(B10)
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