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Real-time finite-temperature evolution equation for the Higgs field in an expanding universe
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We display the renormalized one-loop evolution equation for the expectation value P, = (P) r of
the field operator P in a A,P theory in spatially flat Robertson-Walker space-times, subject to the
initial condition that the system was in thermal equilibrium at a temperature T at some initial
time.

In this note we discuss the problem of renormalization
of the one-loop evolution equation for the Higgs field

P, = ( P & in a spatially fiat Robertson-Walker (RW)
universe. This equation determines the dynamics of the
order parameter P, during a phase transition in the early
Universe; in particular, it is needed in models of new
inflation. ' We extend the work of Semenoff and
Weiss, who represented the formal unrenormalized one-
loop evolution equation derived under the assumption
that at some early time t p [earlier than the grand-
unified-theory (GUT) transition] the quantum part of the
system is in thermal equilibrium at a temperature
T =P '

& T„;, and the further evolution is determined
by the quantum equations of motion. In Ref. 4 the
problem of renormalization was left open for the case of
nonadiabatically varying background fields which will be
treated in this paper.

For definiteness we consider a kP theory in a spatially
Oat RW space-time, given by the action

S= d xa t
2a

a2 a -2
, +3H(t) —a '(—t)V„'+m, '+g„R (t)

at2 Bt

and the conformally transformed field

g=ag
we obtain

(q'&=, (g'&

(10)

+ P, '(t) q(x, t)=0.
2

In (7) we have introduced renormalized parameters and
counterterms of one-loop order by the replacements
m =m, +6m, . . . in order to cancel the divergences
in the last term in (7), the one-loop contribution. As
usual the counterterms have to be fixed by renormaliza-
tion conditions.

Introducing the conformal time ~

dt

P'(P) P2+ gR $2+ P4

ds =dt —a (t)dx (3)

and
B2

V„+M (r)—g(x, r)=0 .
B7

(12)

R =6(H+2H ), H =-
a

(4)

M (r) denotes the time-dependent effective mass squared
of g:

where overdots denote the derivative with respect to t.
Here P, m, g, and A, are bare quantities. Using the
operator field equations of motion of P, making the
background split

M (T)—:0 (1 ) m„+(g„—6 )R ( r)+ p '('r) (13)

In this paper we will assume M (r) &0. The Hamiltoni-
an corresponding to (12) is given by

0=4, +v»
=(q &=o, (6)

MH (r)= I d x —,'q)' + —,'(Vy)2+ (14)

where ( .
& denotes building an expectation value,

and assuming that P, is a function of time only, ' we get
the one-loop-effective evolution equation

jk, + 3HQ, +(m„2+6m ~)P, +(g„+g)R P,
'

with a prime denoting differentiation with respect to ~.
Let us suppose that the system is prepared at some in-

itial time tp(rp) in thermal equilibrium at a temperature
T—:p ' with respect to H (rp). The density matrix at
~o is thus chosen to be

A., +5k,
+ "„y,'+,'(~'&y, =o, (7)

exp[ —PH (rp)]
p(rp) =

Tr [exp[ —PH (rp)] I

(15)

where the operator y of the quantum Auctuation satisfies
Since p and rp are both left as parameters, the choice of
initial conditions in our work is quite general (for further
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remarks regarding the choice of the density matrix see
Ref. 4). The states of the system will evolve via the
Hamiltonian H (T), such that if we measure the expec-
tation value of any operator Q in the evolved system we
find

& Q & T(T)=Tr[p(Tp) U(T Tp)QU (T T()) ]

with

G ( i) y (k)q(k)( )q(k)( (19)

g(") are any two functions which are linearly indepen-
dent solutions to the homogeneous equation

with

U(T, Tp)=P exp i dT'H (T')-
TQ

(17)

d Ic
G(T, T')=

3 Gk(T, T')
(2m )

(18)

Using path-integral methods Semenoff and Weiss
showed how to calculate & (P & r(T): it is given by the

coincidence limit of

+Qk (T) P'; '(T)=0, i =1,2,
d7

with

Qk (T)—=k +M (T),

and which satisfy the Wronskian condition

q(k)q(k)' q(k)'q(k)

The matrix y'"' is given by

(20)

(21)

(22)

+ Qk (Tp)

(k) Qk(To)—Q2 (Tp)coth p
1

2

2Qk(To) Qk(To}
Q "(Tp)coth /3

2

Qk(To}
Q'"'(To)coth ((3 —Qk(To}

(k) Qk(To)—Q i (To)coth P
2

(23)

with
Q(k) q(k)'2+ Q 2q(k)2

Q(k) q(k)'y(k)'+ Q 2P(k)g(k)

(24a)

(24b)

q(k)( ) [q(k)( )]e

with the additional condition
' 1/2

(26)

For the problem of renormalization it turns out to be
convenient to convert (20) into a set of two linear first-
order differential equations. We introduce two complex
functions ak(T) and pk(T) (not to be confused with
P—= T ') via the ansatz '

(k) ki—
2

(ake —Pke+ ) .

e~(T) are given by

y(T)=—exp +i J dT Qk(T )
TQ

(27)

(28)

Q'i"'(T) =
)~2 [a„(T)e (T)+pk(T)e+ (T)], (25)

[2Qk(T}])~
~«hoose ak(Tp) =1 and pk(Tp}=0. Putting all togeth-
er we obtain

with

zk =akpke

2 Qk (To)
2

G(T T}=
2 2

dk k Qk '(T)coth p [ 1+2sk(T)+2 Rezk(T)],a'(T) 4~' a'(T) 2
(29)

(30a)

(30b)

sk and zk satisfy, by virtue of (20), (22), (25), and (27),

Qk
sk = Rezk

Qk

Qk
zk —— (sk + —,

'
) —2(Qkzk,

k

with the initial conditions sk(T()) =zk(To) =0. Equation (29) can be written as

&g'&, ( )=&q'&, ( )+&&q'&, ( )

with

&(p &p(T)= 2 2 I dk k Qk '(T)[1+2sk(T)+2 Rezk(T)]
4m. a (T)

(31a)

(31b}

(32)

(33)
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&(y )T(r)=
2 z f dk k Al, '(r)(e " —1) '[I+.2sq(r)+2Rezt, . (r)] .

2~ a (r) (34)

Note that for T~O (/3~ ce ) (34) vanishes and only (33)
survives, which coincides with the expression derived in
Ref. 6 for the vacuum case.

The asymptotic behavior for large k of the integrands
in (33) and (34), in particular of sq and Rez&, can be ob-
tained by an adiabatic expansion of the solutions of (31a)
and (31b). This is valid for

Ak

nk2
(35)

i.e., for large masses, large momenta, or slowly varying
background fields [see the definition of Ilj, (21)]. In this
region we have sq,

~
zt, &&1, and one finds '

Sk Sk +Sk +(2) (4)

Rezk ——Rezk '+Rezk '+ .

(36a)

(36b)

2
1 +k

k
1 6 ~ 4 (37a)

where superscripts inside the parentheses indicate the
adiabatic order

1 +k' 1 +'k
Rezk

8 nk' 4 nk4
(37b)

Based on the fact that the adiabatic solution is an
asymptotic solution for large k we conclude that
b, (y ) T is finite and that the only UV-divergent term in
(cp )o is that part which remains if all background fields
are set to be constant (st, =—zi,

——0), i.e., the part

dk k2~ —'

4~ a

In coincidence with Refs. 9—12 we denote that part of
the evolution equation which remains if all background
fields are set to be constant the derivativ with respect to

of the one loop Jlnite-temper-ature e+ectiue potential
a v,', zap, .

In order to regularize the divergent zero-temperature
contribution (38) we introduce the physical wave number
k~ =k/a and use a momentum cutoff in physical mo-
menta A~. In this manner we obtain for the zero-
ternperature contribution to the derivative of the
effective potential (details of the following calculations
can be found in Ref. 6)

av'„ A.„+5X

ay, .
== (m„'+5m')P, +((„+5/)RQ, + P, '+, A, 'P, +, m„'+(g„,')R +——

m„+(g„——,
' )R +

m„'+(g„,')R + P—, '—P,ln (39)

The counterterms 5m, 5g, and 5A, have to be fixed by
renormalization conditions. We introduce the following
renormalization conditions: '

8'v', ~
'

m„
BP p, =0,R =0 (41a)

4A

renormalization-group equations, which are discussed in
the case under consideration in Ref. 13. Using (39) and
the renormalization conditions (40) the counterterms are
calculated as

6m = — A + + ln
16m

a'v'„
aR ay,', =O, A =@~

(40)
2 (g„——,') 1+—,'ln

m„+(g„——,
'

)p~

4Ap
(41b)

5'v', ~

ay, ' y, =„,, R =0

The above choice of renormalization conditions means
that we have chosen to define the parameters of the
theory in the limit of constant background fields and of
zero temperature. The coupling constants A, „and g„are
defined at the energy scales corresponding to the values

P, =p, and R =pq, which may in general be different as
the energy scales at which they are measured need not
be the same. The renormalization points p& and p2 are
completely arbitrary; different choices will lead to
different definitions of the coupling constants A,„and g„
(Ref. 9). How the coupling constants behave under the
change of scales is determined by their associated

3+—,
' ln

16m

2

4A

~rP]

2
~

2

2 Pi
2

m + pi

(41c)

For example, in the case m„=O, which is usually called
the Coleman-Weinberg (CW) case, one obtains, for the
derivative of the one-loop zero-temperature effective po-
tential,
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= /RAN+, P, '+ P, ln
64~

(g„——,')& +
11 ~r+, ( g, ——,

' )& P, ln
327T'

(g„——,')& +

(42)

The finite-temperature correction to the derivative of the
effective potential reads [(34) has to be multiplied by
(X„/2)P, , and sk and zk have to be set equal to zero]

aa v,',
[4,(r)l

C

f dk k Qk '(r)(e " ' —1)4na( r. )

(43)

Bh V,~
[P,(r)]= P, (~)

24 a (r)
(44)

which coincides in Minkowski space (a:—1) with the
well-known result derived in Ref. 10. In our RW space-
time we explicitly see that this term will be red-shifted
away.

Putting all things together we obtain the renormaIized
one-loop effective evolution equation

p+3HQ+ + p, f dk k Qk
4m' az

&k(ro)
)& coth P

2
(sk+Rezk ) =0, (45)

The momentum integral in (43) can be approximately
evaluated in the initially high- (PM « 1 ) or low-

(PM »1) temperature regimes using the results derived
in Ref. 11. In the high-temperature case and for

~

M (T)—M (7 0)
~

&&M (ro) we obtain, for example,

with V ff:V fr+ b, V,z. sk and zk are determined by
(jla) and (31b) with the initial condition sk(ro)
=zt, (ro)=0. The asymptotic behavior of sk and Rezk
for large k (37a) and (37b) ensures the convergence of
the momentum integral in (45).

Since sk and Rezk are integrals of Eqs. (31a) and (3lb),
which involve the background fields P, and a, (45) is,
essentially, an integro-differential equation, the last term
on the left-hand side being a nonlocal functional depend-
ing on the precise history of the background fields. In
the adiabatic limit, when (35) is satisfied for all momenta
k, the nonlocal term in (45) can be neglected in compar-
ison with the other terms since then sk,

~
zk && 1 for all

k. Equation (45) becomes in this limit similar (although
not identical, because we have worked in curved space-
time) to the evolution equation usually taken in the dis-

cussion of phase transitions in the early Universe, ' in

particular of new inAation based on CW potentials. ' In
the nonadiabatic case, when the background fields vary
more rapidly, it is not possible to neglect the nonlocal
contribution in (45) from the beginning. Equations (31a),
(31b), and (45) can be used in this case to study the
inAuence of quantum processes such as particle produc-
tion and vacuum polarization on phase transitions in the
very early Universe when space-time curvature and
dynamical field effects are important.
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