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Properties of some self-dual monopoles
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The magnetic charge and the Brandt-Neri stability conditions are studied for a class of spheri-
cally symmetric self-dual monopoles previously exhibited by McCxlinn. It is found that there is a
connection between the requirement of Brandt-Neri stability and the charge: namely, a solution
with the smallest charge is often, but not always, Brandt-Neri stable. Most of these solutions
which have a larger magnetic charge are not Brandt-Neri stable.

I. INTRODUCTION

The study of self-dual monopoles has proved to be a
fruitful field for the development of theoretical ideas
concerning the nature and interactions of monopoles.
Not many solutions to the self-dual equations, for a gen-
eral simple gauge group, are known. Most known solu-
tions are spherically symmetric, the spherical symmetry
implemented by an SU(2) subgroup of the gauge group
G. Ganoulis, Goddard, and Olive' (GGO) derived solu-
tions in which the SU(2) was maximally embedded in G,
and McGlinn exhibited some generalizations of these
solutions in which the spherical symmetry is implement-
ed by an SU(2) maximal in a subgroup G' of G. This pa-
per investigates the monopole strength of these solutions
and their Brandt-Neri stability.

The next section describes the GGO and McGlinn
solutions and, for the latter case, more completely
characterizes the asymptotic magnetic field then was
done in Ref. 2. Section III translates the Brandt-Neri
stability conditions to statements concerning the particu-
lar form of the asymptotic magnetic field of the GGO
and McGlinn solutions. These statements, used in Sec.
IV, characterize the solutions that are Brandt-Neri un-
stable. Concluding remarks are made in Sec. V.

II. SOME SPHERICAL SELF-DUAL MONOPOLES

+=q H (2)

We first describe the GGO solutions. The spherical
symmetry of these solutions is implemented by an SU(2)
subgroup which is maximal' in the full gauge group G.
This maximal SU(2) subgroup of a simple group G is
such that if the adjoint representation of G is reduced
with respect to this SU(2), the number of multiplets ob-
tained equals the rank of G. For this case,

R.H3=
2

where R is the level vector of G. The physically in-
teresting solutions are such that the unbroken-symmetry
group is U(1) XK where K is semisimple. To obtain this,
the asymptotic Higgs field

has a weight space vector q, which is proportional to a
fundamental weight A, &. The resulting asymptotic radial
magnetic field is given by

(m —R) H
(3)
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The dual components of the weight vector m are those
of the level vector of K for those components corre-
sponding E and zero otherwise, i.e., for the component
corresponding to the simple root a&. The vector m —R
is proportional to q; i.e., the asymptotic B field is in the
same direction as the Higgs field.

McGlinn considered a gauge group G, a subgroup G',
with the maximal SU(2) subgroup of G' implementing
the spherical symmetry. G' was restricted to being a
subgroup such that there exists a Cartan-Weyl basis of G
in which the simple roots of G' are a subset of the sim-
ple roots of G. Thus the Dynkin diagram for G' is ob-
tained from that of G by removing dots. An ansatz is
introduced which restricts the Higgs field (along the z
axis) to be in the Cartan subalgebra. The dual com-
ponents of the Higgs field corresponding to the removed
dots are shown to be constant and can be chosen arbi-
trarily. However they are determined by the require-
ment that the asymptotic Higgs field is in the direction
of a fundamental weight. The resulting asymptotic radi-
al magnetic field is given by

(m' —R') H Q H
eB, =

2y2 2y2

Here the dual components of the vector m' are equal to
those of the level vector of K'=K AG' for the com-
ponents of xn' corresponding to K' and zero otherwise.
R' has dual components equal to those of the level vec-
tor of G' for those components corresponding to G' and
zero otherwise.

The situation that the monopoles of (4) are topologi-
cally trivial with respect to G [but of course not with
respect to H =U(1) XIC] is reflected by the fact that the
dual components of m' —R' are integers. The monopole
magnetic charge (and topological charge) is given by
—R&. Thus, for such a solution to have unit-strength
magnetic charge, G'=SU(2) since the dual components
of the level vector of any other simple group are greater
than one.
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III. THE BRANDT-NERI STABILITY CONDITION 0 0--------C 0 GSU(n+1)

Brandt and Neri established that the magnetic mono-
pole was stable against perturbations only for certain
asymptotic B fields. Their arguments depend upon a
rapid approach to the inverse-square law form which
does not hold for self-dual monopoles. Nevertheless
one might expect that self-dual solutions may satisfy this
condition. The Brandt-Neri stability condition, for the
form (4), can be written as

Q a=O or +1

for all a which is a root of K. Goddard and Olive (GO)
have reduced condition (5) to conditions which involve
only simple roots of K. Since the roots of K are all per-
pendicular to A, ii, (5) also holds for the projection P of Q
perpendicular to A, z.

A g
A g

A g

that is,

SO(2n) 0

(i 0

0 Q

SO(2n+1)
X

Sp(2n)

0

X

0
X

P a=Oor+1.
GO argue that (7) can be replaced by

F4 C
P.a =0 or +1 and P.aj =0 for j&m . (8)

Here a is a simple root of a simple factor of K restrict-
ed to being one which occurs with an expansion
coefticient 1 in the expansion of the highest root of the
simple factor. Such roots are conjugate to so-called
minimal weights, ' indicated in Fig. 1. a is any other
simple root of this factor.

We want to investigate (8) for solutions (4). If one
denotes the dual components (in G) of Q as qi, the dual
components of P, p;, are

FIG. 1. Minimal weights. The minimal weights are those
fundamental weights corresponding to the vertices of the Dyn-
kin diagram marked by a cross. There are none for E8, F4, and
Czp.

G', since q;&0 only for such i. Also, KJ;q; =0 for j,
such that aj is a simple root of G' and thus (12) is
satisfied for such j. However, as we shall see in the next
section, (12) is generally not satisfied for m (j), such that
a (a~ ) is not a simple root of G'.

2 Gjgp;= g, K, q, —qg
CX I. 90

(10)

But

g K;, G;ii=
2

a&

2
5g;

and thus

2
pi p g Kij qj~

p =q —qo
~so

Here G; =(K '),,ai /2 (no sum over j). K, is the Car-
tan matrix for G and G&&

——k . Notice that the dual
component p& is zero. The Dynkin components p, (in K)
of P are

IV. BRANDT-NERI INSTABILITIES

To simplify the discussion we restrict G' to be simple
and K to be semisimple, but not simple. Consider, as an
example, G =SU(n +1). The generic diagram for such a
case is indicated by Fig. 2.

For this case K = SU(o +p +1)X SU(q +r + 1),
G'=SU(p+q+2), and K'=SU(p+1)XSU(q+1). As
noted in Sec. II, (12) is satisfied for an index correspond-
ing to a noneliminated root. The question to be
answered is the following: What is the value of KJ;q; for
j corresponding to an eliminated root? For SU(n+1),
K;, =0 except for i =j (K;; =2) or i =j+1 (K;;+~ ———1).
Thus, the only nonvanishing Kj, q; is for j corresponding
to an eliminated root at the end of a string of eliminated
roots and then K&, q; = —qj+&. Recall that q=m' —R',
where I' have the dual components of the level vector
of K' and R' those of the level vector of G'. Since the

Equation (11) implies that Eq. (8) can be written as

gK;q; =0 or +1 and QK, , q, =O, j~m . (12)

The sum is restricted to i such that a; is a simple root of

Gx

p0- -0 e
Q----O

FIG. 2. Dynkin diagram for G =SU( n + 1 ). indicates a
root eliminated in defining 6' and 0 indicates the root conju-
gate to A, q.
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components of the level vector for SU(m + 1) are
[m, 2(m —1),3(m —2), . . . , (m —1)2,m), the values for
qz+ &

are —q —1 and —p —1. Thus, the Brandt-Neri
conditions are satisfied only for q =p =0, in which case,
as we have noted, G'=SU(2) and the monopole has unit
magnetic strength. We call an embedding when
G'=SU(2) a minimal embedding. Of course, the condi-
tions are also satisfied if G'=G when there are no elim-
inated roots; this is maximal embedding. '

The generalization of these arguments to other simple
groups is straightforward. Slight complications occur
because the group (i) has a Dynkin diagram that
branches [SO(2n), E6, E7, E8] or (ii) has simple roots of
different lengths [SO(2n + 1), Sp(2n), G~, and F4].

First consider (i). It is still true that K; =0 or —1 for
i&j and it is easy to see that the result is the same as for
SU(n + 1); the Brandt-Neri conditions hold only for
G'=G and G'=SU(2).

For case (ii) one can again easily argue that the
Brandt-Neri conditions are not satisfied unless G'=G or
G'=SU(2), but the latter is not a sufficient condition.
Suppose the breaking is in the direction of a fundamen-
tal weight A, & whose conjugate simple root a& is a short
root of G. (Such a root corresponds to a black dot in the
Dynkin diagrams listed in Fig. 1.) We intend to show
that all minimally embedded solutions that correspond
to these short simple roots are not Brandt-Neri stable.

First, consider the case where az corresponds to the
unique black dot in the Dynkin diagram connected to a
white dot; denote the simple root corresponding to the
white dot as a, . EJ~ is 2 fo—r SO(2n +1), Sp(2n), and
F4, and 3 for G2. Thus, the minimal embedding corre-
sponding to az is not Brandt-Neri stable. (The magni-
tude of each of the other nonzero oft-diagonal elements
of the Cartan matrix is one. )

In order to see why the rest of the short roots also
correspond to unstable solutions, we must emphasize a
point ignored in the analysis so far, namely, that to in-
voke the first of Eqs. (12), we must check that the simple
root az, which identifies the minimal embedding, is con-
nected in the Dynkin diagram to simple roots a, each
of which are conjugate to minimal weights of K. For
simple Lie algebras with one root length, this is easily
verified for all choices of a6). For simple Lie algebras
having more than one root length, it is also true for all
a which are either long simple roots or connected to
long simple roots in the Dynkin diagram. The
remainder of the short simple roots violate the condi-
tion, that is, deleting one of these black dots in the Dyn-
kin diagram creates new vertices, one of which is not
conjugate to a fundamental weight of K. This confirms
our statement that all minimally embedded solutions
that correspond to short roots are not Brandt-Neri
stable.

V. DISCUSSION

After submitting this report, it came to our attention
that the SU(2) embeddings we have referred to as
minimal embeddings have been extensively studied by
Weinberg. ' He calls these solutions "fundamental

monopoles" based on the form of the energy and topo-
logical charge for an arbitrary magnetic charge con-
sistent with the quantization condition, and shows that a
counting of the zero-mode perturbations about a self-
dual solution supports this interpretation. He asserts
that the monopoles of higher topological charge will not
correspond to particles in the spectrum of the quantized
theory. In his investigation of the properties of these
rank-(6) fundamental monopoles for a non-Abelian
unbroken-symmetry group, Weinberg classifies the fun-
damental monopoles as "degenerate" or "nondegen-
erate. " A fundamental monopole is said to be degen-
erate if there exists another monopole solution [with an
SU(2) embedding implemented by a root of G which is
not a simple root "] that has the same topological charge
as the fundamental monopole and yet is not gauge
equivalent to the fundamental-monopole solution under
the unbroken-symmetry group. Weinberg lists the
breakings which admit fundamental monopoles. Finally,
he observes that precisely those fundamental monopoles
which are degenerate violate the Brandt-Neri stability
conditions. We find our list of minimally embedded
solutions which are not Brandt-Neri stable identical to
Weinberg's list of degenerate fundamental monopoles for
the case when the unbroken-symmetry group is U(1) X&.

It has been conjectured' that monopoles in a theory
with an unbroken symmetry H might be described by
field operators which transform according to the so-
called dual group H'. GO argue that self-dual mono-
poles that are stable with respect to both the Brandt-
Neri conditions and the stability criterion of Bais," the
latter requiring that the monopole strength be funda-
mental, can indeed be interpreted as heavy gauge parti-
cles of H . The discussion in this paper confirms that
there is a class of solutions of self-dual monopoles which
do not satisfy Brandt-Neri conditions, some of which,
for some groups, satisfy the stability criterion of Bais.

The main purpose of this paper was to investigate
properties of a class of spherically symmetric self-dual
monopoles exhibited in Ref. 2. We have shown that for
a given direction of symmetry breaking A, &, all these
solutions characterized by different SU(2) embeddings
have a monopole strength greater than the fundamental
strength, except for the minimal SU(2) embedding. In
addition, we have found that in general the Brandt-Neri
conditions are not satisfied. Under the restrictions stat-
ed in Sec. IV, a necessary condition for these conditions
to be satisfied is that the SU(2) embedding be either max-
imal or minimal ~ However, for groups which have roots
of different lengths, an SU(2) embedding may be minimal
yet the Brandt-Neri conditions not satisfied. This is true
if the simple root a@ is a short root of G. If the restric-
tion that K not be simple is relaxed, there will in general
be solutions that are Brandt-Neri stable for which the
SU(2) embedding is not maximal or minimal. Our re-
sults in the case of minimal embeddings are consistent
with the earlier observations of Weinberg.
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