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SU(2) lattice gauge theory and the convergence of the t expansion
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We have extended the t expansion of Horn and Weinstein to higher order for Hamiltonian
SUl2) lattice gauge theory. We have calculated connected matrix elements up to (H' )' in the
vacuum sector and (H" )' in the string sector. These data are then utilized to compute the 0++
glueball mass M, the string tension o., and their ratio R =M /o. . We find evidence for the conver-
gence of the t expansion in that the calculations are improved by including higher-order terms. R
appears to approach a constant value (M/o'' =3.3) at weak coupling, which is consistent with
Euclidean lattice Monte Carlo results.

I. INTRODUCTION

Recently, ' there has been renewed interest in the
Hamiltonian formalism for computing hadron masses
from lattice gauge theory. This is partly due to the
enormous scale of the computer calculations required by
Euclidean Monte Carlo methods. The Hamiltonian for-
malism reduces the computational problem to three di-
mensions and allows for the elimination of a consider-
able amount of redundant information due to transla-
tional degeneracy. Hamiltonian strong-coupling pertur-
bation theory, whife it has the advantages that it is sys-
tematic and analytic, has the disadvantage that a finite
series which accurately describes strong-coupling behav-
ior must be extrapolated to weak coupling in order to
obtain continuum results. A new alternative to strong-
coupling perturbation theory is the t expansion of Horn
and Weinstein, which is analogous to the high-
temperature series expansion in statistical mechanics.
While once again there is a series extrapolation problem,
it is now in an external parameter t; all coefficients in the
series are exact functions of the gauge coupling.
Coefficients in the series in t are matrix elements of con-
nected powers of the Hamiltonian (H")'. The compu-
tation of these matrix elements reduces to manipulations
on connected-graph sublattices.

In this work, we have calculated matrix elements for
the SU(2) lattice gauge theory up to order (H' )' in the
vacuum sector and up to (H")' in the string sector.
The convergence of the Pade-extrapolated t expansion is
improved over the calculations of Ref. 2 where only con-
tributions up to (H' )' and (H )' were available for
the vacuum and string sectors, respectively. The t ex-
pansion for the ratio of the 0++ glueball mass to the
square root of the string tension, R ' =M/cr', shows
signs of converging to a constant for values of the cou-
pling near g —1, within the scaling regime. We deduce
a value of M/o'' =3.3+0.2, where the error is estimat-
ed from the consistency of numerous Pade extrapola-
tions. This value for the ratio agrees with Euclidean lat-
tice Monte Carlo results. '

We also compare results of the D-Fade extrapolated t
expansion for M and cr separately with Pade-improved

The SU(2) lattice gauge theory in 3 + 1 dimensions is
described by a Hamiltonian which has the form

H =(g /2a)T+(2/g a)V,
where g is the coupling constant and a is the lattice
spacing. T is the sum of electric flux operators with
values j(j +1),j =0, —,', 1, . . . , on every link of the lat-
tice, and V is the sum of magnetic flux operators on each
of the X plaquettes of the lattice. V acts on a given pla-
quette by changing j to j+—,

' on each of the four links of
the plaquette. This Hamiltonian is discussed further in
the Appendix where we derive the general matrix ele-
ments of V with respect to arbitrary eigenfunctions of T.

The generating function for the expectation value of
connected powers of H (with respect to an arbitrary
state),
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converges to the true vacuum state. Similarly, the gen-

strong-coupling perturbation theory. The two series
agree well from strong coupling down to g of order 2.
However, for the mass ratio R, the apparent conver-
gence to a constant from the t expansion is not matched
by perturbation theory.

II. THE f EXPANSION
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crating function, which equals (II,
I

H
I
II, ) =E (t), con-

verges to the true vacuum energy as t~ oc&. [E(t) is
directly proportional to the volume, Na, and thus, so
are the connected matrix elements. ] Calculation of the
connected matrix elements (H")' in Eq. (2) to a given
order n gives E(t) accurately for small t, but arbitrary g.
This is the t expansion. The large-t behavior must be
guessed by Pade or similar extrapolation methods.

The t expansion is the analog of the high-temperature
series in statistical mechanics where ( e ' ) ~tr(e ~ ).
The vacuum energy corresponds to the internal energy
in statistical mechanics, E ( t )~ U (P) = —(8 IBI3)
XlnItr[exp( 13H)—]I. The trace is taken with respect to
any complete set of states; in the strong-coupling basis,
the t expansion and high-temperature series agree for
t =f3~ oo.

Our goal is to compute the series in Eq. (2) to
sufficiently high order so that the large-t behavior of the
generating function, and thus the vacuum energy, can be
extracted. From the t expansion for the vacuum energy,
the 0++ glueball mass will be obtained from E(t), cf.
Eq. (17) below. In a similar way, by choosing an initial
state in Eq. (2) containing a string of j = —,

' electric fiux,
the string tension will be obtained.

III. COMPUTATION OF (H" )'

From the t expansion, the computation of eigenstates
of the lattice Hamiltonian is reduced to finding connect-
ed matrix elements of powers of the Hamiltonian. This
computation can be accomplished in the following se-
quence of steps. First, the connected graphs which con-
tribute to a given power of (H" )' need to be delineated.
The open connected graphs containing up to 4 pla-
quettes, and closed graphs of up to 16 plaquettes, are
listed in a seminal paper by Balian, Drouffe, and Itzyk-
son. " There are 16 topologically distinct connected
graphs containing up to 4 plaquettes. We have identified
54 topologically distinct graphs with 5 plaquettes and
247 graphs with 6 plaquettes. In addition to listing the
distinct graphs (indexed by i ), we must determine a
geometrical factor 6; associated with each graph. This
factor enumerates the number of distinct orientations of
the graph (excluding translations) on the infinite lattice.
The total connected matrix element will then be the sum
over the contributions from all of these connected
graphs times their geometrical weight:

(H")'=g G;h;",

where h;" is the connected matrix element computed on
the lattice of the connected graph i. This decomposition
is an enormous simplification since lattice configurations
are then limited to only a few links ( &20 in the present
calculation) which can contribute to a connected graph,
rather than —10 which might contribute on a small lat-
tice.

Given the lattice pertaining to a particular connected
graph i, the h;" are then determined from the total ma-
trix elements (H"); by first making use of the recursion
relation' for connected matrix elements:

n —1

(Hn+1)c ( Hn+1) y (HP+1)c(Hn —P)

For example,

h" =(H")' —2h" —3h" —4h"

where the series begins with, h" = (H" )' .
To evaluate (H") for a connected graph we utilize a

basis of strong-coupling eigenstates generated by succes-
sive operations of the plaquette creation operator V on
the strong-coupling vacuum of a lattice corresponding to
the graph under consideration. A Hamiltonian matrix is
then constructed in this basis. The determination of
(H") can then be achieved by successive multiplications
of the Hamiltonian matrix acting on the start vector cor-
responding to the strong-coupling ground state. As an
illustration, consider the simplest connected graph, the
graph for a single plaquette. The basis of states for this
lattice will be

1/2) I
1)

I 3i2)

where the subscripts denote the angular-momentum-like
quantum number indicating the color-electric Aux excit-
ed along each link. For this graph, the Hamiltonian ma-
trix takes on a particularly simple tridiagonal form:

0 x
x 3 x

0 x 3x

2x +9x
x 8 x

x 15

0 x
0 0 0

11x

x

(10)

Equation (10) also illustrates the results of several matrix
multiplications. (H") is simply given by the amplitude
for the strong-coupling vacuum basis state after the nth
multiplication of H. Similarly, (H ") can be obtained
from the dot product of the nth vector with itself.

In the present calculation the size of the basis required
to compute a given power of n is -P", where P is the
number of plaquettes on the graph. The growth in the
size of the basis as n becomes large is currently the limi-
tation of this approach. For larger graphs, the number
of basis states and the size of the Hamiltonian matrix
can, however, be reduced by a proper accounting for the
symmetries of the graph. In the present work we have
not made use of this simplification, which can be
significant for graphs with closed surfaces. We are in

Computing (H"),' on a connected-graph lattice includes
terms corresponding to the Hamiltonian acting only on
subgraphs of this lattice. The contributions from these
subgraphs must be subtracted out. If each subgraph A
of the graph i occurs g; z times, then the net connected
matrix element for this graph, h;", is computed recursive-
ly:

(7)
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the process of utilizing this feature to extend the calcula-
tion to yet higher orders. For the immediate future it
appears that we should be able to compute the vacuum
graphs up to at least (H' )' before computer limitations
are prohibitive.

Having computed the h;", it becomes apparent that
there are remarkable cancellations of terms which could
contribute to (H")'. Many of the graphs which could
in principle contribute at a given order cancel until a
much higher order. Figure 1 lists the graphs which were
included in the vacuum computation of (H' )', the
numbers with each graph give the order at which it con-
tributes nonvanishing matrix elements, and its geometric
factor G;. Note that although we have only extended
the highest order from (H' )' to (H' )', this intro-
duces considerably more structure into possible vacuum
fluctuations, i.e., the number of connected graphs in-
creases by more than 50%.

Except for a theorem that ( V")' has nonzero contri-
butions only on a single plaquette and closed surfaces,
we cannot prove in general which graphs will contribute
at a given order. There are, however, some general rules
of thumb. For the open vacuum graphs, in addition to
the two operations of V required for each plaquette, at
least one operation of T is required for each plaquette
which is part of an open surface. For example, the two-
plaquette lattice does not contribute until (H )', corre-
sponding to four operations of V to cover the lattice and

7

7 6 8 12 8 l6

two operations of T. On closed-surface graphs, only one
operation of V is required on each plaquette.

The connected matrix elements for the string tension
can be obtained by repeating the calculation in the pres-
ence of a line of j = —, excited links in the initial and final
states. Figure 2 shows the set of connected graphs that
give nonzero contributions to the computation of the
string tension up to (H" ) '. Note again that the num-
ber of connected graphs which contribute substantially
increases when extending the calculation from (H )' to
(H")'. The string graphs tend to give a nonvanishing
contribution beginning at least one order higher than the
corresponding vacuum graph. For example, two-
plaquette graphs on a string begin to contribute at
(H7)c

For completeness we summarize here the connected
matrix elements for the vacuum and string sectors. In

6 Bl

6 1/3 98/3

10 18

)0 S, i 10

10 28 10 8

12 ll 36 11 16

1Z 5 1216/ r 1
f1 32

12 4

FIG. 1. Connected graphs that contribute to the calculation
of (H' )' for the vacuum. The numbers before each graph
specify the lowest order n of (H")' at which they first give a
nonzero contribution and the geometric factor G that counts
the number of distinct ways the graph occurs on the lattice, ex-
cluding translation.

FIG. 2. Connected graphs which contribute to the calcula-
tion of the string tension to order (H" )'. The numbers before
each graph are n and G as defined in Fig. 1. Conspicuously ab-
sent are those three plaquette graphs that have only one pla-
quette edge in common with the string. These graphs are can-
celed to this order by the vacuum graphs.
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+ 82 690 581.625x —86 932 312.5x

+ 106 624 056x ' —8 036 050m '

Our vacuum matrix elements agree with those computed
upto z y unc(H' )' b D can and Roskies' using a different
technique.

The net connected matrix elements in the string sector
(after subtraction of the vacuum contribution) are
g L/2, where L is the number of links along the string,
times

&H' &'=0.75, (H')'=3x', (H')'=24x',
2 4(H )'= 131.25 —15x (H )'=611.25x —157.5x

(H )'=2610. 1875x + 1379.25x + 840x

( H ) '= 10 570. 875x +65 535.375x
(12)

the defining equations for connected powers, q .rsofH E s.
(2) d (1) t and H are made dimensionless by the re-an1, tH =(g r/a)[T+(4/g )V]; if we now ca4 ll
H =T+xV, where x =4/g, then the vacuum matrix
elements are g N/2 times

&H'&'= ' (H')'=3x (H )'=9x' —x

(H )'=27x —10x , ( H )'=81x —41x +20x

(H )'=243x 2+230x 4+420x 6,

(H )'=729x +6740. 5x +4942x —896x ',
(H )'=2187x +88 889x +40331x —32256xs,
(H' )'= 6561x +929120.125x +268951.125x

—635 964x +65 667x '

(H" ) '= 19 683x -+ 8 641 747.625x

+ 3 143 657.5625x —8 716 686x

+3 611 685x '

(H' )'= 59049x +74960578.468 75x

lations can be judged is the energy fluctuation

BE (r)
(13)

A. 0++ glueball mass

The glueball mass is calculated by use of the Lanczos
algorithm to construct a zero-momentum state from

—tH/2 y
plaq

(()
i
e

—tH
i

0)1/2 (14)

This quantity goes to a positive constant as t ~0, and
decreases monotonically to zero as t~ oo (since

~
0,

approaches an exact eigenstate of H). Therefore, E(t)
decreases monotonically with t to a constant value, for
anyvaueo g. i u1 f . Figure 3 shows an example of our resu ts
for BE /—Bt for the [2/6] D-Pade extrapolation at
di6'erent values of g, and the unextrapolated finite series
at g =2. The importance of the Fade extrapolation is
evident from the breakdown of the finite series for
t -0.5, while the Pade extrapolation has the required be-
havior for much larger t. For g =1.5 the curve does
not appear to approach zero asymptotically, indicative
of a breakdown of the Pade extrapolation of the t series
for small For )2.0, however, the Pade functions
nice y repro uce e1 d th correct asymptotic behavior. ven
though the integrand in the [2/6] D-Pade function a s
only as 1/t for large t, the convergence to asymptotic
behavior occurs for t not much larger than 1, even for g
as small as 2. Once —BE/Bt gets very small, however,
there are deviations from the correct asymptotic behav-
ior; the curves either turn up after approaching zero, or
overshoot and become negative. Since the asymptotic
behavior is approached so rapidly in t, at and then becomes
unreliable, it is possible that in the calculations of M(t)
and o(r) the best asymptotic values for these quantities
may actually be obtained at finite t. Thus, we also con-
sider below Pade extrapolations for finite t.

+22 396.5x

( H ' )' = 4 l 337.890 625x + 1 228 949.25x

+293 954.0625~ 6 —8Q 640~ 8,
(H" )'= 157 753 359 375x + 17 251 026. 5625x

+2 432 687. 8125x —3 519 747x

[.0

6—

Our matrix elements for the string tension agree with
Horn Karliner, and Weinstein up to the order that they
calculated, (H )'.

IV. APPLICATION

13

0. —

As was discussed in Ref. 2, the large-t behavior of the
series can be extracted more reliably than by diagonal
Pade extrapolation by constructing a rational function
for the derivative of the series with respect to t, and t en
integrating over t (the so-called D-Pade method ).

An important quantity from which the Pade extrapo-

1.0 2, 0 ~ ) . ') :3.0

ICs. 3. [2/6] D-Fade functions (solid lines) for BE/Bt asa-
function of t for different values of g . Also shown for co2

parison is the finite series for BE/B gt at =2 (dotted line).
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that is orthogonal to
~
n, ). Such a normalized state is

H/n, ) —
/

n, )(n, /Hfn, )
G, (15)
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The 0++ glueball mass (mass gap) as a function of g is
then obtained from the t ~ ~ limit of

M(t g )=(G, [H [G, ) —(n, IH (n, ) . (16)
P ()l0

This formula can be conveniently reexpressed in terms of
derivatives of E(t):

g' B'E(r)/Br'
2a BE (t)/Bt

(17)

After the diff'erentiations of the series for E(t), which
is of order t ", the resulting rational expression for
M(t, g ) is reexpressed as a polynomial of order t . Fig-
ure 4 shows the results from the [2/5] and [2/6] D-Pade
approximations to M (g ); also shown, for reference, are
the curves corresponding to the strong- and weak-
coupling limits. The break away from strong coupling is
for g —5, and the D-Fade extrapolations remain con-
sistent until g -2.2. Although the match to weak-
coupling scaling probably occurs for g -2, the slope at
g -2.2 is already close to that of the weak-coupling
curve.

Figure 5 shows M(t, g ) vs 2/g, obtained by direct
[2/4] and [3/5] Pade approximations to M(t, g ) for
finite t chosen to best reproduce the weak-coupling be-
havior. Although the curve [3/5] in Fig. 5 seems to
match nicely onto the weak-coupling scaling curve, it
holds on to the strong-coupling behavior too long.
From Figs. 4 and 5 it is apparent that there is better
convergence to weak coupling when higher terms are in-
cluded in the series.

[0 0. . t3

Figure 6 shows various direct Fade extrapolations in
(4/g ) for the strong-coupling perturbation series from
Ref. 3. These curves show consistent behavior from
strong coupling into the transition region. The agree-
ment between the t-expansion D-Pade results (Fig. 4) and
these curves is encouraging and suggests that the behav-
ior of M(g ) is well defined at least into the transition
region.

From the results of these extrapolations (Figs. 4 and 5)
for M, we estimate that M —(400+100)A, where

A=(1/a)(12ir /1lg )
'/' 'exp( —12m. /llg ) . (18)

The P function, which governs the way g must be re-
scaled with a, is extracted from the renorrnalization-
group equation

FICr. 5. Direct [2/4] and [3/5] Pade approximations to
M(g, t) for fixed values of t, which best extrapolate from
strong to weak coupling.

I'( I l lit 1);] t i ()rl T}I( () r l)

I 0]0

[o
---[ I

I () 0. . t3

FIG. 4. D-Fade approximations to the series for the 0++
glueball mass, M(g ). The [2/6] (solid line) and [2/5] (dotted
line) functions are compared to the strong- and weak-coupling
limits (dashed lines). The two dashed weak-coupling lines are
normalized to the Pade functions at g'=2. They indicate the
uncertainty in the determination of the glueball mass from
these curves.

I )
0 '. 0

FIG. 6. Pade extensions of the strong-coupling perturbation
series for M(g ) from Ref. 3.
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—a +P(g) M(g, a)=0 .a a
Ba Bg

The previous D-Pade determinations of M (Fig. 4) then
determine the P functions shown in Fig. 7. They exhibit
a consistent transition from strong coupling toward the
asymptotic-freedom weak-coupling behavior.

~ ~ ~ ~

B. String tension

Plotted in Figure 8 is the square root of the [2/5],
[2/6], and [3/6] D-Pade extrapolations of the t series for
the string tension. Although the string matrix elements
were computed to almost as high an order as the vacu-
um matrix elements, they do not seem to contain nearly
as much structure (compare Figs. 1 and 2). Perhaps,
this is why the string-tension series are not as well
defined as M when the weak-coupling regime is ap-
proached.

The results from the D-Pade series remain consistent
from strong coupling to g -2.2. Although the curves
do not yet match onto the weak-coupling scaling behav-
ior, they suggest that scaling may possibly set in for
g -2. It is unclear from this analysis whether the turn
over to the weak-coupling slope is as rapid as the dip in
the [2/5] and [3/6] D-Fade approximations or is much
slower as indicated by the [2/6] D-Pade approximation.

Figure 9 shows direct Pade extensions of the series for
o for finite t. For these curves the transition away from
the strong-coupling regime is not as consistently defined
as for the D-Pade functions. Figure 10 shows the results
of direct Pade extensions of the strong-coupling pertur-
bation series in (4/g ) from Ref. 3. The results from
the D-Pade extrapolations are consistent with strong-
coupling perturbation theory into the transition region,
although both methods are poorly defined at weak cou-
pling.

From these curves we estimate that o. '

—(200+ 100)A.

FICs. 8. Square root of the D-Pade approximations to the
series for the string tension, o(g ), for the [3/6) (solid line),
[2/6] (dotted-dashed line), and [2/5] (dotted line) functions
compared to the strong- and weak-coupling limits (dashed
lines).

g =~2/(y

From the calculations of M and o separately, an esti-
mate of R ' can be obtained directly, R ' =2+ 1.
However, a much more accurate determination can be
made by first combining the series for the ratio of M to
o., and retaining terms up to I. . The D-Fade extrapola-
tions constructed from this series apparently have can-
cellations that allow extrapolation to much weaker cou-
pling. Figure 11 shows the results for R ' from the
[0/5] to [0/8] and [1/4] to [1/7] D-Pade approximations.
From this broad range of Pade extensions there is a
trend toward a constant value of R, approached near

g —1, before the calculations break down. The range of

I

1.0

W.~

"'

—[:1/.') ]

— -[ I/lI] ( l = 1. 0 I
1

].6 ".0

FI(s. 7. P functions derived from the D-Pade approxima-
tions to M{g ) of Fig. 4. The dashed curve shows asymptotic-
freedom scaling.

FICx. 9. Square root of the direct [3/5], [3/7], and [4/6]
Pade approximations to o.(g, t) for fixed values of t which best
extrapolate from strong to weak coupling.
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I'( t tittl) tI tott lit(oty
.) . 0

I'( t l it t'l) a t i ott T/t( () 1'$'

10
0

—[o
---[ i

1.0—

10
:3.0— - -I'i»i t( st r i( s

0. ".0 1. 0 '. 0 ', t. 0 1. 0

FIG. 10. Square root of various Fade extensions of the
strong-coupling perturbation series for cr(g') from Ref. 3.

FIG. 12. Square root of various Pade extensions to the
series for R =M /o. derived from the strong-coupling pertur-
bation series for M and o. from Ref. 3.

;).0

:3 . :)—

,'t. 0— —-[o/7] —-[ i/o]
—[0/H] —[I/7]

g for which R ' approaches a constant is well below
the peak in the Euclidean specific heat, which occurs for
g -2, indicating the rapid cross over transition from
strong-coupling to weak-coupling scaling behavior. The
higher-order Pade curves exhibit a consistent conver-
gence to a smaller value for R than the previous lower-
order (e.g. , [0/5] and [l/4]) Pade evaluations. We
deduce a value of M/o'/ =3.3+0.2, which is within the
quoted uncertainties from lower-order calculations and
is in good agreement with results from recent Euclidean
lattice Monte Carlo calculations by DeGrand and Peter-
son' who obtained a value of M /o'/ =3.4+0.3.

Figure 12, on the other hand, shows the results of
different Pade extensions of the strong-coupling pertur-
bation theory series for R constructed from the series for
M and o. These curves do not at all appear to have the
correct behavior for small g .

V. CONCLUSIONS

The weak-coupling behaviors of the glueball mass, the
string tension, and their ratio are more clearly defined as
the calculation is extended to higher order. The present
results for R ' also agree well with the value obtained
from Euclidean lattice Monte Carlo calculations, al-
though obtained with significantly less expenditure of
computer time. (This entire calculation utilized approxi-
mately four hours of Cray XMP computer time. ) At
strong coupling, the t expansion accurately agrees with
perturbation theory. For R, however, while perturba-
tion theory does not converge to a constant at weak cou-
pling, the t expansion does reasonably well. Neverthe-
less, given the need to extrapolate a series to large values
of its expansion parameter, only convergence theorems
and higher-order calculations will ultimately justify the
method.
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APPENDIX '2

=(2/g a) V, (A 1)

where U =exp[ig A. (o /2)a], and where the product in

the traces is around the four links of a plaquette. [For
SU(2) the two trace terms are equal. ] This expression
reduces to the Yang-Mills magnetic-field energy in the
classical continuum limit. The rescaled color com-
ponents of the vector potential, g Aa =0, become angu-
lar variables; the SU(2) matrices, U, are then j = —,

' rota-
tion matrices. The electric field operators, E= (g /
a )i(B/BO), give for the electric field energy a Laplacian
on S, the SU(2) group manifold,

2 2

2a ];k 2a
(A2)

In the Schrodinger formulation of the lattice quantum
field theory for the gauge theory, the vector potential,
A = A (cr/2), and electric field E—are canonically con-
jugate quantum variables (in A =0 gauge) on each link
of a spatial lattice. The gauge-invariant magnetic field

energy takes the form

a g (1/g a )[4—tr(U1U2U3U4) —tr(U4U3U2U1)]
p]aq

FIG. 13. Angular-momentum labels for links that intersect
a given site. Also shown is a plaquette operator acting on the

Ip and s2 links.

V3—D'„(U)=j(j+1)D'„(U}, (A3)

where, j =0, —,', 1, . . . , and the matrix elements of U (ex-

pressed in terms of Euler angles) parametrize the repre-
sentation. The strong-coupling wave functions are prod-
ucts of rotation matrices of (in general) different j on
each link, but subject to the constraint of Gauss's law.

The lattice covariant divergence of the color electric
field is

The Hamiltonian

H =(g /2a)T+(2/g a) V

E (n) —U E„(n—x)U
(A4)

then has the form of a nonrelativistic many-body (equal
to the number of links of the lattice) Schrodinger opera-
tor with a four-body potential.

For strong coupling, there is a natural perturbation
theory. ' The SU(2) rotation matricies form a complete
set of eigenfunctions of the Laplacian on S:

plus similar terms in y and z. Here n refers to a lattice
site, E„(n) is the color-electric field on the link in the
+x direction of n, and U and E„(n—x) are the SU(2)
rotation matrix and electric field Lie-algebra element on
the link in the —x direction of n. In the naive continu-
um limit expression (A4) reduces to

BE„(n)
E„(n)—[1 ig A„(—n)a + . ] E (n) —a + [1+igA„(n)a + ]

a~0 Bx

E
+ig [A„E„].

Bx
(A5)

The commutator is only in the SU(2) Lie algebra, and is not canonical. Because of the correspondence E~ —(g/a )J,
the second term in Eq. (A4) is —g /a times an angular momentum operator in a rotated frame:

—.J'= —U —U JCT

2 2

Referring to the labeling in Fig. 13 the states that respect the constraint of Gauss's law obey

(Ll+L2+Sl+S2+Jl+12)
l

&=Q
l

(A6)

(A7)

(A8)

This requires the angular momenta on the links intersecting a given site to couple to zero (or to the angular momen-

tum corresponding to a quark color state at the site}. Defining basis states from the wave functions,
' 1/2'+ D „(U),2 +1

at each site of the lattice we adopt the coupling convention (see Fig. 13)

C1112L. Cs ) s~S Cl SJ Ci 1
i &I gl l ) l2 S ) S2

I [[( 1 2)L(F1~2)S]I(11 2)I]1Q,2. & g nim2ML v1p2M, M~M, M pia2n Mile m n m & v v ~ p

(A9)
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These states satisfy the constraint of Eq. (A7), where the
unprimed angular momentum operators act on the left
magnetic quantum number,

four links of a plaquette by 6—,'. The matrix elements of
V are obtained from the wave functions corresponding to
these states,

(A10) I + (U]t Up& ~ ~ . )V P(U), U2, . . . )dU)dUp 7

(A 1 1)

=[(j+m)(j+m +1)]'
I

J +, „&,

and the primed operators act on the right magnetic
quantum numbers in the same way. Gauss's law can be
explicitly checked for these states using the standard re-
cursion relation for Clebsch-Gordan coefficients derived
from

&J~m»2m2 I&*l jm &=&jimij2m2 I~T+J~2
I
jm &.

The general gauge-invariant state vector is then specified
by not only the angular momentum on each link, but
also the intermediate angular momenta at each site.

The action of V on a state changes j on each of the
I

by integrating over the group manifold on all links. The
integral on each link is evaluated using the familiar
Clebsch-Gordan decomposition of representations and
orthogonality of the rotation matrices:

f D' „(U)D„', (U)D'„(U)dU

2 2

2j'+1
For each of the twelve orientations of a plaquette opera-
tor around a site, we recouple the standard angular
momentum coupling convention of Eq. (A9) in order to
naturally evaluate the part of the matrix element of V at
that site. For example, for the plaquette operator in the
orientation shown in Fig. 13, the recoupling' is

[(l, l2)z(sts2)s]z(t&&z)ll&, &= g I I[(I,s, )J (l2s2)j ]~(i,it)1)~g&[(2j, +1)(2J2+1)(2L+1)(2S+I)]'

l2 $2

L S J
(A13)

In our present applications we will only need the expression for Q =0, A, =O (no dynamical quarks). In terms of these
recoupled states, the matrix element calculation simplifies since the part of the wave functions on all links not acted
on by V are orthonormal. Then in this recoupled basis,

& [[(its& ).i(l~s~). i ] (l Jtl2)~ ]0 I
V

I I[(its&)J((l~s2)J )J(l)l~)JIO&

2l, +1
W( —,lqs2J2, lqsq)5. . 5 . 5JJ5( I. 5 5. . 5. .

2$ +12
2 J]J ] J2JZ 1]li $]$] ill ] 12l g

(A 14)

where the quotation marks around V refer to only those
terms in V that act on links that meet at the vertex in
question. In this example, the relevant D' matrices
are the first two terms of

plaq

(A15)

where DJ„(U )=(—IY™(—1)J "DJ „(U). Also
8'is the standard Racah coefficient

l2 l2

2 2$2J2s 2$2
J2 $2

I
$2

(A16)

Similar expressions are obtained for the other vertices
associated with the plaquette operator acting in the
plane, with the recoupling convention shown in Fig. 14.
The arrows indicate the order of recoupling. For exam-
ple, the recoupling order for vertex 2 is

FIG. 14. Recoupling convention for a plaquette operator
acting in the xy plane. At vertex 1 [cf. Eq. (A13)], LS~jj
coupling. For vertex 2 the recoupling is described in Eq.

J]+Jp —J
(A17). Vertex 3 differs by a phase factor ( —1) relative
to vertex 1 due to the interchange of j] and j2. Vertex 4 differs

K]+K2 J
from vertex 2 by ( —1) due to the interchange of K]
and Eq.
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X Z

4I Ii

X

I'E,

X

FIG. 15. Example of an out-of-plane plaquette considered as
in plane due to a rotation of axes (xy)z~(yz)x. Standard
(LS)I coupling is recoupled in this example to "standard"
(SI)L coupling. The matrix element is then calculated just as
for a plaquette in the xy plane.

(x%')z

Z

(yZ)X

l
[(lil2)i(sis2)s]J &~

I [(sile)~, (s2li)~ ]J &

The general form of the matrix element is then a prod-
uct of contributions associated with each vertex of the
plaquette; the term at each vertex is a Racah coefficient
times two 9-j recoupling coefficients: one from recou-
pling the initial state an. d one from the final state. There
are also phase factors (zero in this example) and factors
of &2j + 1 from each matrix element and recoupling.

For plaquette operators out of the plane, the axes can
be rotated so that the plaquette lies in the plane, as illus-
trated with an example in Fig. 15. After recoupling,

—
~ [ [( s~ s2) s( t& t 2) J] L(l &

l 2) LI o & (A18)

(in this example the recoupling coefficient
([(SJ)LL]o

~
[(LS)JJ]o&=1; other cases give phases),

X

(XV)Z (zx)y

the matrix element is obtained by transcription. As il-
lustrated in Fig. 16, the axes must be rotated in cyclic
order, since the original coupling scheme has a natural
(xy)z orientation. For the plaquette originally in the z-x
plane, after rotation of the axes, the loop is oppositely
oriented; the transcription of labels then requires that
the vertices be identified in the order 1234~2143.

FIG. 16. Rotation of axes necessary for converting out-of-
plane plaquettes to in-plane plaquettes.
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