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Continuum limit of lattice gauge theory: A perturbative study
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In a weak-coupling expansion, the Creutz ratio is calculated on relatively large lattices up to
O(g ) for improved actions. A universality in size dependence of the Creutz ratio is found among
lattice actions. By extrapolating the results on finite lattices to an infinite lattice, the artifacts are
studied, and the minimum size of Creutz ratios for which the artifact becomes less than 10% is
determined. The scale transformation and universality between lattice actions on finite lattices are
studied.

I. INTRODUCTION

Lattice gauge theory' is a well-defined quantum sys-
tem as long as the lattice size L, lattice spacing a, and
coupling constant g, are kept finite. The real world cor-
responds to the continuum limit, L~oo, a~0, and
g~0. In this limit, the correlation length g diverges.
The nonperturbative effects of the theory are taken into
account under the condition I »g, where l is a charac-
teristic length of some physical quantity under con-
sideration.

The nonperturbative aspects of the SU(N) gauge
theory are mainly studied by Monte Carlo (MC) simula-
tions on finite lattices, but from the ability of present-
day computers, the size of lattices L could not be taken
large enough and therefore, the coupling constant g, is
also limited. The size effects and lattice artifacts of MC
calculations are not studied systematically and quantita-
tively.

The weak-coupling perturbative expansion corre-
sponds to the g, ~0 limit. Then for all the quantities
with finite l, the nonperturbative effects could not be
taken into account. However, perturbatively the physi-
cal quantities are calculable on continuous space from
the beginning if a renormalization scheme is specified.
Then by comparing the corresponding calculation on a
finite lattice with those on continuous space, we
definitely can know the size dependences and artifacts.

On a lattice there is an ambiguity in the choice of ac-
tion, and the improved actions ' have been proposed to
reduce the lattice artifacts. However, we must carry out
actual calculations on finite lattices with these actions to
know how large I and l/a should be in order that the
difFerence between lattice and continuum calculations be-
comes less than 10%%uo, for example.

In this paper we study the continuum limit of pertur-
bative Creutz ratios for three kinds of actions, a simple
plaquette action' (Svq), Symanzik and Weisz's improved
action ' (Ssw ), and Iwasaki's improved action (Si ),
because MC simulations have been mainly done with
these actions on relatively large lattices and the continu-
um limit and universality of string tension have been dis-
cussed. ' Another reason we have limited the actions
stated above is that the CPU time of our numerical cal-

II. WEAK-COUPLING EXPANSION ON A LATTICE

A. Improved actions

In this paper we study SU(N) pure gauge theory
(without dynamical quarks). The action is written as

I
S= g c +Tr + Uk —1

ga i =0 site kyar;
(2.1)

culations is rather large.
In Creutz ratios the renormalization of the coupling

constant begins at 0(g ). Therefore, from the calcula-
tion of the 0 (g ) coefficient, we can find how the
renormalization-group (RG) equations for Creutz ratios
with finite characteristic length l are affected on finite
lattices L. This information is important in taking the
continuum limit of nonperturbative quantities, because
to take that limit the scaling relation obtained by the
RG equation on continuous space is assumed. The
correction to the RG equation on finite L and ( I la )

might be another origin of systematic errors in the con-
tinuum limit of nonperturbative quantities.

In Sec. II we outline the weak-coupling expansion of
SU(N) pure gauge theory on a lattice, and the calcula-
tion of vacuum expectation value of Wilson loops. We
relate the calculation of physical quantities on a lattice
and on continuum space and the meaning of universality
is clarified.

In Sec. III the numerical results on Creutz ratios for
three kinds of actions are presented and we study the
size effects and lattice artifacts. It is found that the size
dependence of the 0(g ) and 0(g ) coefficients have
universality. We take the L ~ oo limit of Creutz ratios
by extrapolation method and find the minimum size of
characteristic length I, for which the lattice artifacts
become less than 10%%uo. We find that improved actions
have in fact, smaller l than the simple plaquette action.
In the case of the 0 (g ) coefficients, Ssw is the most im-
proved action while for the 0 (g ) coefficient, it is Si„.

Section IV is devoted to discussions and comments.
We discuss the scale transformation and universality of
Creutz ratios between lattice actions, and make a few
comments.
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co+ 8c i ——1, (2.2)

where I 0 is the simple plaquette loop and I
&

represent
the planar a &(2a rectangular loops. The actions con-
sidered in this paper are parametrized as (i) standard

where I; represent closed loops on a lattice, Uk is a
SU(N) matrix defined on the link k, and g, is the cou-
pling constant on a lattice. In the L~oo and a~0
(1/a ~ oo ) limit, it is expected that all choices of c; give
the same results for physical quantities (universality), as
long as c s satisfy one restriction which ensures that in
the a~0 limit the action given by (2.1) reduces to the
classical action.

To get the continuum limit for small l/a, the im-
proved actions have been proposed by two methods: (i)
the (a/1) expansion method of Symanzik and Weisz and
(ii) the renormalization-group method of Wilson.

In a weak-coupling expansion at O(g ), these two
methods are shown to be equivalent as long as we are
working on infinite parameter space of action (I = oo)
(Ref. 11). However, the number of parameters is usually
limited to 4 or 2, which are not found to be large
enough" and different results for improved actions have
been obtained from the two methods. '

In this paper we limit ourselves to I=2, and the nor-
malization condition becomes

plaquette action S&, c~ ——0, (ii} Symanzik and Weisz s
tree-improved action Ssw, c&

———
—,', , and (iii) Iwasaki's

tree-improved action S&, c& ———0.331.

B. The weak-coupling expansion on a lattice

The Wilson loop 8'z is defined as

1

N
(2.3)

where I is a closed loop on the lattice.
In the weak-coupling expansion, the link variable Uk

is parametrized as

U„=exp(i~g, &k ) . (2.4)

Ak is regarded as the dynamical variable and the action
in (2.1) is expanded in powers of g, . As the details of
the weak-coupling expansion of the action and Wilson
loops are reported in a previous publication, ' we do not
repeat them here.

We should like to notice that all the algebraic treat-
ment of the weak-coupling expansion and the calculation
of vacuum expectation values (VEV's) of Wilson loops
are carried out by REDUCE. The VEV of planar Wilson
loops with length l; and l~ are written as

N —18'(1;,li)=l+g, W' '(1;,li)+g, (N I) W'I '(1—;,li)+ 2 Wp '(1;,li) +O(g, ) . (2.5)

Algebraic expressions of each coefficient of g, are writ-
ten in momentum space, which are numerically calculat-
ed on finite lattices with periodic boundary conditions by
FORTRAN. The computation on a 16 lattice takes -2.5
CPU hours for Spq and -74 h for Ssw and S&w on a
FACOM M380 at the University of Tsukuba.

We have completely confirmed the results of Heller
and Karsch' on 8 and 16 lattices for Spq.

On a finite lattice L„ there occur divergences at p=0,
because of the propagator D„(p), which is called a to-
ron in Ref. 14. The toron contribution at O(g ) is ob-
tained for S q, as

N I (11J)
12L'

(2.6)

This term is common to all improved actions and we
have included it in the O(g ) term. In O(g ) the toron
contributions have not been obtained yet. They are
much more complicated because we must expand both
the actions and Wilson loops up to O(A ). In this pa-
per, we have simply dropped its contributions in 0 (g~).
O(g ).

In the previous paper, ' we have reported the calcula-
tion on L & 16 for Spq and L & 12 for other improved ac-
tions, which had been the largest lattices where MC re-
sults for W(1;, li ) were available. However, these lattice
sizes are too small to get the continuum limit of Creutz

C. Lattice versus continuum calculation

The vacuum expectation value of a Wilson loop does
not have a continuum limit, while a Creutz ratio does.
It is defined by

8'(1;,1, ) W(l; o, 1, —5)—
W(1; —5, 1, ) W(l;, 1, —5)

(2.7)

where 5 is arbitrary but usually taken to be a.
Creutz ratios have been perturbatively calculated on

continuous space from the beginning. ' They are written
as

X(1;,1, )=gg Xg'(1;,1, }

+gg X~'(1;,li)+O(gg ), (2.8)

where gz is a renormalized coupling constant which
contains all the divergences, ' in the Creutz ratio. In
Ref. 15, a kind of dimensional regularization has been
used.

X( 1;,1i ) =g, X, '( 1;,li }

+g. 'X."'(1„1,)+O (g. '), (2.9)

I

ratios. In this paper we continue the calculations on
larger lattices in order to study the continuum limit of
lattice calculations; L &20 for Spq L &16 for Ssw and
L &18 for S
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1

z
—— 2P—olnI Az + ln ln

po IA„
(2.10)

where g, represents the coupling constant of some lat-
tice action (S~, Ssw, and Si„).

In two-loop order and in the L ~ 00 and a~0 limit,
gz and g, are expressed by scale parameters A:

The ratios Az /A, were already obtained as' '
Ag /Apq 25 7

Ag /As~ ——4.86,

Ag /Ag ——0.435 .

(2.13)

(2.14)

(2.15)

2
ga

pi= —2polna A, + ln ln
po aA,

(2.11)

Using (2.12), the Creutz ratio calculated on continuous
space is expanded in powers of the lattice coupling con-
stant g, . Each coefticient of g, should be equal to those
of (2.9) in the I.~ oo and a ~0 (I /a —+ oo ) limit

2
pl gR

ln
2 +O(gii, g, ) .2 2

ga
(2.12)

where Po ——11K/48m, Pi ——34K /3(16m), and I is a
characteristic length of X(I;,I~ ) which is defined as
I =(I;IJ )' . From (2.10) and (2.11), we obtain

I
2

—2poln
ga (I) g,

X', '(I;, I, ) =Xa"'(I;,I, ),
1A~

X,' '( I;,I, )=X'R '( I;,I, ) +Xii '( I;, I) )2po»
aAa

(2.16)

(2.17)

This is the meaning of universality for perturbative
Creutz ratios. '

We get the left- and right-hand side of (2.16) and

TABLE I. Coefficients of perturbative expansion of the Creutz ratio defined by (2.9) on various lat-
tices. I(a) corresponds to g', '{1,L)10 and I(b) to g,' '(I,L, )10 .

12

3.431 5

1.560 1

0.800 83
0.351 67

3.158 6
1.436 2
0.756 10
0.340 53

14

3.442 3
1.590 1

0.870 28
0.496 40

3.169 3
1.465 3
0.822 68
0.478 43

16

3.447 0
1.602 3
0.897 35
0.550 22

3.173 9
1.477 3
0.849 03
0.530 58

18

{a)
Spq
3.449 2
1.608 0
0.909 55
0.573 75

Ssw

20

3.450 4
1.6109
0.915 68
0.585 27

Extra.

3.452 4
1.615 3
0.924 22
0.600 42

3.179 1

1.489 5
0.874 08
0.576 60

WW (Ref. 19)

3.452 0
1.615 3
0.924 80
0.602 00

2.833 6
1.296 7
0.696 08
0.323 95

2.844 1

1.323 9
0.757 02
0.449 42

2.848 7
1.335 4
0.781 82
0.497 92

S(„
2.851 0
1.341 0
0.793 35
0.51973

2.854 3
1.348 2
0.807 50
0.544 97

19.599
9.403 9
4.748 3
1.634 9

19.738
9.744 4
5.461 5
2.980 1

19.803
9.897 0
5.768 8
3.542 4

(b)

Spq
19.837
9.9740
5.9194
3.8104

19.856
10.017
6.0005
3.9515

19.861
10.091
6.133 3
4.169 8

20.04+0.08
10.37+0.17
6.42+0. 17
4.6 +0.8

10.706
5.453 4
2.922 8
1.057 9

10.791
5.667 1

3.376 8
1.9149

10.831
5.763 7
3.574 8
2.280 9

Ssw
10.885
5.881 7
3.799 3
2.679 7

0.657 39
0.688 58
0.584 94
0.285 42

0.661 28
0.721 69
0.682 50
0.482 61

0.663 14
0.735 69
0.724 11
0.573 33

Sg„
0.664 25
0.742 64
0.743 97
0.61686

0.667 11
0.752 44
0.769 72
0.673 94
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(2.17) independently, then by comparing them, we can
study the size effects and artifact without ambiguity.

III. SIZE DEPENDENCE AND LATTICE ARTIFACT

A. Size dependence

In the following, as we consider only Creutz ratios
with l; =1~ =I on finite lattices L, we denote it just as
X(I,L). We take the lattice spacing to be unity a= 1,
and present the results only for SU(3).

In order to show the size dependence of Creutz ratios,
we show a few X"(I,L) for the three kinds of actions.
The size dependence of 8"(I;,IJ ) is shown in Ref. 13
for Spq It is found that Creutz ratios have much larger
size dependences. This is expected because W ( I;, I~ )

contains the perimeter term, which corresponds to mass
renormalization of the test quark line. This term is the
main contribution to W(1;,I, ) and has minimum L
dependences.

As the size dependences are rather large on these lat-
tice sizes, we get the L ~ oo limit by the following for-
mula using X(I,L) of the largest three lattices:

X,' (I,L)=c,'(1)L " ' '+X,"(I, oo ) (I =2, 4) . (3.1)

We find that R,("(I,L) are almost equal for all three
kinds of actions. It is seen from Figs. 1(a) and 1(b) that
the 0 (g ) coefficients have larger size dependences than
the 0 (g ) coefficients. We study whether these
differences could be explained by toron contributions.

In Fig. 1(b) we have also plotted R,' '(I,L) without the
toron contribution for S& . For other actions the results
fall in the dotted regions of Fig. 1(b). It is seen that they
are very close to R,' '(I,L). We have studied how c,(',
n "(I), and X,"(I,oo ) depend on the lattice size L used to
make extrapolations. It is seen that all n "(I) are ap-
proaching 4 as L increases. ' Then we find the following
universal size dependences: c,"(I)/X,"(I, oo ) and n "(I)
become independent of the action and order of g as L in-

creases, and in the L ~ oo limit, n "(I) approaches 4.

B. Lattice artifact

We compare the X('(I, oo ) with the corresponding cal-
culation on continuous space. ' In O(g ), instead of
comparing X' '(I, oo ) directly, we define A parameters of
the actions for finite L and I by (2.17) and study how
they approach the predicated values given by
(2.13)—(2.15). We solve (2.17) to get Az/A, on a finite
lattice:

The results for X"(I,oo ) are shown in Table I.
In Fig. 1 we plot the ratio

A~ 1 X,' '(I, L) —X~ '(I)

A, (I L) I 2PP' '(I)
(3.3)

X,"(I,L)—X,'(I, m& )
R )((I,L) =

(,,X,"(I, oo )

(3.2) In Fig. 2 we show the following ratio to study how
X,' ' and A, (I, oo ) approach their continuum limit:

Rg (&,Lj R() (d, Lj

———— R~w(4, L j without toron
(2)

0.1 0.2 03 0.4 0.5 L4 O. t 0.2 0.3 0.4 O.S i4

-0.2— -0.2—

-0 4-

-0.6-

2018 l6 14 12 L
t t t

20 t8 ~6

FICx. 1. The lattice size dependences of the coeScients of the Creutz ratio where we have shown the ratio defined by (3.2).
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SPQ----- Ssw

Rx(ff )

1.5-

SPQ

SW——— »w
SPQ from WW

(Ref. 19)

0.1 0.2 03 0.4 0.5 1/f)

4-

-0.1—
S

0.1 0.2 03 0.4 0.5 1/ft

ftt f f

8765 4
1 f t f

765 4

FIG. 2. The lattice artifacts of the Creutz ratio on L = 00 lattice. In order to clarify the lattice artifacts the normalized quanti-
ties defIned by (3.4) and (3.5) are shown in (a) and (b), respectively.

(3.4)

A, (l, oo) —A,
RA(1)=

A,
(3.5)

X."'(1, A, (1, oo)

for Spq
r Ssw

for S,„
(3.6)

From (3.6) we clearly find the effects of improvement
of the action. We find that I is not so large. However,
in order to get rid of size dependences, the calculations
on larger I. and suitable extrapolation are necessary.

where A, is given by (2.13)—(2.15).
It is observed that they approach zero as 1 increases as

expected. This is another indication that our perturba-
tive calculations are correct.

From Fig. 2(a) we find that R,' '(1) of Si has different
1 dependences from those of S q and Ssw, and Ssw is the
most improved action at 0 (g ). In Fig. 2(b) we see that
all R~( ao ) approach zero from above as 1 increases, and
in this ease S&„ is the best action. We list the minimum
size of a Creutz ratio 1 where the lattice artifacts be-
comes less than 10% on the L = ao lattice:

C. Estimation of errors in the extrapolation

In the case of the 0(g ) coefficient, we can carry out
the calculation on larger lattices and make extrapola-
tions with these results to get X', '(1, ao ), as the CPU time
of the calculation is small. The extrapolated results with
calculations" on L, =20, 26, and 32 are slightly larger
than those of Table I; however, the difFerences, are less
than 1% for 1 & 7.

Furthermore, there is the calculation of X"(1) on an
L = ao lattice for Szq (Ref. 19). The results from
Wohlert and Weisz' (WW) are shown in Tables I(a) and
I(b). In 0(g ), the difFerence is also less than 1% for
1 &7 and we therefore think that the error in Table I(a)
is less than 1%.

In 0(g ), we estimate the L —+ac limit in another
way. We use the universal L dependences of R,"(1,L) of
(3.2) for i=2 and 4, found in Fig. 1(b). We think that
X' '(1, oo ) obtained by the extrapolation of the L =20, 26,
and 32 calculations represents the correct I.~ m limit;
then X', '(1, oo ) is estimated by the formula

X(2) 1

X.'"(1,L)
(3.7)

The results obtained by (3.7) are equal to those of Table
I(b) within 1% for 1 &7. Thus we would like to think
that in 0(g ) the errors of our extrapolation are less
than a few percent at most.

For S q, we compare our X~~'(l, oo ) obtained by (3.1)
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with those of WW (Ref. 19). It is found that our results
are somewhat smaller than theirs. The difference is
about 7.3%%uo at l=5, which is much larger than our error
estimation. As our results completely agree with those
of Heller and Karsch, ' we think that our results on
finite lattices are correct. Then we think of two possibil-
ities for the discrepancy of -7% stated above: (i) the
size dependences are so complicated that the lattice sizes
used in the extrapolation formula (3.1) are too small to
get the correct results at L = oo, (ii) there are some er-
rors in the results of WW (Ref. 19) or in their error es-
timations.

In Ref. 19, the authors say that their result for the ex-
pectation value of the plaquette is in agreement with di
Giacomo and Rossi. But their result is different from
the more precise value of di Giacomo and Paffuti, ' and
the latter result is completely equal to ours but the form-
er is not.

In Fig. 2(b) we have also shown the R~(l), defined by
(3.5), obtained by using X~~q'(I) of WW. It approaches
the continuum limit much slower than our results as l
increases. Then the limit l given by (3.6) becomes
larger.

IV. DISCUSSIONS AND COMMENTS

A. Scale transformation on finite lattices

The Creutz ratios calculated on continuous space
satisfy a renormalization-group equation; the Creutz ra-
tios are invariant if the scale and the coupling constant
is changed according to the renormalization-group equa-

tion. On a finite lattice, a natural extension of this trans-
formation may be'

X(l,L;g')
~ s, ——X(21,2L,g)

~ s (4.1)

where g'=g (2a) and 5 is given by (2.7). This kind of re-
lation, combined with block transformations, is used to
determine the p function on a finite lattice by Monte
Carlo renormalization-group (MCRG) method.

Perturbatively, Eq. (4.1) is expressed in terms of the
coefticients 7"of g, as

X,' '(21, 2L)=X,' '(I,L),
X', '(21, 2L) =X', '(1,L)+2p lOn2X', '(I,L) .

(4.2)

(4.3)

These relations are satisfied in the L~oo and l~ ~
limit. We study how they are satisfied or violated at
finite L and I.

In order to test the matching of (4.2), we take the fol-
lowing ratios and show them in Table II(a):

X,' '(21, 2L) X,' '(1,L—)
R,' '(/, L)=

X,' '(I, L)
(4.4)

It is seen that the R,' ' are quite small and size depen-
dences are much smaller than those of the Creutz ratios
themselves. In O(g ) we find that the scaling relation is
satisfied to within —10% for L )6.

In O(g ) we use (4.3) as the definition of po at finite L
and l, and study how it approaches to the asymptotic
value Po ——11/16m . In Table II(b) we have shown the
ratio

TABLE II. Matching of the Creutz ratio according to renormalization-group equation shown by (4.2) and (4.3). In II(a) and
II(b), R,' '(1,L) of (4.4) and R~(l, L) of (4.5) are shown, respectively. We have used the results of Ref. 13 for L =24.

0.062 07
—0.104 98

0.017 51
—0.089 75

0.11561
—0.071 91

0.059 87
—0.11528
—0.083 23

0.01700
—0.083 40

0.11462
—0.051 87

(a)

Spq

Ssw

S,„

10

0.059 68
—0.118 80
—0.086 43

12

0.058 65
—0.11977
—0.11163

0.059 53
—0.11355
—0.089 64

0.016 62
—0.084 22

0.11387
—0.048 40

0.384 32
—0.972 80

—0.090 76
—0.418 64

—0.884 14
—0.245 59

0.371 63
—0.817 67
—0.806 50

—0.086 50
—0.410 63

—0.858 19
—0.193 75

(b)

Spq

Ssw

S

0.369 79
—0.778 17
—0.609 53

0.369 22
—0.768 14
—0.561 98

0.367 69
—0.772 34
—0.581 74

—0.087 84
—0.342 65

—0.847 37
—0.204 46
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TABLE III. Universality of the perturbative Creutz ratio between actions.

P(2)(I, 16)

—0.0788
—0.0555
—0.0386
—0.0296

Spq —Ssw
P' '(l, 16)

—0.1853
—0.1345
—0.1065
—0.0996

P' '(l, 16)

—0.1651
—0.1328
—0.1027
—0.0852

Spq —Siw

—0.0664
—0.0156
—0.1013
—0.1379

o(I,L)—o
Rp(I, L) =

po
(4.5)

It is found that size dependences are larger in this case
than in R,' ' because we take the exponential to get
po(I, L) from (4.3). For all actions considered in this pa-
per, Po( I, 00 ) approaches the asymptotic value from
below. We also notice that for S~q and Ssw, po(1 ao)
have dips at l = 3 and I =3, respectively.

B. Universality of Creutz ratio
among lattice actions

The universality relations (2.16) and (2.17) are ex-
pressed as follows between Creutz ratios of different lat-
tice actions:

X'g'(I, L) =Xg '(I,L),
Ag

X' '(I,L),X'z'(I, L) =X& '(I, L)+2Po»
A~

(4.6)

(4.7)

where 3 and B denote three kinds of actions. These
equations are satisfied in the L~op and l~ ~ limit.
However, at finite L and I, these universality relations
may be satisfied rather well if size effects and artifacts
are canceled in both sides of equations.

We take B as S&q and A as Ssw and St . In 0 (g )

we take the following ratios to see the matching of both
sides of Eq. (4.6):

Xg'(I, L) —Xg '(I,L)P( )(I,L)=
X~ '(I, L)

(4.8)

(A~ /A„)(I, L)—(A~ /A„)"~
P(')(I, L)=

(A /A„)"" (4.9)

In Table III we have shown P' ' and P' ' for L=16.
It is seen that in 0 (g ), the P' ' are smaller for S q

and
Ssw. This is expected because the X' '(I, L) have similar
I and L dependences between these actions. From Table
III we notice that the violation of universality between
three kinds of actions is much smaller than the
difference between lattice and continuum calculations;

A.t 0(g ) we define the ratio (A~/A~ ) at fixed L and I
by (4.7) and also take the ratio in order to see the
difference from the asymptotic values, which are given
by (2.13)—(2.15):

for example, the difference between Az /Azq(7, 16)
defined by (3.3) and its asymptotic value of (2.13) extends
to 80% contrary to the —14% of P' '(7, 16) of Table
III.

Therefore, the check of universality of physical quan-
tities between different lattice actions is not enough to
guarantee the correct continuum limit at least perturba-
tively. The approximate universality of the Creutz ratio
between lattice actions at L=16 is realized because the
size dependences and artifacts are similar for physical
quantities between these actions. Therefore, these lattice
effects are largely canceled if we take the ratio of these
physical quantities; then the ratios obtained by lattice
calculations are close to those of continuous limit even if
the physical quantities themselves are largely different
from the continuum limit.

Finally we make a few comments. Let us take
R,' '(I, L) defined by (3.3), as an example. The correct
continuum limit corresponds to R, '( oo, oo )=0. Howev-
er, we see from Fig. 1(b) that if we take a particular path
in (I,L) plane, I =f (L), R,' '(I, L) seems to approach an
arbitrary negative value even if we limit L & I; namely,
R,' '(I, L) is discontinuous at I = oo, L = ao. The correct
continuum limit is obtained by first taking the limit
L ~ op and second the limit 1/a~ oo.

In the case of nonperturbative quantities the limit is
generally more complicated because we have one more
parameter correlation length g. The real continuum lim-
it corresponds to the limit L » I »g~ oo. What is the
minimum correlation length g, from which the physi-
cal quantities satisfy asymptotic scaling and the lattice
calculations become good approximations to continuous
results'? Our results on I of (3.6) may give an estima-
tion on g . Because g represents the typical size of vac-
uum fluctuation and if the fluctuation on lattices is as
well regarded as those on continuous space, the calcula-
tions on the lattice will show scaling and they are good
approximations to those on continuum space. The sys-
tematic study of size dependences and lattice artifacts on
nonperturbative quantities should be carried out to get
the estimation on g
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