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Bifurcation in the Yang-Mills field equations with static sources
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We argue that the bifurcation phenomenon in the Yang-Mills field equations can be dis-

tinguished into weak and strong forms. For the weak form we demonstrate explicitly that there
are an infinite number of bifurcating branches emanating from a bifurcation point.

I. INTRODUCTION

Several years ago Mandula' showed that the Abelian
Coulomb solution of the Yang-Mills (YM) field equa-
tions in the presence of a spherically symmetric source
is unstable when the external source strength exceeds a
certain critical magnitude. Since then there has been in-
terest in the classical solutions of the YM equations with
external sources. ' This is due to the fact that quan-
tum chrornodynamics is hard to solve while the non-
linear aspect of the YM fields can be readily studied at
the classical level. Furthermore stable classical solutions
may provide, in the semiclassical approximation, some
insight into the full quantized theory. Among the classi-
cal solutions so far constructed, the bifurcating solu-
tions, which were first discovered by Jacobs, Jackiw, and
Rebbi, are the most fascinating since they are gauge
nonequivalent and are sustained by the same nonvanish-
ing external source strength. Multifurcation phenom-
enon has also been found in the classical YM mechanics,
the solutions in fact exhibit a chaotic behavior. "

So far, bifurcating solutions of the YM field equations
fall into two types. (a) When the external source is
specified in the radial gauge frame with Kronecker index
equal to one, bifurcating solutions can exist only if the
source strength exceeds a nonzero critical value. Apart
from the numerical solutions, ' analytic solutions have
also been obtained. ' (b) For the external source
specified in the Abelian gauge frame with vanishing
Kronecker index, the Abelian Coulomb solution exists
for all values of the source strength while the stable
magnetic multipole solution emerges and branches out
only after the source strength acquires some critical
nonzero value. This is a pitchforklike bifurcation. '

We now examine more closely the analytic bifurcating
solutions of type (a). For the analytic solutions of Ref.
9, the energy g and the total charge Q reach their
respective minimum at the same parametric value.
However, at this parametric value, the gauge field is on
the verge of becoming imaginary so that one cannot fur-
ther vary the parameters of the solutions in -order to ob-
tain the second branch. The second branch, if it exists,
must be due to a different parametrization. In contrast,
the analytic solutions of Ref. 10 display explicitly the
two branches in the energy g versus the total charge Q
plot. When the parameters of the solutions are altered,

both g and Q first decrease and reach their respective
minimum at the same parametric value, they finally in-
crease on further varying the parameters and as a result
cusplike behavior is exhibited. However, we emphasize
that the resulting two branches emanating from the
same bifurcation point are in fact due to different
charge-density distributions although their total charge
is the same. Note that the two branches of Ref. 4 have
the same behavior but they correspond to the same
charge-density distribution and hence the same total
charge because of the choice of a 6 function as the exter-
nal source.

From the above, one naturally raises the question
about the meaning of bifurcation: should the two solu-
tion branches correspond to the same charge-density dis-
tribution or the same total charge? If one adopts the
view that when the parameter of a nonlinear differential
equation exceeds a certain value, two or more solutions
emerge (more details in Sec. IV), then the solutions of
Ref. 10 are bifurcating solutions. We shall call these
branching solutions with the same total charge but
different charge densities as weakly bifurcating solutions,
whereas the solutions of the type (b) (Ref. 12 ) and Ref. 4
associated with the same charge density and necessarily
the same total charge we shall call the strongly bifurcat-
ing solutions. Thus as a working definition, bifurcation
means that the respective minimum of the energy and
the total charge occurs at the same parametric value of
the solutions. Consequently there can be two branches
emanating from the minimum point in the g vs Q dia-
gram.

In this paper we present a family of analytic solutions
that exhibit the weak bifurcation. We only consider the
case when the external source current j (x ) is zero since
for j (x )&0, the energy ( is then gauge dependent and,
in addition, the physical origin of j (x) is not clear.
We demonstrate explicitly that from a single bifurcation
point it is possible to construct as many pairs of bifur-
cating branches as one wishes. This leads us to believe
that strongly bifurcating solutions may be physically
more relevant. In the following section we introduce our
notation and our analytic solutions are presented in Sec.
III. We discuss bifurcation briefly in Sec. IV and in Sec.
V we explicitly construct an infinite number of pairs of
bifurcating branches emanating from a single bifurcation
point. We end with some remarks in the last section.
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II. THE YANG-MILLS EQUATIONS give the solution

The SU(2) YM equations in the presence of an exter-
nal static source are a(x )=

—x"—b )x" '+b2
x "+bp

(8)

(D„F"'),=j,"=50p, ,

F„.=a„~' —a.~ „'+g~'"w „'w '. , (lb)

where p, is the external charge density and our metric is

g;; = —goo ——1. The following radial ansatz is employed

A, (r)=n'f(x )l(gr), n'=x'/r,
(r) =e;,J n [a(x ) —1]l(gr ),

p, (r)=n, q(x)!(gro ),

(2a)

(2b)

(2c)

where g is the coupling constant of the gauge field, rp is
a length scale, and x =r/ro. The above ansatz simplifies
Eq. (1) to a pair of coupled nonlinear differential equa-
tions

f =(a' —1)—a "x /a,
q = f"Ix +2a—f Ix ' .

(3a)

(3b)

The prime here means differentiation with respect to x.
The total energy and the gauge-invariant total charge
are given by, respectively,

J dx (a') + (a —1)
g ro 2x

+ ,'(f ')'+, f'a '—1
(4)

Q= J d rg, (r)p, (r)

dxx g x
g 0

(5)

with g'(r)=p'(r)/
~

p'p' ~. Note that if j,'(x )&0, g will
be gauge dependent.

We seek solutions with finite total energy g and finite
total charge Q. For the type-II solutions we demand
the following asymptotic behavior:

where b&, b2, and n are real positive parameters. The
boundary condition (7a) demands that n )3. Since ex-
pression (8) has exactly one zero at x =z, then the con-
tinuity of f(x ) at z demands that

a "(z)=a(z)=0 .

Condition (9) can be used to determine b, and b2 1n

terms of n and z; we find

b] ——rz,

b2 ——sz",

where

n(n —1)+[n (n —1) +8(n —1)(n —2)]'
2(n —1)(n —2)

r=s —1 .

(loa)

(10b)

(10c)

(10d)

Employing Eqs. (8) and (10) in (3a), one can show that
f(x ) is a real function for z ) 0 and n )3.

Trading the variable x for y =x /z, Eqs. (4) and (5) can
be written as

ko(n —),1

Q=Qo(n), (12)

where go(n) and Qo(n ) are each a function of n only.
From expression (12) we observe that for the type-II
solution (8), the parameter n determines the total charge
while the charge-density distribution is controlled by the
parameter z as well. Thus Eq. (11) says that the energy
depends on both the total charge and its distribution, as
should be the case. We find by numerical computation
that go(n) is a monotonically increasing function of n

(n ) 3) while Qo(n ) has a minimum value (4m Ig)8.9015
at n =3.754.

In passing, we write down the asymptotic expressions
of f(x ) and q(x ) at small x:

a(x )= —1+a, /x,
f(x )=filx,

at large x, while for small x,

a(x ) = 1+aox

(6a)

(6b)

(7a)

f(x ) =d, x~+12x~+',

q(x ) = [2—p(p —1)]d,x~

+ [2—p(p+ 1)]d2x~

(13a)

(13b)

f(x ) =fox' ' (7b) with p =(n —1)/2, di ——(n —3n )bi /b2, and d2 ——(n
n —2)/[(n —3n ) b bz—]i'

Here a; and f, (i =0, 1) are constants. Observe that in

the asymptotic behavior (7b) we do not require f(x ) =x
as in Ref. 4 since we do not require xq(x ) to vanish near
x =0.

III. EXPLICIT TYPE-II SOLUTIONS

IV. BIFURCATION AND STABILITY

Let M be a nonlinear mapping M:8'xA~ Y, where
O' A, and Y are each Banach spaces. Consider the
equation

Following the method of Ref. 9, it is not difficult to
construct analytic type-II solutions. For our purpose we M(w, l.)=0, w E W, A CA, (14)
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with the solution set S C 8 & A and let

Sq =I'& W':(w, k)~S); we then say that' A, =A,c is a
bifurcation point if Sq +P and there exists wo ESq such

that for any neighborhood U of (wo, A,o), there are two
distinct solutions (tu&, A, )(w2, /(, ) & U.

In our context, Eq. (14} is to be identified with Eq. (3)
where tc represents the functions a(x } and f(x ) while A.

represents the parameters z and n. For easy interpreta-
tion we would like to obtain a criterion for bifurcation in
terms of the physical quantities g and Q, which in our
case are constants of motion.

Denoting the linear part of M as L, i.e., the Frecht
derivative of M, then in order for bifurcation to occur, L
must be noninvertible and there exists a subspace V of 8'
such that

dQc(n ) =0. (17b)

1.0
{a)

0.5

From Sec. III, we know that (17b) has the unique solu-
tion n =n:—3.754 and that the charge is a minimum
there. Thus (17a) gives us the critical slope

z'(n ) =kz(n ),
(17c)

k= dgo(n ) =0.4164 .
go(n ) dn

LU=O, UE V . (15)

In other words L is the Fredholm operator of index
zero. If we perform a stability analysis of a solution urQ

then the small fluctuations Am around mQ satisfy
-10

L Aw =co Am, (16)

when we vary the parameter A, , a stable Auctuation
(to &0) may become unstable (co &0). At the critical
point the stability equation yields a zero-eigenvalue
mode (tu =0) and Eq. (16) becomes Eq. (15). The total
energy and charge then assume their respective
minimum value at this point. We make use of this fact
to search for the bifurcation point of the solutions.
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We now apply the result of the previous section to
show that the type-II solution of Sec. III is weakly bifur-
cating. We parametrize z in terms of n, that is z =z(n ).
Then from expressions (11) and (12), the occurrence of
the common minimum of g and Q demands a nontrivial
solution for
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FIG. 1. Energy vs total external charge Q. The solid curve
corresponds to the parametrization (18) while the dashed curve
has the constraint (21). Here m =1.

FICx. 2. (a) The function a&x) for the solution (8) with the
relation (18) and m = 1. Starting from the curve with the
lowest value at x =3, these correspond to n =3, 3.754, and 4.5.
(b) The function f(x) for the solution (8) with the relation (18)
and m =1. Starting from the curve with the lowest peak value,
these correspond to n =3, 3.754, and 4.5. (c) The charge densi-

ty q(x) for the solution (8) with the relation (18) and rn =1.
Starting from the curve with the highest value at x =2, these
correspond to n =3, 3.754, and 4.5.
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To satisfy Fqs. (17) it is sufficient to impose a linear rela-
tion of the form

zt(n)=mn+c . (18)

Using Eq. (18) in (17c), we determine c in terms of m:

1
c =m ——n = —1.35m .

k
(19)

g(n ) =gp(n )/z[(n ) =g'p(n )/m (20)

Hence each positive value of m provides us a relation
(18) between z and n that causes the solution (8) to have
a bifurcation point at n =n Eq. uation (20) shows that
the bifurcation point in the g-Q plane depends on the
value of m. Figure 1 shows a plot of g vs Q for the case
m = 1. The corresponding solutions a(x ) and f(x ) and
the external charge density q(x) near the bifurcation
point are displayed in Figs. 2(a), 2(b), and 2(c), respec-
tively.

Let us now fix our attention on the single bifurcation
point determined by m = 1 in (18) and (19). We want to
show that there are infinitely many distinct relations be-
tween z and n that will cause the solution (8) to bifurcate
from the same bifurcation point. Let us choose

z«(n )=an +13n+y, (21)

where a, P, and y are constants. In order for the rela-
tion (21) to produce bifurcation at n =n with the same
value of energy and total charge as relation (18) with
m =1, it is clear from Eqs. (11) and (17a) that the neces-
sary conditions are

z„(n }=z,(n ) =1/k,
zI~(n ) =z&(n ) = 1 .

(22a)

(22b)

The above conditions allow us to express a and P in
terms of y: namely,

In order for the energy to assume a minimum value at
n =n, we require that g"(n ) &0. Using Eqs. (11), (18),
and (19) together with the fact that k and gp'(n ) are pos-
itive, one easily shows that g"(n)&0 if and only if
m &0. The minimum value of the energy is

m
(X =

n

1 m

n2—2 (26a)

m——y —m,
k

(26b)

1y(m ——n
k

(26c)

We summarize the results. The type-II solution (8)
has infinitely many weak-bifurcation points. The bifur-
cation points can be labeled by the continuous index
m ~ 0 with the energy and total charge at the bifurcation
point given by Q;„=Qp(n ), g;„=gp(n )/m. Each bi-
furcation point (m fixed) can be arrived at by infinitely
many distinct relations between z and n, labeled by the
continuous index y and given by Eqs. (21) and (26).
Each of the distinct relations produces a di6'erent pair of
curves g(Q) in the g-Q plane.

VI. COMMENTS

(a) It is possible that even though the energy g and to-
tal charge Q have their local minima at the same values
of the parameters, a plot of g vs Q shows only one
branch. This can happen when there is a one to one re-
lationship between the energy g and Q. The two
branches are then actually degenerate. As an explicit ex-
ample, consider the following monotonic relation im-
posed between the energy and total charge as given by
Eqs. (11) and (12):

with m =1. Therefore the original relation (18) is in-
cluded in the infinite family of relations given by Eqs.
(21), (23), and (25). Each relation of the form (21) is la-
beled by the continuous index y satisfying (25), and it
renders the solution (8) to weakly bifurcate at n =n with
Q;„=Qp(n ) and g;„=g'p(n ). In Fig. 1, the dashed
curve corresponds to the case y = —1/k. The curves for
a(x ), f(x ), and q(x ) are very similar to those for Figs.
2(a) —2(c) and are not shown. We remark that since for
the type-II solution (8) we must have z & 0, the range of
allowed values of n will be constrained for each of the
relations (21).

Equations (21), (23), and (25) refer to the case when
m =1 in Eqs. (18) and (19). For the general case m &0
in (18) and (19) expressions (23) and (25) are replaced by

1 —1
k

We also evaluate g"(n ) for the constraint (21):

(23b) g= —gp(n ) =—Qp(n ) .
1

z '
Equation (27) induces a relation between z and n

(27)

g"(n ) = k [gp (n ) —2akgp(n )] . (24)

y& ——n = —1.35 .
1

k
(25)

In fact the choice a =0, y = 1/k nreduces —(21) to (18)

For the energy to be a minimum at n =n, we require
that g"(n ) &0. From (24), we see that it is sufficient to
choose a (0 or equivalently from (23a) to choose

gp(n )
z = n &3 .

Qp(n)
' (28)

Thus the relation (28) produces a minimum of energy
and total charge at n =n =3.754 and above this bifurca-
tion point the two branches of the g vs Q curve are de-
generate because of the one to one relation between g
and Q given by (27).

(b) The procedures outlined and demonstrated in Secs.
IV and V can be used for expressions of a (x ) other than
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solution (8). However, in general, one may not be able
to obtain closed-form expressions of the g and Q in
terms of the parameters, or even a simplification as in
expression Eqs. (11) and (12). Nevertheless one can still
search for the bifurcation point numerically by trying a
relation between the parameters.

(c) The construction of weakly bifurcating solutions as
described in Secs. IV and V depends crucially on the im-

position of a relation between the originally independent
parameters. In Sec. III we stated that for the solution
(8) the parameter n determines the total charge and for a
fixed total charge, z determines how that charge is distri-
buted. Choosing a relation between z and n as in Sec. V
to obtain weak bifurcation then means that we are im-
posing a relation between the total charge and the
charge density.
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