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Long-range dielectric confinement
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We discuss the energy of a heavy-quark —antiquark system in a cylindrical and a prolate spheroidal
cavity in the dielectric vacuum picture of confinement. We discuss the spin dependence of the energy
and compare our results with those of other treatments of quarkonia.

I. INTRODUCTION

A complete analytic or numerical analysis of the long-
distance behavior of quantum chromodynamics (QCD)
has proven to be elusive, so that the construction of mod-
els attempting to represent the important features of QCD
continues to be of value. A sufficient number of rather
different quarkonium potentials exist' to make it clear
that the pure phenomenology of quarkonia will never
serve as a decisive arbiter for the nonrelativistic potential
between quarks, let alone for the behavior of QCD. This
is partly because quarkonia exist in the delicate transition
region between long distances and short distances, as well
as in a region which is neither unambiguously relativistic
nor nonrelativistic.

The lattice gauge formalism provides a framework for
the numerical calculation of the behavior of QCD. Aside
from the fact that numerical results are not as satisfying
as analytic ones, progress toward realistic systems such as
the observed quarkonia has been frustratingly slow. How-
ever, lattice gauge calculations can also serve as a foil or a
testing ground for dynamical models whose region of cal-
culability may not be that of observable quarkonia but
may precisely be one where the lattice calculations are re-
liable.

Perhaps the simplest example of this type is the static
potential between a very massive (fixed) quark-antiquark
pair at large distances. Since all models (and perhaps
even QCD itself) lead to potentials which at large dis-
tances grow linearly with separation between the sources,
what will distinguish different models for the potential are
the nonleading terms and the spin structure. One such
model, which forms the basis for the calculations per-
formed in this paper, treats the nonlinear aspects of the
gluon field and possible effects of light-quark —antiquark
pairs through the creation of a cavity in the QCD vacu-
um. This vacuum has the property that the residual
gluon fields, which are treated as Abelian, cannot
penetrate it. The vacuum is a region in which the dielec-
tric constant vanishes (e=O) and the magnetic permeabili-
ty is infinite (p= oo ), so that the relativistic condition

eIM=1 is maintained. The presence of a sufficiently strong
color field leads to a region in which the above QCD vac-
uum makes a transition to a different phase, with
e=p = 1. We refer to this model as a "dielectric vacuum
model" (DVM).

Although this model and the closely related "bags, "
which in part differ because of the presence of surface ten-
sion terms in the energy, have been studied numerically,
these studies have been for the most part aimed at phe-
nomenology. ' As mentioned earlier, such studies have
not provided conclusive evidence for or against particular
models. Our aim is quite different: we want to study the
model at large separations and extract analytical results,
even at the price of modifying the model in certain ways.
Analytic results can give us different insights into the
meaning of such a model, and we hope they can be valu-
able in comparing models with each other and with nu-
merical calculations on the lattice.

When there is a color-singlet quark-antiquark pair with
a fixed spacing, the shape of a cavity is determined by the
requirement that the electric field E takes on a constant
critical value on the boundary. The behavior of the
dielectric constant may change continuously near the
boundary, as in the models considered by Adler et al.
and others, or it may change discontinuously, as treated
herein. In the latter case, the electric field must be
tangential to the surface. These boundary conditions are
identical to those treated numerically in earlier work. '

The resulting cavity will have cusplike singularities near
the sources. The complete analytic solution of the analo-
gous problem in two dimensions was determined by
Giles with the help of conformal mapping techniques
which are unfortunately not applicable to the three-
dimensional problem.

The earlier numerical solutions, even though they fo-
cused on the small charge separations characteristic of
quarkonia, indicated that the long-distance shape of the
cavity is either that of a cylinder or at least a long prolate
spheroid. Encouraged by these numerical suggestions we
have studied the analytic solution for two fixed cavities,
an open-ended cylinder on whose axis opposite charges
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with magnetic moments are placed and a prolate spheroid
with the two charges at the foci. These cavities are not
determined self-consistently, but we can check to what de-
gree the constant field boundary conditions are satisfied
and therefore to what degree they approach a self-
consistent prediction of the DVM.

It is clear that our calculation is nothing more than a
simple exercise in electrostatics. However, the results are
both transparent and interesting. Even though these cavi-
ties represent a mutilation of the exact solution, since they
do not have cusplike behavior, the cylinder is close to
self-consistent at large separations, and the fact that there
are analytic solutions seems to us to be quite useful. In
the context of these solutions —in particular for the
cylinder —our objective is to study corrections to the ex-
pected linear behavior of the potential as well as the be-
havior of the spin-spin forces.

We find for the cylinder that the nonleading force
terms —below the linear and constant terms —fall off ex-
ponentially as a function of the parameter A, =a /2R,
where a is the charge separation and R is the cylinder ra-
dius. The spin-spin forces also fall off exponentially. Be-
cause of the lack of "end caps" and cusplike behavior, we
certainly cannot claim that the prediction of our calcula-
tion is a prediction of the DVM with sharp dielectric
cutoff, but in any case the sharp cutoff case is itself un-
likely to be an exact prediction of QCD. The infinite-
mass restriction is also not very realistic. For all of these
reasons we think direct application to phenomenology of
our calculation is unwarranted. Instead, our asymptotic
results are meant to stand on their own as a sort of in-
dependent model which can be compared with other mod-
els or with lattice calculations.

In Sec. II we treat the cylindrical cavity, in the follow-
ing section we treat the prolate spheroid, and we finish in
Sec. IV with some discussion.

We have [in cylindrical coordinates (p, o,z)]

(t (r) =P, (r)+ P,(r)+P„(r),
where

—1/2

(2. 1)

P, ,(r) =+g z+ — +p' (2.2)
2

I

Here and throughout the subscript 1 (2) refers to the
upper (lower) sign. The homogeneous (background) po-
tential Pq which represents the antiscreening induced
charge must satisfy the Laplace equation. Since there is
azimuthal symmetry we write

" dke"+-'"ISCo( ~k
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p) .

[p 2 + (z +a / 2 )
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Thus
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The conditions

ay

p=R

and P~~ o0 imply

(2.7)

P&(r) = —f" dk e'"'Io(kp) A (k) . (2.3)

This form suggests that A (k) can be determined through
the Fourier transform of P~ z..

y, ,=
' f" dke "$,2(kp), (2.4)

2 tT Qo

determined by

II. CYLINDRICAL CA VITY

A. Determination of the potential

A (k)=2ig sin( —,'ka) Ko(
~

k
~
p) Io(kp)

d d

dp dp p=R

We consider a cylinder of radius R, choosing its axis to
be the z axis and placing the charges +g at z =+a /2 (see
Fig. 1). The potential may be written as the sum of three
terms, the potentials P~ and P2 due to the charges +g and

Pi, which is a solution of the source-free Laplace equation,
and which represents the antiscreening induced charge.

= —2ig sin( —,'ka) Ki(
~

k
~

R)/I~(kR) . (2.8)

B. Field characteristics

We begin by checking that the electric flux N lies be-
tween the charges. We have

////////////////////
p=R

)iP

Z

N(z)= 2~ f pdp-a (p, z)
0 clz

Using (2.6) and (2.8), it is easy to check that
ikz

4(z) = — 2' f dk sin

a a
4~g, —&z & ——,

2 2 '

(2.9)

(2. 10)
/a f /-0

/

a+ 0, /z/)—
2

FIG. 1. Two charges on the axis of an uncapped cylinder.
Inside, the dielectric constant e= 1, while outside e=O.

For the field at the boundary we evaluate
E,

~ ~ ~ ———BP/t3z
~ ~ R. Dropping terms odd in k from

the integral over k, we have
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4g K, (kR) 4g kaE,
~ z ~ —— dk k coskz sin —,'ka Ko(kR)+Io(kR) = dk coskz sin

7T 0 I (kR) vrR o 2 Ii(kR)
(2.11)

where we have used the Wronskian of the two Bessel
functions. Expanding the product sin& cos in Eq. (2.11)
we have

I(g)—= f"dy as g~oo .
o I, (y)

(2.13)
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2
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i(x) .

(2.12)

=2
Ii(x)

2
'Ym 1

=i ~z(y ) y '+x' '

(2.14)

This function converges very rapidly to ~ from below; nu-
merical calculation shows that it already lies within 1% of
n when g rises to 1.5. This is a measure, then, of the con-
stancy of E, on the boundary between the charges.

We can understand the rapid convergence of I(g) with
the help of the formula

For z fixed in the region between the two charges, the
behavior of E, as a function of increasing a is of the form

Ji(y )=0, m =1,2, 3, . . . .

We obtain, for the field,

R', Jp(y )

y'm Z/R a
e sinhy a/2R, z » — 0,

2
—pm & ~2R a

coshy z/R+1, —&z &0 .
(2.15)

Outside of the region between the charges, the field falls
off exponentially. In between the charges, aside from ex-
ponentially falling terms, the field is given by

C. Calculation of potential

The potential at the charge g can be obtained by calcu-
lating

4g ~ 1 4g l. x
limR, Jz(y ) R~ x=o 2I, (x)

4g
R

(2.16)
Ui g(42+eh ) (2.17)

at p=0 and z=a/2, with the exclusion of the infinite
Coulomb self-energy of the charge at a /2. We get

Figure 2 shows the contours of equal boundary field as a
function of R for a fixed separation of the charges. These
contours suggest the final shape of the self-consistent
boundary; in particular we see the cylindrical shape be-
tween the charges, as well as the dimple at the exterior
axis.

dk
g' 4g' sin'(ka) Ki(kR)
a 7T 0 2 Ii(kR)

(2.18)

We need to evaluate the integral

g' 2ig', „.„.ka k
2

f

k
/

Ii(kR)

ka Ki(kR)
Si(R,a)= J dk sin

0 2
(2.19)

which may be written in terms of the parameter

(2.20)

Z=1 as K, (x)
Si(R,a) =—J

™
dx sin M

R o I (x)

FIG. 2. Field strengths on cylindrical surfaces p=R. The
charges are held at z =+1, and the surface R is varied to map
out the space. For R &~a, much of the field is constant on the
surfaces.

L (X) i. —
R

(2.21)

The integral L, (A. ) is evaluated in the Appendix. It is
given by
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2 2

L 1(A, )= +vrA+mD+
8k

—2ky.
e

'Vn
4

Xm
J1(y )=0, m =1,2, . . . . (2.22)

The constant D is given by
2 2

7m 3n 1 1

„Jz(y )Jz(y„) y„'—y
' y„' 3

'Vm

which leads to the expected Coulomb potential —g /a in

Eq. (2.26). Collecting our results we get, for large separa-
tion a,

and it can be evaluated numerically. We find

D= —0.552 .

(2.23)

(2.24)

4g
1 R 2R

+D (2.29)

Xn 'Vm

(2.25)

The leading term in L (1A, ) cancels the Coulomb contribu-
tion, and we end up with a linear potential and exponen-
tial terms:

2g 4g 4g 'Ym yn yn ym
2 2/( 2 2)

U) ——
2 a+ D+

R R a „Jz(y )Jz(y„)
—2kr.

e " e

D. Spin-spin potential

The calculation of the spin-spin interaction follows the
standard hyperfine interaction calculation. We assume
that due to internal spins S1 and Sz the (fixed) charges in
the cylinders have magnetic moments p& and p2, respec-
tively, and the vacuum (the region external to the
cylinder) is characterized by magnetic permeability p = ao,
while inside @=1. The boundary conditions is that the
magnetic field parallel to the surface vanishes, i.e.,

In the limit of a separation of the charges that is small

compared with the radius of the cylinder we obtain
BXn

~
p=R =0 (2.30)

4g ym yn ym yn
2 2 + n

a „J,(y )J,(y„) y 'y„'

Equation (2.14) yields

(2.26)

The boundary condition has the tendency to pull the field
out, rather than squeeze it in, as for the electric field, so
that we expect a weakening of the "bare" dipole-dipole in-
teraction. We shall see that this is indeed the case. For a
magnetostatic field we may write

=1 J2(y
(2.27) B=—VQ(r) . (2.31)

and, by differentiation with respect to x and setting
x=0, we see that

The full potential is

q(r) =$1(r)+yz(r)+ qh (r), (2.32)
00 1

Jz(yX
1

8
(2.28) where ph is, as before, the background field and g; is the

field due to dipole i:

1 1
$1(r)= — p, 1.V

4~ [ 2+ ( /2)2]1 jz

1 a a 1
(p1 cosO+p1y sinO) +p. 1,4~ r}pr}z[pz+(za /2)2]1 /2

(2.33)

it 2(r) =—1 a 1

4~ (pz cosO+pz~ sinO) +@2, z
(3p &z [p'+(z+a/2) ]

2 1/2

We use Eq. (2.5), and we write gh(r), which is a regular solution of Laplace s equation and is written to refiect the possi-
ble azimuthal dependence, as

ph(r)= f dk e'"'[Co(k)IO(kp)+C, (k) cosOI, (kp)+Di(k) sinOI1(kp)] .
4~

The boundary conditions read

a a
gO

( Pl+ f2+Oh )p=R 0~ (01+02+th )p=R
Bz

for all 0 and z. A little algebra leads to

(2.34)

(2.35)
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C0(k)=+ik(e '"'r pi, +e'"' p2z)K()(
~

k
~

R)/I0(kR),

Ci(k)= —
~

k (e ' ' pi„+e'"' p2„)K)(
~

k
~

R)/Ii(kR),

Di(k)= —
~

k
~

(e '"' piy+e'"' p2y)K1(
~

k
~

R)/Ii(kR) .

The energy of interaction at the location of p& is

g
= —pl [&(Ri)—Bi(Ri)]=pi V(02+)t)h )

i r=R, .

The first term is the usual dipole-dipole form:

pl V42
l =R, (pl p2 3p 1 p2 )/4~a '

It is straightforward to compute V)t)), . We find in [x,y, z] coordinates

(2.36a)

(2.36b)

(2.36c)

(2.37)

(2.38)

VQ),
~
p=0= f ™

dk ke' '[ ,'C), —(D—),iC0];
4

hence

p)'VA(R))=
2 J dkkI ——,

'
~

k
~
[(pi, +ply )+(p) px2 +xp)yp2y)(coska+i sinka)]K)(

~

k
~

R)/Ii(kR)
4~

—k[pi, +pi, p2, (coska+i sinka)]K0(
~

k
~

R)/I0(kR) I

dx x ——' p & +p1 + p lx p2~ +p, p2 cos2M K, x /I] x
2~'R'

—(p, „+p „p2, cos2M )K0(x)/I0(x) I, (2.39)

where we have eliminated terms odd in k.
The "induced" terms involving p &

contribute only an a-independent constant to the energy, and we ignore them. The
remaining terms are of the form

pi Vg)
~ ~ R ———

3 3 (pixp2x+p, yp2y) dxx cos2MK)(x)/I)(x)

3 p)&p2& dx x c2oMsK ( 0)/xI ( 0)x
2~'R '

These integrals are calculated in the Appendix. We are left with exponential terms only:

(2.40)

1 1
Umag —+ 3 (PlxP2x +PlyP2y ) (0)22R 4y)

1

i2
(0)2 2~r ( /I 2( (0)

)

1 1+ 3 p lzp2z (O)24ro
1

A,
2

(o) (0)
4 (0)2 ro /J 2( (—0)

) (2.41)

Since yo
' ——2.41 while y', '=3.83, we see that the p„p»

term dominates —note this holds even for a =R, where
A, = —,

' and it would not make sense to drop the nonleading
exponentials. We shall return to the implications of Eq.
(2.41) in the next section. It is possible to check, with the
help of (All) and (A16), that for short distances we re-
cover Eq. (2.38), as expected.

III. ELLIPTICAL CAVITY

Figure 3 describes the geometry of a prolate spheroid
with charges +g at the two foci +a/2. The appropriate
variables ($,2), (t)) are defined by'

FIG. 3. Two charges at the foci of a prolate spheroid. Inside
e= 1, while outside e =0.
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ag=r, +r&, ay=re —r, . (3.1)

g runs from 1 to co and g= 1 labels the line between the
charges. g runs from —1 to 1. The plane midway be-
tween the charges perpendicular to the axis is represented
by g=0. The surface is described by fixed (=go, and, as
can be seen by Fig. 3,

We describe the homogeneous term in the potential, regu-
lar inside the cavity, as

g (2n +1)[&„P„(rl)Q„(g)+B„P„(g)P„(g)].
a n=0

(3.5)

A, = —,'a(go —1),
(go' —1)' '

(3.2)

(3.3)

Application of the boundary condition BP/Bg
~ & ~

——0
together with Ph ~~ pO gives

With these variables in this geometry, Legendre func-
tions are the natural expansion functions. The inhomo-
geneous terms in the potential are

g„=o all n,
B = —Q' (go)/P' (gp), n odd (3.6b)

0i=+ —=
r1

2g
a

g (2n + 1)P„(g)Q„(g),
a n=0

(3.4a)

=0, n even . (3.6c)

We can compute the fiux N(q) across a given surface g
to check that all the Aux is contained in the cavity. Given
the potential

2
r2

2g (g+q) '

oc

g (2n +1)(—I)"P„(g)Q„(g) .
a

(3.4b)

(2n + 1)P„(tl) Q„(g) P„(g)—4g Q'(ko)
a P„'(gp)

the Aux, as a function of q, is given by

(3.7)

@(g)=2~ Jdg(1 ——g') =4vrg(1 —g') g (2n + l)P„'(q) I dg[Q„(g) P„(g)Q„'(g—)/P„'(g', )] .
1

The integrations over g can be done in closed form. We
find

4(g)= 4~g(1 —g—) g 2n +1
~~ n(n+1) P„'(g),

and, using a standard recursion relation,

@(n)=4~g g [P.+i(r)) P. i(n)] -—
Qdd

In the sum the P's cancel in pairs, leaving only P (g) =1:
(3.9)4(t))= —4~g .

The potential bq at the right-hand charge is given by

g (2n +1)Q'(ko)/P. '(ko) .
Qdd

(3.10)

The sum converges rapidly. The denominator is obtained
with the help of the representation

P„(z)=F —n, n +1;1;. . 1 —z

This leads to the expression

1 2 (n —1)(n +2)
p„'(go) n (n +1) 8

~here

1/2
4we=g'o —1= 1+
a

2w 1

a2 2P2

P is as in Eq. (2.19), with R replaced by w. Using

P„(x)
Q„(gp) = j dx

O
—X

and

—+ P„(x)= —1—1 1 ln(1 —x)
n n+1 " 2

(3.1 1)

(3.12)

n (n +1)
2

+ (n —1)n (n +1)(n +2) z

16
(1 —z) +

g (2n+1)P„(x)=[2(l—x)]
n=1

we end up with
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4g ~
dx

1

] —x+&a

4g ~ '2d
a a~

1

1+x +&

2 —2u —&

1 —x ~
(1 x)1+— 1n + 4a22 2

E
1nu +E

2 8 u
(3.13)

cautions for e « 1 areThe dominant contri u io
2

to that outlined for PotentialA calculation similar to t a o
yields

4g a
a eke

1 e
2

ln—

Upon differentiation w e find

(3.14)
14g

2 2(1 — ')[(1+2~) —g ]

1/2

(3.19)

P 1nP+ P 1n2Sg gK
W

(3.15)

further to thems in (3.11) contribute furHigh-order terms in
A numerical fit of the form of Eq. (3.16term linear in

gives st fita be

=+2—(4.04p 1np+ 1.93p+ 1.05) . (3.16)

ay(1 2)1/2(g 2 ~2 1/2

(3.17)

f P andfor an ed th Wronskian of P„U
'

our expressionsUsing
find&„,we

—1 2 1/2 2 2) —1/2
g

2 1)—1(1 2)1/2(g
n ~ 4=40

X g (2n+1)P„'(g)//'„'(g, .
n odd

(3.18)

ut there is nocould vary with a, uTh idth of the cavity cou
o t brin s this into ac oice o

d h h f hent is associate wi
1 h he h roid squeezes in cose othe prolate sp eroi

a~ oo.
om uting the field at the boundaryWe can see this by computing

'
h the field on therm. In contrast wit

uite
g

of the cylinder, t e
d b tith, and ecom

t. A nu-
g

There nonleading
on of the fie is sld

'
shown in Fig.merical calculation

r field are plotted, witith the
e h the charges always pp

f e ual boundary e a
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h ds. The figure1s into narrower p
h f rioalso shows prolate sp eroi s

IV. COMMENTS

V(a) =I~a ——+ V
a

(4. 1)

~ ~

e have calculated it ispotential as we a
are

f (229) d thp b
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= 4 /R )vrD = —(0.552)(4g /RVo ——(4g / vr
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1.0 2.0
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—0.3 GeV .0 3&R &0.5 fm, —0.7& V0 & —. e
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e sha es of various sp
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and the eccentricity cha g . T un

e surfaces.mately constant on t e s

n
'

hich mark the passagepo ntial terms w ic a en u
mb to the Aux-tu e re

'
from the Coulomb to e

(0).range p=R /yi

0.08 &p & 0. 13,
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in fair accordance with other estimates. '

These parameters are at the same time a warning that
any detailed comparison of the analytic results of the open
cylinder geometry must be taken with several grains of
salt when they are compared with phenomenology. We
have seen that the range of R is not far from the range of
separation of the quark-antiquark pair in real quarkonia,
several tenths of fermis. But R comparable to a is pre-
cisely a range where the open cylinder, without end caps
and cusps, would seem particularly inappropriate.
Whether the fact that the values of parameters which we
find are reasonable follow from a rapid exponential behav-
ior or from pure coincidence we leave as an open ques-
tion.

The constant V0 in the DVM is of the correct phenom-
enological sign, but is about one-half the right size. Phe-
nomenology demands a Coulomb term for a &0.2 fm not
present in our model. But the classical model studied in
this paper does not include quantum effects such as trans-
verse zero-point oscillations of the Aux tube. These sup-
ply a Coulomb term (and other inverse powers), the so-
called Luscher term, ' with an effective coefficient el of
magnitude vr/12=0. 26 which sets in when the flux-tube
regime begins. '

The usual phenomenological quarkonium potentials are
written in a form which derives from nonrelativistic
reductions' of one-particle-exchange (vector and scalar)
graphs, and they are treated as potentials that test parti-
cles, whatever their charge, respond to. As already indi-
cated at the end of Sec. II E, our basic point of view is
that the potential is a property of the two-body system.
This means that we cannot think of a potential in which a
charge moves, leading to the usual spin-orbit potential.
We would have to study a rotating cavity to arrive at a
proper description of the spin-orbit forces. We expect
that our results will confirm to those described by

APPENDIX

We outline in detail some of the calculations leading to
the form of the potential for the cylindrical cavity. Let us
first consider the integral

z ka Ki(kR) 1
S& (R,a) = f dk sin = L~ (A, ), —

2 I, (kR) R

where

Ki(x)
L ~(A, ) = f dx sin M

o I, (x)

(A 1)

(A2)

Now

Buchmuller. ' Only the kinematical Thomas precession
contribution will appear in the DVM model, and this cor-
responds to a "scalar potential" in the usual description.
As noted in Refs. 10 and 11, purely Thomas-type spin-
orbit terms associated with the conventional long-range
potential are favored by conventional phenomenology.

The Thomas spin-orbit terms are distinguished from
the dynamical spin-orbit terms (absent in the DVM) in
that they are "self"-correlations, i.e., proportional to sI.L]
and s2.L2, rather than of the form s& L2 and s2 L& as for
the dynamical terms. In a recent paper, Michael' tested
the question of long-range spin-orbit terms in SU(2) QCD
on the lattice. He finds evidence that only the Thomas-
type terms are present at long distances.

Using lattice calculations as a guide to whether a par-
ticular model of QCD is sensible seems to us to be a use-
ful approach. In particular, it would be interesting to see
whether the spin-spin forces as described here make sense,
in particular the a-independent "self"-correlations and the
rapidly falling (s, .sz)-type terms as in Eq. (2.36).

a ~ ka KI(kR)
SI(R,a) = f dk sin k

2 Ii(kR)

The left-hand side has the form

Ki(kR)II (kR)

[Ii (kR ) ]

1 . , 1
dx sin AxR' [Ii(x)]

8 BA, 8 1 1 a 1 dZ,
+ L)(A)= — —L)—

BR BR BX R R 2R R dX
1 dLi

R
I.]+A.

dA,
(A3)

Thus

Using

[A.L&(A.)]= f"dx sin M
0 [I,(x)]

(A4)

2
'Y 1

II(x) Jp(y ) y '+x'
we get

2 2

[AL~(k)]=4+ f dx sin M
„Jq(y )Jz(y„) o 2 2 2 +

Xm 'Vm +&
1

Tm 3'n &

(A5)

2 2
7rA, /2 ym yn 7T 1+4

„Jp(y )&p(y„) „Jp(y )Jp(y„) 4 y„' —y

—2kr.
1 —e

3
Yn

3
j m

rm

(A6)
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Setting x =0 in (A5) yields

(A7)

so that

Hence

2 2

[XL)(k)]=2m.l, +m. g
mn 2 rm 2 Yn yn rm

—2Ar.
1 —e

3
'Vn

—2Ar
1 —e

3
Xm

(A8)

2 2

AL, (k) =C+~k'+~X g
mn 2 'Ym 2 rn yn 'Ym rn ym

L

—2Ar2 2
7T ym rn 1 e+ )J2(r. ) y„'—y

' y„'

—2ky
e

4
Xm

(A9)

The constant may be evaluated by considering the limit A, =O. We get
2 2 4 4

7T ym rn 1 'Vm —3'n

„J2(3 )J2(r. ) y„' y.—' r.'r. '
Equation (A5) may also be used to obtain

1 1

~ r. 'J2(r. )

so that

1 1

J~(r ) „y„'J,(y„)
(A10)

(A 1 1)

and thus

2 2

L, (A, ) = +~A, +~ g Vm 7n 1 1

8k J2( Y )J2(y ) y„y y

2 2 2k, y
ym Yn' 1 e

2A, „J~(y )J2(y„) y„y y„

3
Tm

—2Ar
e

4
Pm

(A12)

The integral needed for the spin-spin potential is

K, (kR) 1 „E&(x)f dk k coska = f "
dx x cos2M

0 Ii kR R3 0 I( x

(A13)

1 '9m 1

Io(x) J)(g ) g
(A16)

and in the evaluation of the integration constant, we use
the result

and this can be obtained from L, (A. ), since

K) (x) 1 d ~ „ IC~ (x)
dx x cos2M = — dx sin M

0 I~(x) 2 d&2 o I~(x)
(A14)

1 1

J(g ) 2

which follows from (A16).
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