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Bound-state problem in quantum field theory: Linear and nonlinear dynamics
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We study bound-state solutions of a simple Lagrangian containing two coupled scalar fields (the
Wick-Cutkosky model). In this work we obtain (nontopological) soliton solutions which are non-
perturbative in character and which can be studied for large values of the coupling constant. We
provide a unified approach to this problem by starting with a Bethe-Salpeter equation and demon-
strating that different choices of the kernel will lead to either the usual "ladder approximation" or
to the nonlinear equations of the soliton analysis.

I. INTRODUCTION

A problem which has received a good deal of atten-
tion over the last decade is the construction of models to
describe hadron structure in quantum chromodynamics
(QCD). There are a large number of competing models.
These include bag models, chiral bag models, nonrela-
tivistic potential models, nontopological and topological
soliton models, and models based upon the use of the
Bethe-Salpeter equation. Usually these models involve
the introduction of an effective Lagrangian which is
written in terms of a number of elfective fields. (The
only model which attempts to use the degrees of freedom
which appear in the QCD Lagrangian is that based upon
an explicit construction of the hadronic Fock-space
wave function in terms of operators defined using light-
cone variables. '

)

On the whole, the relation between these various ap-
proaches to the bound-state problem is obscure. In this
work we do not wish to choose between the various
models of hadron structure. We do, however, wish to
discuss some relation between the theory of nontopologi-
cal solitons and Bethe-Salpeter dynamics. More precise-
ly, we will consider a specific Lagrangian involving two
scalar fields (the Wick-Cutkosky model ) and approach
the problem of constructing bound-state solutions using
two distinct factorizations of the field equations of the
model. [Ultimately we are interested in discussing had-
ron structure. For example, we might consider a valence
quark and antiquark bound by some field to produce a
meson. In this work we wish to avoid the complications
introduced by the quark spin. Therefore we limit our
considerations to the interaction of two scalar fields:
P(x) and X(x). Our interest in fermion dynamics leads
us to consider a Hilbert space in which two quanta of
the P field are present at all times. The role of this con-
straint in deriving the dynamical equations of the model
will become clear as we proceed. ]

As we will see, one factorization of the matrix ele-
ments of the field equations leads to a linear equation,
which is essentially the Bethe-Salpeter equation (in the
ladder approximation) with one particle kept on its mass
shell. The other approach leads to a nonlinear version of

the Bethe-Salpeter equation in which the kernel of the
equation is a functional of the solution. An equation of
the latter type can be solved by iteration and provides a
mean field approach to the bound-state problem. This
latter approach is nonperturbative and therefore can
have a different range of validity when compared to the
linear Bethe-Salpeter analysis.

The model considered here is described in detail in
Sec. II. The result of our analysis can be given a pictori-
al representation, which we believe to be instructive. In
Fig. 1(a) we represent the Bethe-Salpeter equation with
an arbitrary kernel K. In Fig. 1(b) we exhibit that
choice for K which leads to the equation depicted in Fig.
1(d). (This choice is what is usually termed the "ladder
approximation" and may be considered to be a weak-
coupling approximation which involves a selected sum-
mation of diagrams of perturbation theory. ) In Fig. 1(c)
we denote an approximation for the kernel which de-
pends upon the vertex function, represented by the shad-
ed triangle. The motivation for that choice will become
clear as we proceed. The resulting equation may be de-
picted as in Fig. 1(e), where the nonlinear character of
the equation is apparent. An alternate representation of
the nonlinear equation is given in Fig. 2(a). There the
open circle denotes a form factor of the bound state.
The form factor is defined pictorially in Fig. 2(b). We
can denote the binding field (wavy line) by X and consid-
er the bound particles to be quanta of a field P(x). In
Fig. 2 we see that the hadron itself is the source of the
binding field g(x) in which the particles of the P field
move.

It should be clear that the "physics" described by the
linear and nonlinear equations is quite different. For the
linear case one considers the 7 field to be only weakly
excited. The P particles exchange the quanta of that
field. In the nonlinear model, which here represents one
application of the theory of nontopological solitons, one
can consider the g field to be semiclassical in nature
with many P quanta playing a role in the dynamics. We
recall that in the usual formulation of the theory of soli-
tons, one studies the classical Euler-Lagrange equations.
These equations may or may not have soliton solutions
of topological or nontopological character. Our non-
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FIG. 2. Alternate diagrammatic representation of the non-
linear equation depicted in Fig. 1(e). (a) The solid triangles are
vertex functions and the open circle is a form factor. The
wavy line represents the propagator of the field X. (b) Di-
agrammatic representation of the form factor of (a) expressed
in terms of the vertex functions (solid triangles).

FIG. 1. Diagrammatic representation of the linear and non-
linear equations considered in this work. (a) The Bethe-
Salpeter equation for bound states. Here K denotes the kernel
and the solid triangle is the vertex function. (The cross denotes
an on-mass-shell particle. ) (b) The choice for K which defines
the "ladder approximation. " (c) The choice for K which leads
to the nonlinear equations of this work. (d) The Bethe-Salpeter
equation in the ladder approximation. (e) Nonlinear equation
obtained from (a) when the kernel of (c) is used.

linear equation is rather closely related to the classical
Euler-Lagrange equations of the theory; however, to ex-
hibit that correspondence one has to consider a static
limit of our formalism.

A general comment is in order here. If the coupling
constant is small, the Bethe-Salpeter equation in the
ladder approximation can have meaning within the con-
text of perturbation theory. However, there is nothing
to prevent one from solving the Bethe-Salpeter equation
for large values of the coupling constant and that has
often been done. In this work we discuss an alternative
solution for large values of the coupling based upon a
nonlinear formalism. One virtue of our approach is that
it is based upon semiclassical approximations which may
be valid at strong coupling. In principle, one can im-
prove upon our approach by calculating corrections to
the "no-loop" approximation in the theory of soliton dy-
namics.

The plan of our work is as follows. In Sec. II we
derive both the linear and nonlinear versions of our
equations. In Sec. III these equations are reexpressed in
terms of dimensionless variables and in Sec. IV we de-
scribe the results of numerical computation. Section V
contains some concluding remarks.

II. LINEAR AND NONLINEAR
BOUND-STATE DYNAMICS

We consider the Lagrangian

mX(x)= —,'B„P(x)B"P(x)— P (x)

+ —,'B„X(x)&"X(x)— X'(x)+ —,P'(x)X(x) (2. I)

which describes the coupling of two scalar fields P(x)
and X(x). As in the work of Wick and Cutkosky, we

will limit our considerations to a Hilbert space in which
two particles of the P field are present. These particles
can form a bound state via their coupling to the field
g(x). As we discussed in the Introduction, a central
goal of this work is to compare two different approaches
to the bound-state problem: (1) linear Bethe-Salpeter dy-
namics; (2) nontopological-soliton dynamics. In order to
minimize the complexity of the analysis, we will simplify
the model by keeping one of the constituents on mass
shell. This can be achieved by considering a matrix ele-
ment of the scalar field P(x) at x„=O:

' I/2 1 /2
1

(2n. ) 2'(p)
1

(2m )'2E (p)
&k

~

y(O)
~

p& =

x&(k p), (2.2)

where the normalization of the (on-mass-shell) constitu-
ent state

~

k & and the bound state
~ p & are

and

&
k'

i
k & =5(k —k') (2.3a)

& p'
I p & =~(p' —p) . (2.3b)

The energies of the bound state (with mass M) and the
on-mass-shell constituent are given by

and

E(p)=+p +M (2.4a)

cu(k ) =+k +m (2 4b)

Since one of the constituents is on mass shell, the
bound-state wave function A (p k) is a function of a sin-
gle variable p-k. In order to find an equation of motion
for A (p k), one may consider the operator equations

(a +m )y(x) =gy(x)X(x),

(a'+~')n )=~y'( ),
2

(2.5a)

(2.5b)

and take matrix elements of these equations using the
states

~
p& and

~

k&. Then, Eq. (2.5a) becomes

[—(p —k)'+m']&k
~
P(o)

~
p& =g &k

~
X(0)P(O)

~
p&,

(2.6a)
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or

[ —(p —k) +m ]&k
I
$(0) p) =g&k

I
$(0)X(0)

I
p) .

(2.6b)

In the following these equations will be analyzed using
different approximations. For example, we may write

&k
I
X(0)P(0)

I p & = f & k
I
X(0)

I

k')dk'&k'
I
P(0)

I p &

(2.7a)

or

& k
I
$(0)X(0)

I P & = f & k
I
(b(0)

I

P' &dP'& O'
I NO)

I P),
(2.7b)

the frame where p=O,

k2 d/ 1+as A (k)=4vra f 3
A (I ) .

(2~)' (k —I )'+A, '

(2. 1 1)

Here p=m /2 is the reduced mass; the binding energy is
e~ =2m —M, and a =g /( 16~m ). We see that Eq.
(2.11) is a momentum-space Schrodinger equation where
the interaction is a Yukawa potential.

B. Nonlinear model (soiiton dynamics)

If we use the factorization of Eq. (2.7b) in Eq. (2.6b),
we find

where
I

p') and
I

k') are intermediate states of the
bound system and the on-mass-shell constituent, respec-
tively. As will become clear, these two approximations
lead to different dynamical descriptions of bound states
of the same Lagrangian.

A. Bethe-Salpeter dynamics: Linear model

[—(p —k) +m ]&k
I
P(0)

I p)

=g f dp'&k
I
4(0)

I

P'&&p'
I
&(0)

I P&

Utilizing Eq. (2.5b), one can obtain
1/2

&p'
I
x(0)

I
p) = —q +k (2n. ) 2E(p)

(2.12)

If we use Eq. (2.7a) in Eq. (2.6a), we find

[ —(p —k) +m ]& k
I
cb(0)

I
p)

=g dk' k +0 k' k' 0 p

Utilizing Eq. (2.5b), one can obtain & k
I
X(0) k'):

(2.8)

1/2

1
X (2') 2E(p')

1/2

8F(q ), (2.13)

where q =—(p —p'); the form factor F(q ) is defined by

&p' I:P(0)P(0):
I
p) =, F(q') .

8

(2~)'2&E (p)E (p')

&k
I
Y(0)

I

k'& = —(k —k') +A, (2~)'2'(k)
]

1/2
1

(2~)'2'(k')
(2.9)

F(0)=1 . (2.15)

(2.14)

When q =0, we find that, in the nonrelativistic limit, we
have

Therefore, the equation of motion for A (p k) is found
to be

[ —(p —k) +m ]A (p k)

We can normalize the wave function A (k p) by making
use of the number operator

X.,= f dory'-'(x)la, y'+'(x), (2.16)

g f 4l 6(l —m )9(l )

(2vr)' —(k —l) +A, '
(2. 10) and its matrix element

One can easily prove that this equation is the same as
the ladder approximation to the Bethe-Salpeter equation,
when one constituent is placed on mass shell. Further-
more, in the nonrelativistic limit, Eq. (2.10) becomes, in

&p
I
&., I

P&=»(p p ) . (2.17)

Substituting Eq. (2.2) into Eqs. (2. 12) and (2.14), and
combining Eqs. (2.12) and (2.13), one finds an equation
of motion for A (p k):

g F( ')
[—(p —k) +m ]A (p.k)= f d q 5(2p.q+q )0(p +q ) A((p+q). k),4~' ~' —q'

(2.18)

where

F(q )= f d k 5(k —m )&(k )
16~

&& A ((p +q).k ) A (p.k) . (2. 19)

( )
I

(
(2m. )3 2~(k) E(p)

=f I
A(p k)I =2.

(2~)3 2' k
(2.20)

Using Eqs. (2. 16) and (2.17), we see that, in the nonrela-
tivistic limit [co(k) =m =M/2],

We have constructed a nonlinear integral equation [see
Eqs. (2.18) and (2.19)] which may be compared to the
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linear equation obtained previously [Eq. (2.10)].
In the nonrelativistic limit, Eqs. (2.18) and (2.19) be-

come

k d F( — ')
+e, A (k) =8~a f2p (2~)' q +A, 2

III. DIMENSIONLESS VARIABLES

It is useful to write the linear and nonlinear equations,
obtained in the last section, in terms of dimensionless
variables. We define x =

~

k
~

/m, y =
~

l
~

/m, r =Elm,
and e =e~ /m =—2 —M /m. We now present the equa-
tions of motion in terms of these variables for several
cases.

and

F( —q')= f, A(k)A k —+
8m (2~)3 2

(2.21)

(2.22)

A. Linear model

1. Nonrelativistic limit of the linear model

After performing the angular integration, Eq. (2.11)
becomes

(x'+e)xA(x)= f dy ln yA (y) .cz (x +y)'+r'
2m (x y)'+—r'

in the frame where p=O. (3.1)

The eauatiqn

Z. One constituent on mass shell (Bethe Salpeter -equation)

[2(~1+ ~ —1)+ ] A( )= f d y
1

+ +x + + x
A( )

(1+y ) r 2+2+I+x—+1+y —2xy

is obtained after performing the angular integration in Eq. (2.10).

(3.2)

B. Nonlinear model

We have

1. Nonrelativistic limit of the nonlinear model

F —4
( '+.)A( )= '" f -dy f ' d. F'

—, 4& ' y "y A(y),
4g (x,y, z)+r

where

g(x,y, z) =+x z —2xyz +y ~

and

F( —4g')=, f dco f deco'A (co)A (V'co' —2cog'+g') .
3277

2. One constituent on mass shell (nonlinear model)
We find

2

[2(+1+ —1)+ ]A ( )= (2— ) f d f d+I+y ~ —' + 1 +x + I +y + 1 —xyz

F( —(2 —e) g„(x,y, z))X», A(y),
(2 e) g„(x,y—,z)+r

where

2

(3.3)

(3.4)

(3.5)

(3.6)

and

g„(x,y, z) =
1/22()/I+x ++I+y )

+1+x +I+y +1—xyz
(3.7)

2 2

F( —(2 —e) g„(x,y, z))= f dco A (co) f dg A ' 1+ +I+co~
3277 0 +I+co —I 2

1/2 2 1/2

(cog) —1 (3.8)
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equal to unity at the origin, which is the correct normal-
ization in the nonrelativistic limit, co(k) =m =M/2.

In Fig. 6 we compare the wave functions obtained
from the linear Schrodinger equation with the soliton ra-
dial wave function for the case a=0.3. Here we see that
for a fixed value of n, the radius of the bound state in
the case of the soliton solution is significantly larger than
the bound-state radius calculated from the solution to
the linear equation.

In Table I we present the root-mean-square value of
~

k
~

/m for the momentum-space wave functions of the
linear and nonlinear model. It may be seen that, for the
same value of a, the solution in the case of the nonlinear
model has a larger value for the rms value of

~

k
~

/m.
It is also clear that for the larger values of a relativistic
corrections to these results wi11 become more significant.

Soliton
equation

0.125
0.15
0.20
0.30
0.40
0.50

0.043
0.068
0.109
0.181
0.252
0.319

Linear
equation

0.20
0.30
0.50
0.70
1.00

0.049
0.117
0.232
0.348
0.488

TABLE I. The root-mean-square value of (k/m) for the
bound-state wave functions obtained for the nonlinear (soliton)
model and for the linear (Schrodinger) equation.

((~k~/m) )'

V. DISCUSSION

We have presented a unified approach to the solution
of the Bethe-Salpeter equation in the weak- and strong-
coupling regimes. In general, we should discuss the
question of convergence of the solution. When using
perturbation theory, we can calculate more complicated
forms for the kernel, including terms of order 0. , a, etc.
In the case of the soliton solutions, which we see as a
strong-coupling or mean-field approximation, one can
also attempt to calculate corrections in a systematic
fashion. (If we were developing the theory in the static

limit, we could make a loop expansion, the mean-field
analysis being the "no-loop" or "tree approximation. ")
Single-loop corrections to (static) soliton models of had-
rons are presently being studied by a number of
researchers. We reserve such investigations for future
research.
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