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Many new anomaly-free configurations are found group theoretically for space-time dimensions
of D=6, 10,14,18. They contain N= 1 supergravitylike constituents, Yang-Mills matter for a sim-
ple group, and many Yang-Mills singlets (shadow matter). We also discuss constraints for theories
without supergravity, chiral four-dimensional theories, and the absence of global gauge anomalies.

I. INTRODUCTION AND SUMMARY

Recent excitement about superstring theories started
from the analysis of anomaly-free theories. Alvarez-
Gaume and Witten initiated a search for such theories. '

Green and Schwarz extended the analysis by introducing
the so-called Green-Schwarz mechanism for canceling
anomalies. They have shown that N =1 supergravity
theory coupled to the Yang-Mills (YM) gauge multiplet
is anomaly-free for the gauge groups SO(32) and Es X E&,
at dimension D =10. Both of these theories turned out
to be derivable as the zero-mass sector of superstring
theories. Thierry-Mieg has extended the search into
higher dimensions while still assuming that the chiral
YM matter is in the adjoint representation (rep) and
only one auxiliary spin- —,

' field is used with an opposite
chirality. He has found that D =2, 10, 18, and 26 have
solutions with the YM structures, U(1), SO(32) with
496 or Es XE8 with (248, 1) + (1,248), Es with 248, and
no Yang-Mills matter, respectively. He claims that all
of them have the possibility of being derivable from
superstrings. Schellekens" has discussed a new way of
obtaining anomaly-free theories from known ones and
has found some new solutions (in particular, D =14 has
a solution whose YM rep consists of A=133—1056—66
singlets for the gauge group Ei). Others have also dis-
cussed ways of obtaining new string theories from
known ones and attempted to formulate string theories
in noncanonical dimensions (D&10 or 26) (Ref. 5).

In this paper we reexamine the search for anomaly-
free theories and find many new solutions to the local
anomaly-free conditions at dimension D =4k —2. We
give a detailed account of how to find these solutions,
which were reported in a Letter. We are not generating
new theories from known ones. Because their structures
are different, we believe that some of the solutions may
lead to new kinds of theories, such as supermembranes.
Our search is a systematic one, which employs Lie-
algebra trace identities as much as possible. Thus, our
search needs no Auke, but patience. Unfortunately, the
anomaly-free conditions give information only on the
fermionic massless sector of a theory. (A self-dual total-
ly antisymmetric tensor can be considered as a sym-

inetric product of two spinors. ) Thus, the solutions we
find are only a clue to a new theory.

We assume that the massless fermionic content imi-
tates the N =1, D =10 supergravity theory closely, i.e.,
one gravitino, and chiral spin- —, YM matter field with
not only one adjoint rep but also multiple copies of non-
trivial irreducible representations (irreps) (different from
adjoint) of a simple group. The presence of additional ir-
reps besides an adjoint rep is the departure from the
N = 1, D = 10 supergravity theories. If a nontrivial irrep
is complex, multiple copies of its conjugate are also al-
lowed. For SO(2n), two different kinds of spinors (k„
and X„,) are allowed. We also find solutions which do
not satisfy all the assumptions on the representation.

The number of pure gravitational spin- —,
' fields is not

fixed, since we do not know any systematic method of
finding out how many we need. In the case of the well-
known N = 1, D = 10 supergravity, one needs one nega-
tive chirality spin- —,

' field. Because these fields behave as
YM gauge singlets and we take the Schellekens solution
as a clue, ue allow as many YM gauge singlets as re-
quired to cancel the pure gravitational anomaly. The al-
lowance of many singlets is another difference between
this work and related papers.

Thus, our (conservative) assumptions are set up as
generally as possible for new theories. The assumption
of a simple group is the most restrictive one (or the
weakest, depending upon a point of view). Various new
superstring theories use semisimple groups. Note that
our method is local and thus we cannot, for example,
distinguish SO(32) from Spin(32)/Z2.

The immediate consequence of our assumption on the
fermionic content is that no theories at D =22 and
beyond D & 26 exist in order to have the leading pure
gravitational anomaly canceled. This fact is discussed in
Secs. II and VIII.

The allowance of many shadow matter fields leads us
to many new anomaly-free theories. First of all, we
show in Sec. II that by adjusting the number of YM
singlets, all solutions at D =18 are automatically solu-
tions at D =10. Similarly, all solutions at D =14 and 18
are solutions at D =6, but not vice versa. What we
mean is that a YM matter rep of a group in one dimen-
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sion may be used in a different dimension and that
theory will also be anomaly-free. In addition to these
general statements, we have found many new
configurations by investigating the constraints on YM
matter fields dimension by dimension.

In order to make our results concise, we hereafter use
the following notation. A denotes the rep and the sym-
bol [a] denotes the largest integer which does not exceed
a. The integers m and m' can be negative, unless other-
wise specified. Negative integers imply that the chirality
for those fields is negative. The symbol X, (1&j (n)
refers to the n fundamental weight system for a simple
Lie algebra of rank n. Bold numbers denote the dimen-
sions of irreps.

The list of our results for a nontrivial part of YM ir-
reps is the following.

D =6 (all solutions are so-called regular)
(i) A=adjoint + (any number, any chirality of lowest-

dimensional reps) of G2,F~,E6,E7.
(ii) A=adjoint+ m vectors —m' spinors of SO(N),

where m+2 ' ' m'=8 —X. For N =2n, m' is the
sum of the numbers of two kinds of spinors, A,„and

&, except X = 8 where their numbers must be equal.
(iii) A =adjoint —m A,, of Sp(2n ), where n and m are

integer solutions of the following:

(n +4)(n —1)(j —I)!(2n +1—j)!m=
(n + 1 —j)[2n +3n +4—3j(2n +2 j)](2n ——2)!

The case where j =1 is always a solution for an arbi-
trary n with m =2(n+4). The largest rank solution
with j&1 up to Sp(200) is given by (j =2, m =2) of
Sp(24).

(iv) A =adjoint —m X~ —m 'A. J* of SU(N) (j&1 or N —1

and N )4), where N and (m +m') are integer solutions
of the following:

2N (j —1)!(N—j —1)!
[N(N + 1)—6j (N —j)](N —4)!

of

The largest group with a solution up to SU(100) is
SU(24) with j =2. We do not know whether there exists
a solution beyond SU(100).

(v) A=adjoint+ (any number, any chirality)(3 and 3*
of SU(3).

D =10 (all solutions are regular except those with a g
superscript).

(i) A =adjoint+ m vectors+ m ' spinors of SO(N),
where m +2 ' ' m'=32 —X. For % =2n, m' is the
sum of the numbers of spinors, k„and A,„&, except
X =8 and 12 where their numbers must be equal. For
m =m'=0, N must be 32, which is the Green-Schwarz
solution.

(ii) A"=adjoint —(N +32) vectors of Sp(N) (arbitrary
even N).

(iii) A=adjoint of Es (the Green-Schwarz solution).
(iv) A"= —78(adjoint) —27+351(X2) of E6.
(v) A=78+m 27+m'27*(m +m'=6) of E6.
D =14 (all regular solutions).
(i) A = 153—26 18—256 of SO(18).
(ii) A =91 —22 14—m 64 —m '64* ( m +m ' =4)

SO(14).
(iii) A =45 —18 10—m 16—m '16'(m + m '= 16) of

SO(10).
(iv) A=133 —1056 of E7 (the Schellekens solution).
(v) A=78 —m 27 —m'27*(m +m'=18) of E6.
D =18 (regular solution).
A=248 of E& (the Thierry-Mieg solution).
We have eliminated trivial subgroup solutions from

the list. Note that we must add an appropriate number
of singlets to cancel the pure gravitational anomaly. We
could not find any theories with just one antichiral spin-

field, except those found by Green and Schwarz and
Thierry-Mieg. Most of the solutions cannot be obtained
from higher-dimensional theories, although some of
them may be, just like the Schellekens solution at D = 14
which comes from D = 18 by compactifying four dimen-
sions as K3. We have not investigated this possibility.
We do not know at this stage whether these new
anomaly-free configurations could be derivable from
string theories or not.

We have also found few solutions which do not con-
tain an adjoint rep.

D =6.
A=f2+m A, &(N+m =8) for Sp(N) (Neven) and

SU(N).
D =10.
(i) A=X~(495) of SO(12).
(ii) A=A, 2(495) of Sp(32).
(iii) A =A z+ k&( 65+429 ) of Sp(12) .
(iv) A=A2+(32 —N)A,

~
of Sp(N) (N even).

(v) A=(2A, &) —(N +32)k.i of SO(N).
D =18.
A=A, 3

—A, &(273 —26) of Fz.
Note that none of these is a regular solution. Al-

though we regard shadow matter fields as gauge singlets,
they can be gauged, provided that (1) we assign another
group only to the shadow world, (2) only shadow parti-
cles have quantum numbers for the shadow gauge group,
and (3) the YM constraint is satisfied by themselves.
The simplest well-known example is the E8 case at
D =10. The adjoint 248 of E8 does satisfy the D =10
YM constraint, but we need I = —247 shadow particles.
When we assign the shadow group E8 to 248 of them,
then the whole theory becomes the E8)&E8 theory with
the rep (248, 1) + (1,248) and only one auxiliary field. In
this paper, we do not discuss the possibility of the sha-
dow gauge groups and leave it as a future project.

In Secs. II—V we show how we found these solutions.
In Sec. IIA we derive anomaly-cancellation constraints
for dimensions D =4k —2. Then, we rewrite the YM
part in terms of so-called indices of reps in Sec. IIB.
Therefore, finding solutions becomes a group-theoretical
problem. The next three sections present the systematic
search for solutions of YM constraints. Section III is for
solutions with a single irrep. In IIIA solutions with
only an adjoint rep are discussed, while in III B we dis-
cuss the uniqueness of solutions with a single irrep
without restricting ourselves to an adjoint rep. Section
IV is for solutions with two irreps (one of them is ad-
joint). We examine exceptional groups in IV A and clas-
sical groups in IVB. Section V is for solutions with
three irreps of SO(N).

In Sec. VI we briefly discuss the constraints for a non-
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supergravity theory. Again, we find a new solution with
two irreps at D = 10: A =m spinors —I2 ' ' vec-
tors of SO(X), where m and X are arbitrary integers and
m can be negative. For even N, one can use any mixture
of two kinds of spinors, except for N =8 and 12 where
one must use the same numbers of spinors and another
spinors.

Having found many anomaly-free theories, we investi-
gate two ways of further restricting anomaly-free
theories in Sec. VII. One constraint is that we should
get a chiral four-dimensional theory. The other con-
straint is the absence of global anomalies. In both cases,
we list allowed gauge groups.

In Sec. VIII we discuss theories with more than one
gravitino. We show that no theories exist still at D =22
or D ~ 26, provided that the number of gravitinos is less
than 691 and the fermionic content is limited to those
used in the one gravitino case.

We realize that our findings are incomplete in the
sense that we have not yet constructed full field theories
for new solutions. Also, some work to be done is indi-
cated above. However, by finding these solutions, we
hope to bring open mindedness to the search for new
physical theories.

Ik = g enG+4k —3 —1

&&Fk m

[2(k —m)]!
where n& is the dimension of an irrep with chirality e
and

(2. 1)

(2 )2k '
(2 )2k

g 3 zj=exp g C R z (Ao ——1),

II. ANOMALY CANCELLATION CONSTRAINTS

We look at theories in (4k —2)-dimensional space-time
where chirality is naturally defined. As shown by
Alvarez-Gaume and Witten, and by Alvarez-Gaume and
Ginsparg, ' anomalies for a Rarita-Schwinger field and
spin- —,

' chiral fermions at D =4k —2 are related to the
4k-forms in the following polynomials: 3 Tr[exp(iR/
2m) —1]+(4k —3)A for a Rarita-Schwinger field, —/A
for I chiral spin- —,

' (auxiliary and YM singlet) fields,

geA Ch(F) for Yang-Mills spin- —, fermions with chirali-
ty e, where A is the Dirac genus and Ch(F) denotes the
Chem character. The summation symbol for YM
matter fields implies the sum over various chiralities e
also. YM singlets can be counted as auxiliary fields.
Thus, the total anomaly at D =4k —2 is related to the
4k-forms

must have

n+( —) =0 where n = g enG —i+4k —3 .k 4k

Bk
(2.2)

(the diff'erence is less than 1% for k & 5) which can be
derived from Euler's identity

B„2(2k)' ((2k),(2') "

where g(m) is the Riemann's g function with g(m) & 1

and Stirling's formula
m

mm! & &2rtm
e

Thus, we have

kn[&
1/2 2k

(2.3)

For k & 9, the right-hand side of Eq. (2.3) is less than
0.66. For k = 8, 4k /Bk is ",,",,', and for k = 6, 4k /Bk is

Hence, the integer solutions for Eq. (2.2) are as
shown in Table I. Thierry-Mieg solutions are the last
column.

Following Green and Schwarz, we can cancel the
remaining anomalies by adding local counterterms, pro-
vided that the rest of the 4k-form terms takes on the
form

Ik ——(R i+a)Xk i (k &2), (2.4)

where Xk i is a gauge-invariant 2(k —1)-form made out
of 2-forms F and R. The function a is a gauge-invariant
Yang-Mills 4-form, which is not necessarily in propor-
tion to geF, . (In the case of nonsupergravity theories,
it is not as we will show later. ) This way of canceling
the anomalies imposes trace constraints on F. Note the
trivial fact that YM singlets do not contribute to these
YM traces, but only contribute to the pure gravitational
anomaly. Therefore, by suitably adjusting the number of
singlets, the problem of finding anomaly free solutions-
reduces to the problem of ftnding a rep satisfying trace
identities in the Lie algebra. We show that the trace

TABLE I. Solutions free of gravitational anomalies.

We show that no solution exists at D =22 (k =6) and
D &26 (Ref. 8). For this purpose, we use an approxi-
mate expression for a Bernoulli number:

2k

Bk &4+ark k

j=0 m=1 genG(l = 1)

4k (2k)!

where Bk are the Bernoulli numbers. See Appendix A
and Ref. 8 for the derivation. The first eight Bernoulli

1 I 1 1 5 691 7 3617numbers ar
6 30 42 30 66 2730' 6 510 '

The leading TrR term should vanish. Thus, we

2
6

10
14
18
26

24
—240

504
—480

264
24

24
—244

496
—492

248
0
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identities fix the chirality of Yang-Mills matter for most
of the cases of k. Note that in the case of k =1 (D =2),
the method above does not work. The only way out is
to use U(1) group(s), in order for geF, to factorize,
since TrF =0 for a (semi)simple group.

Note that the Careen-Schwarz factorization also im-
poses further constraints on n. However, n has already
been chosen by the requirement of the vanishing
coefficient for the leading TrR ", Eq. (2.2). As we will
see, it is rather remarkable to find n which satisfies all
the requirements up to D =26 (k =7).

For the case of N =1 supergravity coupled to YM
matter, the coefficient a has a closed expression, which
can be found by looking at the coefficients of R iRk
and Rk &

terms and is in proportion to geF, . The re-
sult is

EnG —1 = —245, @FAN
———,'a(6a e—F, ) . (2.8)

3. D =10 (k =3)

By identifying I3 as

Compared with cases of larger k, we cannot fix a and
the constraint on F is weak. Thus, we expect to find
many solutions. The choice of a =a'eF, and a' =

3Q

(—', ) leads to the same fourth-order identities one en-

counters at D = 14 (D = 18). Consequently, all the solu-
tions at D = 14 and 18 are solutions at D =6, provided
that we adjust the number of singlets for the cancellation
of the pure gravitational anomaly. In addition to these
solutions, we show the existence of other solutions later.

=a' g eF, (k&3) .

( —) +k k —1

k k —1

1

Bi

eFi

(2.5)

(R, +a)(aR&+bR~ +cR ~+d),
we obtain

en G
—1 =495, a = —,o (eF, }-,

eF3 = —( F~ )(eF~ ) — oo(eF

(2.9)

(2.10)

We show in Sec. II A that the formula is only valid up to
k =5. Thus, a'= —

—,', (k =3), —,', (k =4), —
—,'„(k =5),

respectively, which happen to be —Bz, B3, —B4. Now,
we discuss each case separately. Hereafter we omit the
summation symbol in front of eF~.

A. Yang-Mills trace constraints

We derive the YM trace constraints dimension by di-
mension. We show that no Yang-Mills matter is allowed
at D =26.

1. D=2 (k=1)

If we use just one irrep for F, we must have @=+1,
since F3 becomes negative otherwise.

4. D =14 (k =4)

We obtain two constraints on the pure gravitational
anomaly part:

O=n+ for TrR, 0= —+ for (TrR )
16 8 n 8 4 2

B4 2 B~

(2. 1 1)

which are simultaneously satisfied by n = —480, since
Bq ——B4——

3Q
For the Yang-Mills part, we obtain

We have n =enG —1+1=24 and G must be U(1)'s.
We have nothing more to say on this case, because of
the reason given earlier.

2. D=6 (k=2)

FF~ = —», (eF, )
2

@F4———
—,', (eF3 )(eF, ) —„'„,(eF~ )(eF, )

5 4
14 224 896 ( eF, }

(2.12)

The total anomaly is given by

eF
Ip ——nAp+ Gp+ + A ) GI—

which has to be of the form

Iq ——(R, + )(aaR ) +b) .

Hence, we have

O=n+, a = —— C&
8 n 4

Bz' 2 B

6+aa = — eF&, ha= —eFz,
2 4!

which lead to

eFi
(2.6)

(2.7)

5. D=18 (k=5)

We obtain two constraints on the pure gravitational
anomaly part:

O=n — for TrR20 10

B5

8O=n+
Bq

12
for TrR4TrR'.

B3

(2.13)

Both of these are consistently satisfied by n =264, be-
cause of particular values of Bernoulli numbers. For the
Yang-Mills part, we have

Thus, we need at least one YM matter multiplet with
opposite chirality.
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@F2———,
' (eF& )

eF3 —
48 (@F2)(eF, ) —,«~ ( eF, )

eF, =
,', (e—F4)(eF, ) —„'„(cF3)(eF ) )

(2.14)

tichiral spin- —, field in the fermionic sector. The sum-

mary of this section is given in Table II.

B. Constraints expressed in terms of indices

6. D=26 (k=7)

%'e have four constraints for the pure gravitational
anomaly part:

O=n — for TrR28 14

B7

O=n — + for TrR TrR20 8 4 10

Bq B2

O=n+ — for TrR TrR16 12 6 8

B4 B3

0= —— + for (TrR ) TrRn 6 8 4 2 6

2 B3 B2

(2.15)

+ S29440 (eF2 )(~F, ) 414 720 OOO
(eFi )

Again, if we have just one irrep, then we must use
a=+1. In this case, we have two independent equations
for a: one from comparing the coeKcients of R4R1 and
R4 and the other from R2 R1 and R2 . Fortunately
they yield the same value, o."=

3o Note that the value
of e and the constraint on F3 are exactly the same for
the D = 10 (k =3 ) case. Consequently, a solution at
D = 18 is a solution at D = 10 with an adjustment of the
number of singlets (but not vice versa).

(eF~)=K(eFi )

is equivalent to

g e&m~ QJ4 =0,

g E~m, X'4 ——K g e m Q(
2

(2.16)

(2.17)

Sixth order (Q& ——0):

Now, in this subsection we reduce the YM constraints
to the equations for indices of various irreps. Thereby,
we make it possible to solve constraints group-
theoretically. For general discussion on indices, please
refer to Ref. 9. We also discuss the condition that the
spin connection can be embedded into the gauge group
(holonomy compactification).

Using the results of Appendix B and Ref. 9, we can al-
ways reduce traces of an irrep, A, into traces of another
irrep, which we denote . This irrep, , is usually taken
to be a lowest-dimensional rep. Then, we define a pth
order index by Qz~ Dz(A—

~
—)/D ( ) for an irrep A~.

Thus, in principle, all the trace constraints can be writ-
ten in terms of indices of irreps (see, e.g. , Appendix 8).
Hereafter, we omit the suffix j for the summation symbol

For the fourth-order and the sixth-order constraints,
the results for a rep, A =pe m A~, are as follows.

Fourth order:

All of them are mysteriously satisfied by n =24. Howev-
er, if @F1&0, then we have four independent relations
for a from R 6,R 2R4, R 3,R 2, all of which are in
conflict to each other. For the case where eF1 ——0, we
have a=O and eF~ =0 (j =2, 3,4, 5, 7), whose solutions
are hard to find, unless we have a vectorlike theory with
equal numbers of both positive and negative chiral
matter fields for all the irreps. Consequently, we cannot
use YM matter at this dimension, because we assume
only one chiral adjoint matter field. That is, at D =26
we may only have a Rarita-Schwinger field and one an-

TABLE II. Yang-Mills constraints where F„ is defined as
TrF "/(277)2"

is equivalent to

pe, m, Q~=0,

g e, m) X~|; ——
—,', g e m, Q ( EJmJ 4 7

ge, m, Y~= ge m Q~

where

X4= ~4(Q&)' —~4( )QJ4

( EF, ) = —,'8 ( e'F, )(EF, ) —„,'Oo ( e'F, )' (2.18)

(2.19)

(2.20)

2

(2.21)

(2.22)

10

18

YM constraints

eF2 ———'a(6a —eF, )

~F3 = 4'8 (~F2)( 1) 144oo (

EF2 ——
196

(E'F, )

EF4 =
36 (&F3 )(eF1 )+ 7 112448 (F1 )

eF2 ——
1 oo (F1 )

E'F3 =
7200 (~F1 )

69 12O OOO
(

No YM matter allowed

X6 +6Q2Q4 ~6( )Q6

Yg ——&'t;(Qj) —A|;( )gi —A4( )Xj .

(2.23)

(2.24)

QE, mJA4(Q2) =K gejm&Q(
2

(2.25)

Sixth order:

Note the fact that X~( )=X~( )= Y~( )=0, since
Q~( ) = l.

For exceptional groups, we have extra relations,
B~q ——0 and Q~4 =0, and thus the conditions become
weaker.

Fourth order:
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g~lmg, =o, (2.26)

pe, mj [ 3~6(Q~~) —A6(C3)QJ6]= g e, m, gj2 —,', pe m A~~(QJ2) —„' gp, m Q~~
2

(2.27)

Eighth order:

g elmlgf =0,
T

X E, m, CIQ&g'6 = —
—,', g ~, mlg& ~jm j j6

(2.28)

(2.29)

g e~m~[A](g( ) —CIIQ)Q6A6( )]

6 m 2
—

—,', g&, m, [~6(gp) ~6( )Q6]+ 7„2448 pe, m, gJ2
3

(2.30)

2 gejm, l2(A, , G) . (2.31)

If this parameter c is equal to one, then the solution is
called regular.

In the case of D =6, we can look for a regular solu-
tion, since the YM constraints are weaker than those of
other dimensions. Then, for D =6 we choose a to be

Now, we write the condition that the spin connection
can be embedded into the gauge group. This condition
is needed if one wants to use the holonomy group for di-
mensional reduction. Here, we use the Schellekens cri-
terion: The embedding is possible if c =1/p (p an in-
teger), where c is given by the Green-Schwarz factor
normalized as

g e~m)lq(AJ, G)

12(u, SO(D) )

where D is the dimension of space-time, U is the vector
rep, and l2 denotes the second-order index normalized as
follows For a vector rep, 1 for SU(N) and Sp(N), and
2 for SO(N), while for an adjoint rep, 2N for SU(N),
N+2 for Sp(N) (N even), 2(N —2) for SO(N) (N ) 5)
and 8, 18, 24, 36, 60 for G2, F4, E6, E7, E8, respectively.
This normalization determines the dimension of the pa-
rameter space of instantons. This parameter c is related
to our a' by

g e) m~12(AJ, G)

lz(u, SO(D) )

It turns out that these two conditions are still weak
enough to allow rather general solutions, as we will show
later.

III. SOLUTIONS WITH A SINGLE IRRKP

The trace identities derived in a previous section re-
quire ttuo conditions to be satisfied: (1) vanishing indices
and (2) matching coefficients. Vanishing indices means
that if TrF is expressed in terms of traces of lower
powers of F, then the dominant index Q2k has to van-
ish. Furthermore, if a particular power of traces is
missing from the trace identity, then the index corre-
sponding to that power has to vanish also. Indices of a
simple Lie algebra depend only on an irrep (independent
of the definition of F) and are calculable. Matching
coefficients means that for an irrep all the coefficients of
a trace identity are calculable and thus one must find a
rep to match them. Both conditions are so strong that
we sometimes end up having only a few solutions or
none.

In this section, we discuss solutions with a single irrep
in D =6, 10, 14, 18. First, we limit ourselves to an ad-
joint rep. Then, we show the uniqueness of solutions in
D =14 and 18 without restricting the rep to being ad-
joint. For D =10, the uniqueness of single-irrep solu-
tions does not hold and we give two solutions with a
nonadjoint irrep. Solutions with two and three irreps
are discussed in Secs. IV and V.

A. Adjoint rep only

and

a =a'(eF
~ )

a'=—
12(l:I) g E, mjg)

(2.32)

j. Vanishing i ndiees

From Table II we find that the following indices
should vanish for a particular dimension. (See Table

TABLE III. Vanishing indices for anomaly cancellation.

g e~. ml Q~4 ——0,
g elmlI)(2A J41$ —1)=12

(2.33)

(2.34)

Then, the fourth-order constraints for a regular solution
in D =6 are given by 6

10
14
18

Vanishing indices

Q4
Q»Q4
Q»Q4 QS

Q»Q4 Qs Q6 Qlo
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TABLE IV. Indices for adjoint reps.

SU(N)
SO(N)
Sp(N)
Cx2

F4
E6
E7
E8

2N
N —2
N+2

4
3

4
3

1

0g

0
0
0
0
0
0
0

2N
N —8

N+8
0
0
0
0
0

Qs

0g

0
0
0
0

0g

0
0

Q6

2N
N —32
N+32
—26
—7
—6
—2
0

0g

0
0
0
0
0
0
0

2N
N —128
N +128

0
17
18
10
1

0g

0
0
0
0

0*
0
0

Qio

2N
N —512
N+ 512

0
0
0

—2
0

III.) For an adjoint rep. we can easily calculate various
indices as shown in Table IV (Ref. 9), where an asterisk
indicates the fact that it may not be vanishing for other
irreps. Thus, the possible groups are shown in Table V,
where the bracket indicates the dimension of an adjoint
rep.

2. Matching coefficients

e TrF = —,'a(6a —e TrF ) (3.1)

while for any adjoint rep with Q4 ——0 we have the trace
identity (see Appendix B)

TrF4= 5 (TrF )
2(a +2) (3.2)

where a denotes the dimension of an adjoint rep. Let us
assume that a =a'e TrF (similar to cases of k & 3).
Then, we have the equation for e':

Now, we see if the coefficients in the YM trace identi-
ties are matched. We discuss cases dimension by dimen-
sion.

(i) D =6 (k =2): We have to satisfy

values of a' are

G~ F~ E6 E7 Es SU(2) SU(3) SO(8)

I 1 1 1 1 1 1a 4 9 12 18 30 2
1

3
1

6

TrF = ,', TrF TrF ——„,' (TrF~)~, (3.4)

The value c = 1 is also found in the D = 10 case with an
adjoint of SO(32) or (248, 1) + (1,248) of ESXEs. Thus,
these solutions at D =6 should stand up as equally as
the D =10 solutions. The only difference is the need for
many gauge-singlet antichiral spin- —,

' fields. The number
of antichiral spin- —,

' fields is given by l =enG+245. We
believe that it is very difficult to obtain these solutions,
using a dimensional reduction of a higher-dimensional
theory. The reason is that an adjoint rep of all excep-
tional groups decomposes into not only an adjoint rep
and singlets but also some nontrivial reps of an excep-
tional group. Just an adjoint rep plus singlets is hard to
come by.

(ii) D = 10 (k =3): With a single irrep we have to
satisfy

6a' —a' — =0 .
10@

a +2 (3.3)
while for an adjoint rep of a group with Q&

——Q6 ——0 but
Q4&0, we have, in general (see Appendix B),

If we cannot find a real a' for a particular a, then that
solution is not allowed. For @=+1,the discriminant for
a' is always positive definite; therefore, for any a, there
exist two real solutions for a'. Hence, all of the solu-
tions found in Sec. III A 1 for D =6 are solutions. How-
ever, for e = —1, the discriminant is given by
1 —240/(a +2), which requires a &238. Thus, only the
E8 case is the solution.

If we impose the Schellekens criterion discussed in
Sec. IIB, all of the groups for D =6 listed in Table V
have the c =1 (called regular) solutions for e=+1. The

TABLE V. Candidates for anomaly-free solutions.

Possible groups

TrF = 21 4 g 35TrF TrF'-— (TrF )
2(a +8) 2(a +4)(a +8)

(3.5)

TrF6= (TrF~)~
14400(a +2) (3.6)

while we have, on the other hand, using identities Eqs.
(B5) and (B6) which hold for any adjoint rep for a group
with Q&

——Q~=Q6 ——0,

Thus, we uniquely select a =496, which is the dimension
of an adjoint rep of SO(32). Consequently, we have
l =1, i.e., just one antichiral spin- —,

' field is necessary.
Note that this is a regular solution, since c
= —,

' X2X(32—2)/2=1. For the case where Q~=0
also, we can use Eqs. (3.4) and (B5) to find

10
14
18

Cx2( 14),F4( 52), E6(78),E7( 133),E8(248)
SU(2)(3),SU(3)(8),SO(8)(28)
SO(32)(496),E8(248), SU(2)(3),Sp(4)( 10)
G2(14),SU(2)(3)
E8(248), SU(2)( 3)

TrF = (TrF )
4(a +2)(a +4) (3.7)

These two equations have solutions, a =248 or a =496.
Only 248 of E, satisfies the condition Q4 ——0, in addition
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TrF = „',(—TrF ) (Qq ——0) . (3 8)

The coefficient —„', has to be equal to 5/[2(a +2)] for an

adjoint rep, i.e., a =488. None of the simple groups in
Table V has this dimension. Thus, there are no solu-
tions.

(iv) D =18 (k =5): The equation 5/[2(a +2)]= —,
'

leads to a =248, which is the dimension of an adjoint
rep of E8. The rest of trace identities are satisfied by this
rep. This solution is regular and needs l =1.

B. Uniqueness of solutions with a single irrep

Now, we drop the condition that the rep is adjoint.
Actually, for D = 14 and 18 the trace identities are
indeed very strong conditions. For D =14 and 18, we
can show that no simple group has a single irrep solu-
tion, except for the adjoint rep of E8 at D =18. For ex-
ceptional groups (except E6 at D =18), we can use Ap-
pendix B to prove this with much algebra. E6 is exclud-
ed, because E6 can have nonvanishing Q& which will
modify the trace identities. We cannot use the same
method for classical groups either, since in general Q4 is
nonvanishing for them. Therefore, for these groups, we
first try to find solutions for the fourth-order trace iden-
tity, Eq. (Bl), which is applicable to any simple group.

Using the inequality (see Appendix B for definition of
A~)

1 3—& Az & — (d =dimension of an irrep),

together with the fourth-order trace constraints in Eqs.
(2.12) and (2.14), we can limit the dimension of an irrep
to

to Q3 —Q6 —0. Obviously, one needs l = —247 for the
cancellation of the pure gravitational anomaly. Again,
this solution is regular, since c =

3Q X
(iii) D =14 (k =4): One of the trace identities is given

by

495(A,~) of SO(12) satisfy the YM trace identities, al-
though these two solutions are neither adjoint nor regu-
lar. It is interesting to observe that both of these solu-
tions have the same dimension, 495, and require no YM
singlet spin- —, field for the cancellation of gravitational
anomalies.

IV. SOLUTIONS WITH TWO IRRKPS

Allowing the rep to have two irreps, we loosen the
constraints on the YM matter significantly. We are not
required to have an irrep with vanishing indices, since
the cancellation of an index can be achieved by the sum
of two or more nonvanishing indices, using chirality and
indices with negative values. In order to make things
manageable, we put some restrictions on the possible
reps used in the present search. We hope that in the fu-
ture, we can relax the assumptions. Qur assumptions
are as follows.

Assumption 1. The rep is of the form

A=@DAD(adjoint rep)+em A, (m copies of an irrep Ai),
where E0 and e denote the chirality of the reps. If A] is
complex, then we allow the possibility

A=eoA0+em A, +e'm'A*, .

For SO(2n), we allow two kinds of spinors.
Assumption 2. The YM group contains a SU(2)I weak

group.
Assumption 3. The irrep AI contains the weak isospin

components, I&L ——0, +—,
' only.

Using m copies of an irrep allows us to have the fami-
ly structure. For a complex rep, we have
Q~(Ai)=( —) Q~(A~ ). Thus, it sometimes happens that
only the sum (m +m ') is fixed by the anomaly-free con-
dition, as we will see later. The restriction on I3L for AI
imposes a not-too-drastic particle contents. All the pos-
sible reps satisfying Assumption 3 have been found in
Ref. 12. The results are

196&d (588 for D =14,
100&d &300 for D =18 .

(3.9)

The derivation of the lower bound for A4 is rather in-
volved and is not given here. Anyway, those groups
with rank 1ess than or equal to eight can be checked and
ruled out by the table of McKay and Patera. " For
SO(N) and Sp(N) with rank &9, only a few reps have di-
mensions within the range specified above: kI, X2, 2XI,
k3 and spinors. However, none of these gives A 4

——,9

or,~. Thus, we turn to SU(N). However, for an irrep
of SU(N) (N & 4), it is very difficult to satisfy Q4

——0 and
we have checked that no single-irrep solution exists
within the bounds of Eq. (3.9). For SU(2) and SU(3), we
have Q4 ——0 automatically and thus we must investigate
A4 case by case. After doing so, we were able to rule
out these groups.

For D =10, the uniqueness no longer holds. In addi-
tion to the 496 of SO(32) and the 248 of Es (both adjoint
and regular), we find the 495(k,z) of Sp(32) and the

SU(n +1)
SO(2n +1)
Sp(2n )

SO(2n )

Gp
F4
E6
E7
E8

A,, (1&j &n)
A. , or A,„(n &3)
A., (1&j &n)

, , or A,„(n &4)
A2 (7)
A~ (26)
I, , or k~ (27)
A, 6 (56)
None

where A J (j = 1,2, . . . , n ) denotes the fundamental
weight of a Lie algebra of rank n. An immediate simple
consequence of these three assumptions is that for
SU(n + 1) (n &2), Ai ——m (A,J +kJ*) must be used for
D =10, 14, and 18. This is because at these dimensions
we must have Qi(A)=0 in order to satisfy the trace
identities, while by direct computation Qq(AJ )&0 and
Q&(adjoint) =0.

Another interesting consequence is that if an excep-
tional group is found to have a solution, then a lower-
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Eg. 248 ~ E7.133+2 56+ 3 1

E6.78+ 3 27+ 3 27 + 8 1

F4.52+ 7 26+ 14 1

G2. 14+267+52 1

E7. 56 ~ E6.27+27 +2 1

F4.2 26+4 1

G, :67+14 1

133 ~ E6 78+ 27+ 27*+1

F4.52+ 3 26+ 3 1

G, :14+147+21 1

E6. 27 ~ F4.26+ 1

G2.3 7+6 1

78 ~ F4.52+ 26
G2. 14+8 7+ 8 1

G2.3 7+5 1

62.14+57+31
F4.-26

52

(a1+e7 )

(a2+e6 ~

(f~+g2)
(f~+g2)

(a, +f, )

(c3+g2 )

(a, +f4)
(c3+g2 )

(a2+g2)

(+2 +g2 l

(~] +g2)

TABLE VI. A branching rule for exceptional groups. The
parentheses indicate the Lie algebra.

G2. 14+26 7,
F4. 52+ 7 26,
E6.. 78+ 3 27+ 3 27*,
E7.. 133+256 .

(4. 1)

We can show that these are unique. For D = 18, we
must satisfy Q3 ——Q4

——Q, = Q6 ——Q &o
——0. Thus, em

=26, 7, 6, 2 for G2,F4,E6,E7, respectively, since Q6(A, )

=1 and Q6(Ao) = —26, —7, —6, —2 for G2,F4,E6,E7, re-
spectively. For E6, the combination 327+327* is fixed
uniquely by the condition Q~ =0 while maintaining

Q6 ——0. Note also Q&o(56)= —2 for E, and Q,O=0 for
the remaining groups. Then, Q, o(A) =0 is automatically
satisfied by the solutions of Eq. (4.1). Hence, we have
shown the uniqueness of Eq. (4.1).

Z. D =14for exceptional groups

rank exceptional group also has a solution which satisfies
all the assumptions. The reason is that all the reps listed
above and adjoint reps of exceptional groups always
have a branching into an exceptional group as a sub-

group where they decompose into only an adjoint rep,
plus many copies of the reps listed above, and singlets.
See Table VI.

We examine the possibility of exceptional groups in
Sec. IVA which are divided into cases with different di-
mensions. Then we discuss classical groups in Sec. IV B
which are divided into many subsections, dealing with
different dimensions and different classical groups. Note
that hereafter we denote F~(Ao) =F1, FJ(A, )=F~, and

yz Dz ( Ao) /Dz ——( A
~ ) for convenience. ( —11,—46)

F4

—17

E7

—10

For D =14, we must have Q3 ——Q4
——Q8

——0. The first
two equations are automatically satisfied for exceptional
groups. We can immediately fix the product eorm for
F4, E6, and E7, since Q8(Ao)=17, 18, 10 for F4,E6,E7, re-
spectively. The signs of eo and e can be determined by
looking at the fourth-order trace identity: @F2
= ——„',(eF& ) and Eq. (2.25). Interestingly, only eo=+ 1

has integer solutions for all the groups and the results
are

A. Exceptional groups

For all exceptional groups, trace identities are
simplified considerably as in Eqs. (2.25) —(2.30), due to
the absence of a genuine fourth-order Casimir invariant.
We discuss each dimension separately. eF, = —,', (eF, )(eF,—)+„„'„,(eF, )', (4.2)

Now, the G2 case has still two possibilities but we
confirm solutions for F4, E6, and E7, now satisfying
Qs=0 also. The final check is done by the eighth-order
trace identity:

1. D = 18for exceptional groups

For D =18, we know that an adjoint rep 248 of E8 is
the solution. Thus, using the argument above as well as
Table VI, we know immediately that the following are
also solutions:

where we now have eF& ——FJ(AO) —mF1(A, ). Using Eqs.
(2.28) —(2.30), we obtain two equations for m, corre-
sponding to the one for F&F3 and the other for Fj . All
the coefficients are given in Table VII.

The resulting two equations for each exceptional
group are

TABLE VII. Values of the coe%cients in the trace identities for exceptional groups.

F4

E7

y2 y6

—26
1

12

1

12
I

24

5
32
5

108
1

32
1

54

5
72
5

576
79

8856
181

78 912

35
1152

5
1728

7
5248

7
14 796

35
1728
25

25 056
2047

1 912 896
37 919

263 250 432

1435
221 184

425
2 029 536

67
1 007 616

4739
333 176 328

Cg

2
3

7
24
26
81
31
174

C',

20
39
5

24
4

27
8

87
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Gz. (m —46)(m + 39m + 1746m + 178 772) =0,
(m —46)(m —44) =0,

E6. ( m —18 )( 135m + 270m + 17 820m +682 708 ) =0,
(m —18)(m ——", ) =0,

Ez.. (m —10)(8062m —16 124m +274 108m

(m —10)(m ——'„' ) =0 .

+4 366 395)=0,

It is amazing that there is just one integer solution for
each exceptional group:

G2. 14—46 7,
F4. 52 —17 26,
E6. 78 —m27 —m'27* (m +m'=18),
E7. 133—10 56 .

(4.4)

Only E6 has the arbitrariness in fixing m and m': Only
the sum, m +m', is fixed. This arbitrariness follows
from the fact that Q~(27) =( —PQ~(27') (p =2, 5, 6, 8,
9, 12) and the YM constraints here are only
Q3 Q4 —Q8 —0. The cases for G2 and F4 follow from
the E7 cases, using Table VI. Here, we have directly
reproduced the Schellekens solution for E7 which was
derived from the dimensional reduction of the D =18 E8
solution by compactifying four dimensions as K3. In our
approach, there is no special mystery attached to E7.
The subgroup approach from E7 produces one of the E6
solutions, 78 —927 —927*. For all the solutions in Eq.
(4.4), the spin connection can be embedded into the
gauge group, since c =1 (i.e., regular). It is enough to
check this for Ez. 12(133)=36, lz(56)=12, and
l2 ( U, SO( 14) ) =2.

3. D =10for exceptional groups

For D =10, we know that all the solutions at D =18
are solutions at this dimension also. In particular, since
we are limiting ourselves to a rep, consisting of an ad-
joint plus many copies of a lowest-dimensional irrep, we
find only these solutions for exceptional groups. The
only exception is that we can have 78+ m 27+ m '27*
(m +m'=6) for E6, since at D =10 Q, can be nonvan-
ishing, whereas at D =18, Q& must be vanishing in order
to satisfy the trace identities.

4. D =6 for exceptiona! groups

F4. (m —17)(58m +290m +8062m+322527)=0,

(m —17)(m ——", ) =0,
(4.3)

dimensional irrep, we have 2l z A 4
—1 =0 and

lz(21, A4 —1)=12 for all the groups G2,F4,E6,E7. This
can be seen from (12, lq, A4, A4)=(2, 8, —,', —,', ), (6, 18,
—,', , —„', ), (6, 24, —,', , —,', ), and (12,36, —,'„—,', ) for G2, Fz, E6,
and E7, respectively. Consequently, we must have
e'o ——+1 (the chirality of an adjoint is fixed). Further-
more, we can satisfy the trace condition for an arbitrary
Em: Given em, we get a' from Eq. (2.32). Then, Eq.
(2.34) is always satisfied and the solution is regular.
Consequently, the rep, consisting of an adjoint plus an
arbitrary number and chirality of a lowest-dimensional
irrep is a solution at D =6 for G2, F4, E6, and E7. This
includes em =0, which was discussed in Sec. III. Obvi-
ously, solutions which are converted from those at
D =14 and 18 are also included in this general statement
(except the Es case).

B. Classical groups

I D=6 for. SO(N) and Sp(N)

Because of the weak constraints at D =6, we look for
a regular solution, i.e. , a' is given by Eq. (2.32). Then,
we have, from Eqs. (2.33) and (2.34),

Em = —c(g4

~0[1,(21,A4 —1)—l,y4(2l, A, —1)]=12 .

(4.5)

(4.6)

Because of the nonvanishing y4, em is fixed. If E'p given
by the second equation were not +1, then we could not
have a regular solution. Remarkably, we have ep ——+1

TABLE VIII. Various coefticients for SO(2n), SO(2n +1),
and Sp(2n), where X4 ——X6 ——Y6 ——0 for a vector.

go
go
go

S
2
S
4

Q6

SO(2n)

2fl —2
2n —8
2fl —32
2n —4

2n —5

2n —4

SO(2n + 1)

2n —1

2fl —7
2n —31

—3

2n —4

2n —3

Sp(2n)

2n +2
2n +8
2fl + 32

Using the local isomorphism of algebras, 3
&
——B

&

=C), A3 —D3 B2 ——Cz, we limit ourselves to the follow-
ing cases: SU(n) (n &2), SO(2n) (n &4), SO(2n +1)
(n & 3 ), and Sp(2n ) (n & 2 ). Now, we have to deal with
Q4&0 for an irrep. For SO(2n) (n even), one must be
careful, since in general they have two independent nth-
order Casimir invariants and hence two nonzero indices:
Q„and Q„' for SO(2n). For a spinor, Q„' is nonvanishing
and Q„'(A,„)= —Q„'(A,„&), whereas for a vector and an
adjoint it is vanishing. The values of various coefticients
are given in Table VIII. Now, we discuss SO(N), Sp(N),
and SU(N).

For D =6, the situation completely changes because
of the weak constraints. We assume that a=a'(eF, )

and look for a regular solution (c =1) where the connec-
tion can be embedded into the YM field easily. That is,
we look for solutions to Eq. (2.34). Amazingly, with the
rep of the form: an adjoint plus em copies of a lowest-

X
X',
YO

X6
Y6

3

15
0

X2n —7

—15X2"—'
15X2n -"

3

15
0
3X2n —6

X2n —7

15 X2n —9

3
15
0
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for A~ ——vector of SO(N) or Sp(N) (N even) or A& ——spi-
nor of SO(N) (both N even and odd). Thus, if em is
found to be an integer, then that is a regular solution
with a' given by Eq. (2.32).

For A, =vector (i.e. , A, , ) of SO(N) or Sp(N), we have
em = —(N+8) [+ for Sp(N) and —for SO(N)]. Thus,
for an arbitrary N, the rep, consisting of an adjoint,
(¹8)(vectors), is a regular solution at D =6. Inciden-
tally, the value of a' and the number of shadow matter
fields are a'= ——,

' and I =245 —N(N —15)/2 for SO(N),
and a'= —,

' and I =245 N(N+—15)/2 for Sp(N). The
(absolute) fewest number of shadow matter fields is
achieved at SO(31) (adjoint —23 vectors) or Sp(16) (ad-
joint —24 vectors) with l = —3.

For A& ——Al (1 &j & n) of Sp(2n), we have

2
3
5

6
8

12

—3

TABLE IX. Solutions for Sp(2n) with 2n (200.

2(n + 1 —j)(2n + 1)!
j!(2n +2—j)! (4.7)

(n + 1 —j)(2n)!
n (j —1)!(2n +1—j)!

Q4(&i ) = . ,

'
. [2n + 3n +4—3j(2n +2 —j)],2(n + 1 —j)(2n —2)!

(4.8)

(4.9)

Q6(A. . )= '
[4n +40n +95n +170n+96 —15j(2n +2—j)(2n +5n+8)+30j (2n +2—j) ] .

(j —1)!(2n +1—j)!
(4.10)

Using em fixed by Eq. (4.5), we obtain

eml((21(2 14 —1)=@0
2(n —1)(n +4)(2n —1)

2n +1l +2
2(n + 1)(2n —9n —8)

2n +n +2

(4.1 1)

(4. 12)

which leads to 12@0=12 in Eq. (2.34). Note that Eq. (4.11) is independent of j. This means that as long as
em = —Q~/Q~4 is an integer, A=adjoint+emX, is a solution. Note that Q4 ——2(n +4) and QJ4 is given in Eq. (4.9).
As we know from the previous paragraph, j =1 is always a solution. Solutions with j&1 up to Sp(200) are very rare.
The results are listed in Table IX.

For A&
——spinor of SO(N), we calculate

em=.
2(n —4) for SO(2n) (n )5),

2n —5

211 —7
for SO(2n +1) .

2n —4

Only a few n have integer em's and the results are

SO(10): 45+m 16+m'16* (m +m'=2), a'= —
—,', , 1=322,

SO(12): 66+m 32+m'32* (m +m'=2), a'= —
—,', , l =375,

SO(16): 120+128 (or 128*), a'= —
—,'„, l =493,

SO(7): 21 —2 8, a'= —
—,', l =250,

SO(9): 36+16, a'= ——,', I =297 .
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2. D=6 for SU(N)

For the nonadjoint rep, we use A, =A) (1 &j &N —1), which is a totally antisymmetric irrep. The indices are calcu-
lated to be

(4.13)

N (N + 1)—6j (N j)—
(N —2)(N —3)

N(N +1)(N +15N —4) —30N(N+3)j (N j)+—120j (N —j)
(N —2 )(N —3 )(N 4)(N——5 )

(4.14)

(4.15)

N
d(ki )=J (binomial coefficient) . (4.16)

For an adjoint rep, we have

Q~=Q4=2N . (4.17)

=0 (for example, N =8 and j =2). We look for a regu-
lar solution, i.e., a solution to Eq. (4.6). Using Eqs.
(4.13)—(4.16), we obtain

First of all, we show that A&
——A,

&
does not work for

N)4: eF, =(Ep Q2+Em)F |' ——0, because Q (A. &)=1 and
Eq. (2.16). Meanwhile, ge 1 m I X'

——eoX4 +emX4( A. i )

=66p. Hence we have EF2 = 66p(Fi ) 0: (eF& ) . Thus,
F

&

' ——TrF (A,
&

) =0, which is impossible. Q.E.D. For
N &4, i.e., SU(3) and SU(2), Q4 ——0 automatically and
thus they must be discussed separately. However, it is
easy to show that the rep, an adjoint + arbitrary number
and chirality of 3 and 3" for SU(3) is a solution, because
SU(3) is a maximal subgroup of G2 and 7 of
Gz~3+3'+I of SU(3) and 14 of Gz~g+3+3* of
SU(3). Note that it does not matter what kind of com-
binations of 3 and 3* are used, since there exists no con-
straint on the third-order indices.

Now, we show that the rep, adjoint+ em A,j
(2 &j & N —2), is a regular solution as long as
em = —Q4/QJ4 ——y4 is an integer. Note we must ex-
clude the case where Q4 ——0, i.e., N(N+1) —6j(N —j)

TABLE X. Solutions for SU(Ã) with N (100.

2(N + 1)(N —2)(N —3)
N'+ 1

(independent of j), (4.18)

lo(2loA 0 —1)= 2N(N' —10N+1)
N +1

(4.19)

which reduce Eq. (4.6) to 12ep ——12. The Green-Schwarz
coefficient o. ' is given by

N(N+1) —6j(N —j)
6N (j —1)(N —1 —j)

from which we can tell again that we should exclude
j =1 and j =N —1. The condition that em = —y4 is an
integer has a small number of solutions up to SU(100).
The results are listed in Table X.

Note that only the sum of the numbers, k and A. *. , is
fixed. The case of j =3 and N =9 is guessed from the
Es solution at D =18 (a'= —,0): 248 of Es~adjoint

of SU(9).

4
6
7

9
10
12

16
24

6
9

12

13
18

8

16

14
—18
—10

—26

1

6
1

18
1

42
1

54
1

30
1

18
1

12
1

9

1

12
1

30
1

192
1

702
1

42

1

18
1

198

3. D =10for SO(N) and Sp(N)

For A&
——vector, we have the sixth-order constraint:

ep(N+32)+Em =0,
1 5e p = ~ [Ep( N +8 ) +'Em ][e p ( N +2 ) +em ]

(4.20)

(4.21)

0= [up(¹2)+em]t,i, eo —„4ioo [~o(¹2)+em] I,
(4.22)

where + [—] for Sp(N) [SO(N)]. The solution is

eo +1 and em = —(¹3——2) [+ for Sp(N) and —for
SO(N)]. Consequently, for an arbitrary N, the rep,
adjoint —(N+32) vectors [— for Sp(N) and + for
SO(N)], is a solution. This solution is regular for SO(N)
(c =( —,'0 )[2(N —2) —2(N —32)]/2= 1), while it is not for
Sp(N) (c =( —,

' )[(N+2) —(N +32)]/2= ——,'). It is easy
to see why it is a solution for SO(N) (N &32), since ad-
joint of SO(32)~adjoint+(32 —N) vectors of SO(N) for
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n +16
em = —eo (n~16),

n —16

which lead to

(4.23)

n + 8ep(n —16)=0
for both Eqs. (2.20) and (2.21). Hence, the only solution
is (eo ——+ l, n =8) 136(adjoint)+3 119(A,2) of Sp(16). Un-
fortunately, this is the subgroup solution of 496 of
SO(32), because an adjoint of SO(4n) goes into an ad-
joint+3) 2+3 singlets of Sp(2n). For j =3, we have

X~ =6(n —2), X6' ——30(n —5), F6 ——15,

which lead to no solution.
For A, =spinor of SO(2n ) (n )4), we have three equa-

tions. Amazingly, the case where ep ——+ 1 and em
= —2(n —16)/2" satisfies all three equations, while
the case where ep ———1 does not. Consequently, if em is
an integer for a particular n, then it is a solution. The
exceptions are n =4 and 6. This comes about because of
the nonvanishing Q4 for n =4 and Q6 for n =6. Thus,
for n =4 and 6, we use two kinds of spinors, A.„and

&, to cancel these nonvanishing indices. However,
for n =6, em =5 and thus it is impossible to do so.
Anyway, we have found solutions:

SO(8): 28+ 12 8+ 12 8',
SO(10): 45+m16+m'16* (m +m'= ll),
SO(16): 120+128 (or 128*) .

The SO(16) solution is easy to get, because of the general
result that D =18 solutions are D =10 solutions also
and the fact that SO(16) is a maximal subgroup of Es
and 248~120+128. The SO(10) solution cannot be ob-
tained from SO(16), since 120~45+ 6 10+ 15 1 and
128~4 16+4 16*. Both solutions are regular, since
c = [(2X5 —2)+ 11 X2I ']/30= 1 for SO(10) and
c =[(2X8—2)+2I ']/30=1 for SO(16). The number
of shadow matter fields is given by 1 = —274 for SO(10),
and —247 for SO(16).

For A
&

——spinor of SO(2n + I ) (n ) 3 ), we can show
that the case where Eo +1 and em = —(2——n —1)/2"
satisfies all three equations, while the case where ep ———1

does not. The only integer solution is em =25 for n =3.
Thus, the rep

2V (32. However, the solution is valid for X ) 32 also.
The number of shadow matter fields is given by
1 = —495 N—(N + 63) /2 [— for SO(N) and + for
Sp(N)]. Consequently, its absolute value is minimized at
N =31 and 32 for SO(N), while for Sp(N) it is always
greater than 495. The case for N =32 corresponds to
the Green-Schwarz solution with l =1.

For Ai ——A,J (2 &j & n) of Sp(2n), we must have
em = —epQ6/Q~q to be an integer. ExcePt for j = 1,
only a few integer solutions exist up to Sp(200): j=2
and n =8, 12, 14, 15, 17, 18,20, 24, 32,48, or j =3 and
n =30. Thus, we investigate only j =2 and 3 for an ar-
bitrary n. For j =2, we have

X4 ——X4 ——3, X6 ——X6 ——15,

4. D= 10for SU(N)

As we mentioned earlier, we must use the rep, consist-
ing of an adjoint+ m (k1 +Ai ), for dimensions higher
than 6 in order to have Q& ——0. At D =10, we have to
satisfy Eqs. (2.19)—(2.21). The first equation, EpQ 6

+2emQ~6 ——0, has only a few integer em solutions, ex-
cept j = 1 where em is always an integer. Up to
SU(100), only j =2 and 3 have integer solutions. Thus,
we discuss only j = 1, 2, and 3 for an arbitrary 2V.

First of all, we can show that j =1 cannot be used.
The reason is that Q~ = 1 and Q2 ——Q~ =Q6 =2N, while

X6 ——0 and X6 ——30(N +1)/(N +7). Hence, Eq. (2.20)
cannot be satisfied.

For j =2, N =16 is the only solution of Eq. (2.20).
However, this is the subgroup solution of SO(32): 496 of
SO(32)~255+120+120*+1 of SU(16). For j=3, no
solution exists for Eq. (2.20).

5. D=14 and 18for SO(N) and Sp(N)

First, we assume that A& ——vector. Then, the fourth-
order constraints are

eo(N+8)+em =0,
3~o=It. [eo(¹2)+em]

which leads to

(4.24)

(4.25)

IC = —,', Ep (eo ——+1) . (4.26)

Therefore, AI ——vector cannot be a solution at D =14
and 18, since K = ——„', ( —,

'
) for D =14 (D =18). For

A& ——spinor, the fourth-order constraint becomes, for
SO(2n ),

2(n —4)
+em =0,

2n —5
(4.27)

384(n —2) 2(n —1)
6p ~

=E 6p ~ +Gm
22n 2n —4 (4.28)

For D = 18, E must be —,', which yields n = 8

(eo ——+1,Em =+1), while for D =14, K = —„',
(Ep = —1 ), which yields no integer solutions for n. It is
easy to see why the n =8 case has the solution 248 of
Es~120(adjoint)+128(sPinor) of SO(16) where SO(16) is
a maximal subgroup of E8. Thus, this solution is not
particularly interesting.

For SO(2n +1), we have

2n —7
ep — + em =0,

2n —4 (4.29)

SO(7): 21+25 8

is a regular solution, since c =[(6—1)
+25X2' ']/30=1. The number of shadow matter
fields is given by 1 = —274. By the way, the SO(7) solu-
tion is not a subgroup solution of the SO(10) or SO(16)
either.
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48(2n —3) 2n —1
ep ——K eo +&m

22n 2n 3
(4.30)

6. D=14 and 18for SU(1V)

We must satisfy Eqs. (2.16) and (2.17) with E = ——„',
for D =14 and K = —,

' for D =18. Up to SU(100), only

j =1, 2, 3, and 4 have solutions for Eq. (2.16). Again,
we can show that j =1 for any N does not work. Using
the relation

3[j(N —j)—(N —I)]
(N —2)(N —3)

(4.31)

we find no solution, satisfying Eqs. (2.16) and (2.17) for
j =2, 3,4 for any N.

which does not have any integer solution for K = —,
' or

1

196 '

For A, = A,) (2 &j & n ) of Sp(2n ), we have looked for a
solution up to Sp(200) and none is found.

eighth-order identity. This can be shown, using the re-
sults given in Appendix C. Thus, the rep, consisting of
an adjoint, 25 vectors, spinor of SO(17) is a solution at
D =14.

For D =6, we again look for a regular solution. It
turns out that the fourth-order constraint is so weak that
only co=+1 and Q4=0. Thus, the rep of the form, an
adjoint+ em vectors+e'm' spinors with 0=(2n —7)
+em —2" e'm', is a solution.

Similarly, for SO(2n) we can repeat the above calcula-
tions as long as we are careful to cancel Q„' for n even.
The results are given in the Introduction.

VI. NONSUPERGRAVITY THEORY

If a theory does not contain a gravitino, then the total
anomaly at D =4k —2 is related to the 4k-form given by

r k —1
( )k —m

I„= geng —1 3k+ g A eFk . (6.1)

We require this to factorize as

U. SOLUTIONS WITH THREE IRREPS (R &+a)(rk, +rk z+ +ri +ro), (6.2)

Here, we consider only SO(N) with A =adjoint
+vectors + spinors. Unfortunately, because Q4&0, we
cannot use the results for eighth- and tenth-order trace
identities given in Appendix B. However, we can use
the fourth- or sixth-order identities to look for solutions
and then, using results given in Appendix C, we explicit-
ly verify that the higher-order identities are satisfied. In
the future, we may be able to develop higher-order trace
identities for those groups with Q«0 and directly show
the results presented here.

The coe%cients needed for the calculations are listed
in Table VIII. Because SO(2n) is a maximal subgroup of
SO(2n +1), we hereafter discuss SO(2n +1) in detail.
For SO(2n), one must watch out for the existence of two
independent indices of a nth order in the case of n even.

For D = 10 and 18, we have to satisfy the sixth-order
identity, which turns out to be a weak condition for our
choice of A&. co=+1 and Q6 ——0. Thus, the rep consist-
ing of an adjoint +em vectors +e'm' spinors is a solu-
tion at D = 10, provided that em +2" e'm ' =31—2n
for SO(2n +1). We can show that this solution is regu-
lar.

For D =18, we have to satisfy two more constraints:
fourth and tenth. Fortunately, the fourth-order trace
identity fixes the number of spinors and vectors for
E'p =+1. The sign of ep is Axed to be + 1 by the sixth-
order identity:

em =15—2n, me'=2 " for SO(2n +1) at D =18 .

However, this solution is not interesting in the sense that
this is obtainable from the E8 solution 248 of
E~~ 120+ 128 of SO(16)~105+15+128 of SO(15).

For D =14, the fourth-order identity completely fixes
the number of spinors and vectors:

where r is the term containing m curvature two-forms.
Thus, we must have

R, rk, —— pen g —1 Ak, (6.3)

R irk 2+ark i
————,'eF, Ak

( )k —1

R, ro+ar, = eFk, A» (6.4)

( )k

(2k )!

whose solution is

(6.5)

geng —1 =0,
eF& ——eF2 —— . ——eFk 2

——0,
k (2k —1)

eFk ——— a(eFk &) .
24

(6.6)

(6.7)

(6.8)

Note that n is not fixed and thus one can choose any
value for it as long as it contains a trace of square of a
gauge field two-form F. The situation is similar to the
D =6 case with a N =1 supergravity. Because of the
constraints, Eq. (6.7), the higher the dimension, the more
difFicult it is to find a solution. A simple consequence of
Eqs. (6.6) —(6.8) is that for k )3 (i e , D )10) t.h.ere exists
no solution with a single irrep of a simple group, since F,
is positive definite for a sing. e irrep of a simple group.
However, for D =10 we can And a solution with two ir-
reps as follows.

For D =10, the YM constraints are

eF, =0, eF3 = —', a(eF2 ), —

em = —(2n +9), e'm'= —2 ", co=+1 .

We have to check that this solution actually satisfies the

which are equivalent to

+elm, Q( =0, (6.9)
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ge, m, g~g ——0, (6.10) A. Chiral four-dimensional theory

ge, m, XJ6F, ( )= ——5a ge, m, g~4

ge m Y~+, ( )= ——,'a ge m X~4

(6.11)

(6.12)

Eliminating a from the last two equations, we obtain

sejm~ Y~~ sejm, g~4

ge~m~XJ6 +edam, X~4 (6.13)

The rep

A=m spinors —m2(' " l vectors of SO(X) (6.14)

VII. FURTHER CONSTRAINTS
ON ANOMALY-FREE THEORIES

Having found many anomaly-free solutions, we inves-

tigate ways of further restricting them. In Sec. VII A we
discuss the constraint that anomaly-free solutions yield a
chiral four-dimensional theory. We generalize the argu-
ment by Candelas, Horowitz, Strominger, and Witten. '

In Sec. VII B, we discuss the constraint for the absence
of global anomalies.

with a= F&( —) is a solution where m is an arbitrary
positive or negative integer. Note that for even N, any
combinations of two kinds of spinors are acceptable, ex-
cept for N =8 and 12 where the numbers of the two
different kinds of spinors have to be equal. The reason
why this rep is a solution is as follows: for spinors of
SO(N), it happens that Q2 ——Q6 so that no conAict arises
between Eqs. (6.9) an (6.10). Furthermore, for a vector
of SO(Ã), X4=X6= Y6=0. In addition, Eq. (6.13) is
trivially satisfied for any X. This can be verified directly
from results given in Appendix C. For SO(8), we do not
need any singlets:

A=m [8(spinor)+8'(spinor')] —2m 8(vector) (6.15)

for any positive or negative n. A more complicated
solution is derived from the heterotic string theory by
Alvarez-Gaume, Ginsparg, Moore, and Vafa and by
Dixon and Harvey.

We assume that a compactified space has no
isometrics. The justification for this assumption is that
the survival of supersymmetry at four dimension re-
quires that the compact space be Ricci flat. ' The
isometrics of a Ricci-fiat space are at most U(1)'s (Ref.
14). It is not necessary to investigate the anomaly-free
condition at four dimension, since there exists a general
proof that the anomaly-free theory remains anomaly-free
at lower dimensions, provided that the compact space
has no isometrics. ' This is another reason for requiring
no isometrics for the compact space.

We have a gauge group G at D =4k —2. Upon
compactification, this group is broken into Go)&G . The
reason is as follows: We must have

f dH= f (TrR +a'TrF )=0,
K K

(7.1)

where K denotes the compact space and H is the field
strength of the 8 field which appears in the X =1 super-
gravity theory. Because 8 acquires a vacuum expecta-
tion value (VEV) on IC, Ro, we must give F the VEV on
K, Fo. The group Go is the broken part of G. The un-
broken part of G is G', which is the gauge symmetry at
four dimensions when no isometry exists for the compact
space. We assume that both Go and 6' are simple
groups. The original rep A of G decomposes into the
sum of irreps of (Go, G' ): A ~g,. (A, , A,' ).

In order to have a chiral theory at four dimension,
two conditions for fermions of the rep A,' must be
satisfied: (1) n&&2(A,')&0; (2) if fermions of the complex
conjugate rep A,'" exist, then n» 2(AI )&n, &2 (AI" ),
where n, &2(A,')=n, &2(A,')=n &zq(A,'). The first condi-
tion is obvious, while the second condition comes about,
because at four dimension a right-handed spinor with
the rep A,' is the same as a left-handed spinor with the
rep A,'*. [If our space-time were (4q —2) dimension,
then the second condition would not be needed. ] The
second condition requires that G' must haUe complex
reps.

In order to investigate the first condition, we use the
fact that the number of chiral spin- —,

' zero modes of the

rep A,' at four dimensions is given by the index on the
compact space for the rep A; (Ref. 13). Omitting the
subscript i for simplicity, we have

m —j

zn( 2A)=c f A(RO)Ch(FO)=c f g Ai(Ro)
K K . l=o

~ 2( m —I ) —1~ r. 2( m —i') —1

)2(m —I) —1

=cf
~ 2m —l~ r. 2m —] ~ 2m —3~ r. 2m —3TrFo

(2 )2m —1
+ A, (RO)

(2 )2m —3

I. TrFO
+ ' ' ' +A —i(Ro)

2n
(7.2)

where the dimension of the compact space is
D ' =4m —2, since the space-time at D =4k —2 is
compactified into D =4+(4m —2) with m =k —1. The
coefficient c depends on whether or not the original
chiral fermions are Majorana. Consequently, in order to
have n ~&2(A')~0, we must have that at least one of the

traces of odd powers of Fo is nonvanishing That is, for.
theories at a suitably high dimension, Go must be one of
the groups which have complex reps. If the rep is real
or pseudoreal, then we have Fo= SF@' ' for some—
matrix S, which leads to TrFO =0. One gets stronger
constraints in lower dimensions. For theories at D =6,
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the index for a compact two-dimensional space is in pro-
portion only to TrFo. Thus, Go cannot be a simple
group and must be U(1). For theories at D =10, the in-
dex for a compact six-dimensional space is in proportion
to only TrFO if Go is a simple group. Hence, Go must
be SU(N) (N &3) [which includes SO(6), because of the
local isomorphism of SU(4) and SO(6)].

Hence, the first condition for a chiral four-dimensional
theory at a suitably high dimension requires that both
6' and Go must be one of the following groups which
have complex reps: SU(N) (N & 3), SO(4n —2) (n & 3), or
E6. Because both A' and A are complex, the second
condition for a chiral theory at four dimensions is au-
tomatically satisfied: Using Eq. (7.2), we have

"irz(A )=index'. (A )= —index'. (A *)= n)g—2(
A" ),

since Fo(A ")= SFO(A )'—S ' for some matrix S.
Consequently, we have shown that as long as the orig-

inal rep A of 6 is decomposed into complex reps of both
6' and Go, we will get a chiral four-dimensional theory.

SO( 4p )~SO(4q —2 ) X SO(4(p —q ) +2 )

(p &3,q &2p —q &1),
F,~SU(3) X SU(3),

E7~SU(3) X SU(6),

Es~SU(3}XE6 or SU(5) XSU(5) .

(7.3)

Note that having just an adjoint rep or vector reps for
SO(4p) does not yield complex reps at the broken level.
One must have a spinor rep (or, in general, a tensor-
spinor rep) for SO(4p). On the other hand, adjoint reps
for F4, E7, and E8 have complex reps at the broken level:

Now, we look for a simple group G that satisfies the re-
quirements. Since the smallest rank which gives com-
plex reps is two, the rank of G must be greater than or
equal to four. If we assume that Go &&G' is the maximal
subgroup of G and assume that both G' and Go are sim-
ple groups, then the original simple group G must be one
of the following:

52 of F4~(6, 3')+(6*,3)+(1,8)+(8, 1) of (SU(3),SU(3)),

133 of E7~(3",15)+(3,15*)+(1,35)+(8,1) of (SU(3), SU(6)),

248 of Es~(3,27)+(3",27')+(1,78)+(8, 1) of (SU(3),E6)

(5, 10')+(5",10)+(10',5)+(10,5*)+(24,1)+(1,24) of (SU(5), SU(5)) .

Note that although in the decomposition the same num-
ber of complex reps and complex-conjugate reps appear,
the net chirality at four dimensions can be nonvanishing,
because of the presence of the VEV of R o and Fo.

We have found that although many anomaly-free
theories exist at various 4k —2 dimensions, only a small
subset of these theories have the possibility of providing
a chiral four-dimensional theory, provided that both 6'
and Go are simple groups (not semisimple) and G'XGO
is the maximal subgroup of G.

If we relax the condition on 6' and Go, then the pos-
sibilities explode: If G or Go is semisimple, then E6 is
also valid: E6~SU(3)XSU(3)XSU(3). If a nonmaxi-
mal subgroup is allowed, then a11 the groups with suit-
ably high ranks are valid. For example, Sp(2n)(rank
n )~SU( n )(rank n —1 )~SU(p ) X SU( n —p )(total rank
n —2}. We do not know at this point what is the physi-
cal reason for requiring maximal subgroups.

B. Safe groups for the absence
of global gauge anomalies

So far, we have considered the absence of local
anomalies. In this subsection, we discuss the constraints
for the absence of global gauge anomalies. Because we
are concerned with gauge configurations which approach
constant at infinity, we discuss Euclidian theories formu-
lated on a D-dimensional sphere. G-lobal gauge transfor-
mation is defined as gauge transformations which cannot

II (DS (On) }= IIDS{pi (nn)) =0 for n &D+2,

IID(SU(n)}=IID(U(n)}=0 for n &
D+1

2

D —1IID(Sp(2n)}=0 for n &
4

(7.4)

Therefore, classical groups with suitably high ranks are
always safe. Interestingly, those groups with smaller

be reached continuously from the identity. Therefore,
the possible presence of global anomalies is signaled by
the nontrivial homotopy group IID(G) where G is the
gauge group. Thus, we term those groups which have
trivial homotopy groups, i.e. , IID(G) =0, as safe groups.
(However, the absence of the homotopy group does not
guarantee the absence of global gauge anomalies for any
manifold, as discussed by Witten. '

) Note that both
SO(32) and Es at D =10 are safe groups. By using safe
groups for physical theories, we can limit the choices for
possible groups. Here, we list safe groups for each
D =4k —2 space. Note that the compact connected Lie
group G are only the following: SO(n) (n &2), Spin(n)
(n & 3), U(n) (n & 1), SU(n) (n & 2), Sp(2n) (n & 1), Gz, F4,
E6, E7, and Es.

For classical groups, Bott's periodicity theorem makes
it easier to draw conclusions on homotopy groups for
suitably high-rank classical groups. For theories at
D =4k —2, Bott's periodicity theorem states that'
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ranks than those specified above usually have non-
vanishing homotopy groups, except SO(n) with n =5, 6, 7
at D =6 (Ref. 18). The list for each dimension is

k —1

Ik ——np Ak+ g A pGk
m=0

( —)" geFk
[2(k —m))!

Dimension Safe groups np
——genG+p(4k —3)—l .

(8.1)

10

18

SO(n), Spin(n)
SU(n), U(n) (n

Sp(2n) (n & 2)
SO(n), Spin(n)
SU(n), U(n) (n

Sp(2n) (n & 3)
SO(n), Spin(n)
SU(n), U(n) (n

Sp(2n) (n &4)
SO(n), Spin(n)
SU(n), U(n) (n

Sp(2n) (n & 5)

(n & 7)
&4)

(n &12)
&6)

(n &16)
&8)

(n &20)
& 10)

For exceptional groups, we have to investigate homo-
topy groups dimension by dimension. The result is'

Dimension

6
10
14
18

Safe groups

F4,E6,E7,Eq
Q2 F4&E6 E
E6,E7,E~
None

Consequently, E& group at D =18 may have the global
anomaly and thus needs a careful analysis.

VIII. THEORIES %'ITH MORE THAN
ONE GRAVITINO

Using the same fermionic content as before, the 4k-
form for theories with p gravitinos is given by

Thus, the dominant pure gravitational anomaly cancella-
tion occurs when

np+( —) p =0.4k

k
(8.2)

[2(k —m)]! p

which is the same as Eq. (2.1) with Eq. (2.2) except the
fact that F is replaced by F /p. Therefore, the YM
trace constraints for p gravitinos are obtained by just re-
placing F with F /p. Solutions for the YM constraints
are difficult to find, except those trivial solutions which
are just p copies of one-gravitino solutions.

Nontrivial multigravitino solutions exist if we expand
the fermionic content, by adding tensor spinors, which
have both tensor indices and spinor indices, or multispi-
nors, which are products of spinors. The well-known

Because n~ has to be an integer, one can find a smallest
possible p for each k. The result is given in Table XI for
k up to 15. For k &16, p ~2.35&10, which can be ob-
tained from the inequality given in Sec. II. Therefore, as
long as we limit ourselves to theories with the number of
gravitinos less than 691, we do not have to consider
theories at D =22 or D & 26 among theories at
D =4k —2. For those theories at D =2, 6, 10, 14, 18,
and 26, the 4k-form becomes

Ik
( )k+J 4k

P Bk

TABLE XI. The smallest number of gravitinos for D =4k —2.

B 4k
B

Smallest p

10

18

26

30

34

38

42

54

10

12

13

14

15

1

6
1

30
I

42
1

30
5

66
691

2730
7
6

3617
510

43 867
798

174 611
330

854 513
138

236 364 091
2730

8 553 103
6

23 749 461 029
870

8 615 841 276 005
14 322

24

240

504

480

264
65 520

691

24
16 320
3617

28 728
43 867
13 200

174 611
552

77 683
131 040

236 364 091
24

657 931
6960

3 392 780 147
171 864

1 723 168 255 201

691

3 617

43 867

174 611

77 683

236 364 091

657 931

3 392 780 147

1 723 168 255 201
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type-IIB theory contains a self-dual totally antisym-
metric tensor, which is equivalent to the symmetric
product of two spinors of the same chirality in the
anomaly counting. Thierry-Mieg, Schellekens, and
Schellekens and Warner have found solutions which
have additional matter fields mentioned above.

Note added. After completing our paper, we have no-
ticed two papers on the search of anomaly-free field
theories: A. N. Schellekens and N. P. Warner, Phys.
Lett. B 181, 339 (1986); Nucl. Phys. B287, 317 (1987).
They used the modular invariance for the search and
found an infinite class of anomaly cancellable theories,
most of which seem to contain different matter fields
from those we have used in our paper. Unfortunately,
our unfamiliarity of their method makes it difficult for
us to directly compare our results with theirs.
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these generating functions are of the form

K(z)= QKJz'=exp g CkRkz"
j=0 k =1

(A4)
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n=O ' m=1

the coefficient of R, R, R, " in Kk (k =pa bbi b2 b,

and 1(ai &a2 « . a„&k) is given by

and the summation inside the large parentheses starts
from k =1 (not k =0). We show later that this should
be the case. This form makes the calculation of the
coefficients of these polynomials easier, because of the
following proposition which can be proved easily.

Proposition 1. For a formal series

QKJz~=exp g CkRkz"
k=1
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r H(n)
H(1) +

where

(C, )", (A5)

APPENDIX A: GENERATING FUNCTIONS FOR
ANOMALIES

I'

H(n)= g b

In this appendix the generating function for the Dirac
genus is shown to be given in terms of Bernoulli num-
bers. Actually, we develop general formulas for the gen-
erating functions of so-called multiplicative sequences.
Hereafter we use the notation that, if no upper limit is
indicated over the summation symbol, then the sum goes
to infinity.

Note that the Pontryagin genus P, the Dirac genus 3,
and the Hirzebruch genus L satisfy the two constraints:
(1) K (0)= 1; (2) K (M XN) =K (M) K(N) for the Carte-
sian product M)&N, where K stands for P, 3, or L and
the parentheses denote the space they act on. Therefore,
one can expect that generating functions for these poly-
nomials K of TrR

The parentheses after Q denote the binomial coefficient.
In particular, the coefficient of Rk (~ TrR ") in Kk is
given by Ck. The coefficients of (Ri) in Kk are given
by (Ci )"/(k!).

Consequently, the calculation of the coefficients in Ek
is reduced to getting the partition of the number k into
Ia, b ], which satisfy the constraints indicated in the
proposition. For example, let us derive K3. Because the
partitions of 3 are 3, 2+ 1, 1+ 1+ 1, we have terms in
K 3 such as R 3,R 2 R

1
R

1
~ Using Proposition 1, we ob-

tain

K3 —C3R 3 +C2C]R 2R 1 +—C1 R 13t

TrR 2~

K(z)= QKJ(R i, . . . , RJ )zj R& ——

J =p (2~) '

should be of the form exp( ). In fact, the results are

RkP(z)= gp~z'=exp —g z
j=0 k =1

(A 1)

In order to get p 3, 3 3,L 3, we take Ck ———1/2k,
Bk /[4k(2k)!], —2 "(2 " ' —1)B„/[2k (2k)!], respective-
ly. The results are in complete agreement with Alvarez-
Gaume and Ginsparg. ' Note that for 3k they factor-
ized (4~) " out, instead of (2m. ) ". An easy way of get-
ting the partitions is to use a Young tableaux of k
boxes. The generating function for the number of
ways of partitioning a number k, p (k), is given by

BkR
A(z)= g Ajzj=exp g z"

, 4k(2k)!
(A2)

k=0 n =1
g p(k)x"= g (I —x") ' (Euler) . (A6)

L(z)= gL z'
j=0

=exp
k=1

22k( 22k —i

zk
2k (2k)!

(A3)

where the exponential is defined by the usual expansion
and Rk ——TrR "/(2m ) ". The sequence [Bk I are Ber-
noulli numbers, ' e.g. , B1 ———,', Bz ———,0, B3——4', , B4 ——3o,

gp, z'= g p' z
j=0 m=0

g p„"z"
n=0

(A7)

Now, we derive the results, Eqs. (Al) —(A3). In order
to be as self-contained as much as possible, we review
the terminology and some facts used to derive the main
result, following Hirzebruch. ' The sequence [K~ ] is
called an m sequence (or multiplicative sequence) if
every identity of the form
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j=0 m=0

X g K„(p", , . . . , p„")z"
n=0

implies an identity

QK,.(p, , . . . , p, )z'= g K (pl, . . . ,p' )z

, (AS)

important to express these polynomials in terms of Pon-
tryagin classes. However, a great simplification occurs
when we express pk in terms of traces of a curvature
two-forms. The situation is similar for the case of the
Chem character Ch(F) expressed by traces or Chem
classes [ c~ I:

K gp~z' = g K, (p, , . . . ,p))zj,
, j=O j=O

(A9)

we introduce the characteristic power series Q (z) of the
m sequence IK, I by

where the summation goes to infinity and
Po ——Po ——Po' ——Ko ——1. For our PurPose, Pj is the Pon-
tryagin class and Kj is the polynomial of pj for a real
manifold. Using the abbreviated notation

Ch(F) =Tr exp
iF
2'

=dim(r)+ TrF+ TrF +l l

2~ 2(2Ir )

c1 —2c2 c1 —3c1c2+3e32 3

=dlIII(r)+cl + +
2 3t

Q(z)=K(l+z)= gb, zj,
j=0

(A 10) + 0 ~ ~ (A16)

Q(z) = I/z /2
for 3

sinh(I/z /2)
V'z

for L. .
tanhI/z

(A 1 1)

The following is the key lemma for our formulas due
to Hirzebruch. '

Lemma. The m sequence IKJ ) is completely deter-
mined by its characteristic power series Q (z) as

QK, (p, , . . . ,p, )z~+ g K, (p, , . . . ,p, 0, 0, . . . , 0)z'
j=0 j=m+1

where bo ——1 and b, =K, (1,0, 0, . . . , 0). In our case the

Q (z) are given as

Q(z)=l+z for P,

TrR 2k
( )k2(2~)2k'(x 2)k (A17)

where the summation is over j. Meanwhile, the Pon-
tryagin classes pj are given by elementary symmetric po-
lynomials of xj ..

2 2 2
p l

=gx~, p2 = g x; x~.

J 1 &J

2 2 2
p3 = ~ Xi Xj Xk

i &j&k

(A18)

In order to derive the formulas, we find the expression
for pk in terms of TrR where R is the curvature two-
form. Define the xj's as two-form skew eigenvalues of
the curvature two-form R,k /(2vr), since R,k = Rk, . —
Then we have

m

= gQ(P, '),
j=1

where P~ are defined as the factorization

gp, z'= g (1+/3, z) .
j=0

(A12)

(A13)

which can be generated by

P( )= gp "=Q(1+,' ) .
k=1

Using the formal Taylor expansion
2n

ln(1+x, z)= g ( —)" ' ' z",
n =1

(A19)

(A20)

The proof is easy, using Eqs. (A9) and (A10). Any poly-
nomial Kj with j (m is determined as a symmetric poly-
nomial in the P; and hence as a polynomial in the p;. By
introducing a formal factorization for Q (z) as

we obtain

InP(z)=ln+(1+x 2z)
j =1

g b, z~= Q (1+P,'z )
j=0

(A14) 2n

j=l n =1
we can write the m sequence formally as

g K (p„. . . , p )z = g g pkP,' z, (A15) n =1

)n —1

X 2n z
j =1

(A21)

m=0 j=1 k =0
Using Eq. (A17), we therefore have

where we used Eq. (A13). Since the P~ are expressed in
terms of the b/, Kk is completely fixed. Atiyah and Hir-
zebruch proved that for A and I. polynomials, Kk can
be written as a polynomial of Pontryagin classes with
coprime integer coefficients divided by +q( "~'~ ") (a

product over all primes q with 3 & q & 2k + 1) (times 2 to
some power for A) (Ref. 21). For mathematicians, it is

k R„
P(z) = g pkz =exp —g z"

k=0 n =1 2n
(A22)

where R„=TrR "/(2m. ) ". Note that the series in the
parentheses starts from n = 1, not n =0. This fact
makes our formulas useful. The inverse problem to ex-
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press Rk in terms of p~'s has the solution ca11ed the War-
ing formula. Another way is to use Newton's formula:

d z
dz Q (z)

&z /2 +
tanh(Vz /2)

k —1

Pk k g rnPk —I
m =1

(A23)

2(2k)!
By this formula, one obtains pk (Rk) in terms of R~ (p, ),
sequentially from k =1. Since P(z)=gpkz", Eq. (A15)
can be rewritten as

where we used the definition of Bernoulli numbers given
by

g K,z'= Q P(I3,'z)
j=0

x/2
tanh(x /2)

X X ( )k —lg

2 k, (2k)!
x'"

Rk
=exp ——,

' g gP,' z
k=1 j=1

SkRk k=exp Z"
k =1

This is the reason why Bernoulli numbers appear. Thus,
we have

Bk
Sk= — (k ) 1), So=1

2(2k)!

where Sk ——gpj and Rk TrR "——/(2~) ". Note again
that the series in the parentheses starts from k = 1, not
k =0. The sequence IS, I can be derived by Q(z) as

or

Bk

4k (2k)!
k&1

(A27)

d z

dz g (z) j=0
yS z (A24)

d z
dz Q (z)

d= 1 —z lng(z)
dz

1+P,'z

)ky(P )k k y( )kS k

This is called Cauchy's formula. ' This can be proven as
follows: Using Q(z) = g(1+Pjz), we obtain

The explicit coefficients Ck for the Dirac genus are given
by

C1 ' ——2X3, C2 ' ——2X3 X5,
C3 ' ——2 X3 X5X7, C4 ' ——2' X3 X5 X7,
C&

' ——2"X3 X5 X7X11,
C, '=(691) '2"X3'x5'x7'x ll x13,
C7 . 2 X3 X5 X7 X 11 X

C, '=(3617) '2" X3'X5'X7'X11X13X17 .

These wi11 allow us to calculate anomaly coefficients up
to D =30.

For the L polynomial, we obtain

k SkRk kQKkz =exp —g z
2k

(A25)

Consequently, we have proven our main result.
Proposition 2. Using the Sk defined above, any m se-

quence can be expressed formally as
S

22k(22k —1 1 )g

(2k )!

SkSo=1, Ck= — (k) 1)
2k

since Q (z ) =&z /tanh &z leads to

(A28)

where R2k ——TrR /(2vr) ".
For the Pontryagin polynomial, we take Q(z) =1+z.

Thus, we obtain

Q(z)
d z 1 2v'z

+1
dz Q (z) 2 sinh(2&z )

The reason why we get this form for Sk becomes clear
when we notice that

d z
dz Q (z)

=1+ g ( —)"z
k =1

2x 2x
sinh(2x )

4x
e —1

4x

which leads to

1
Sk =1 or Ck = — (k ) 1),

2k
(A26)

Delbourgo and Matsuki do not appear to have noticed
this relation.

APPENDIX B: EVEN-ORDER TRACE IDENTITIES
where Ck is defined in Eq. (A4). Therefore, we obtain
Eq. (Al).

For the Dirac genus A, we take Q (z) =&z
/[2 sinh(&z /2)]. Thus, we have

Here, we give formulas for even-order trace identities.
For the fourth- and sixth-order results, see Ref. 9 for
derivation. For the eighth- and tenth-order results, this
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paper is the first place they appear, but we refer to the
future paper for derivation. We use the following nota-
tions: a is the dimension of an adjoint rep Ao, d the di-
mension of an irrep A, yo=a/d, y~ =D~(Ao)/D~(A)
=Q (Ao)/Q (A), D =trace of the pth-order Casimir in-
variant for A, f =quantity independent of an irrep, and
X=generic representation matrix of A. Note that the
index Q is the normalized D (Ref. 9).

First, we list the order p for which Dz is in general
non vanishing:

3
A 4 = (yo —

—,'y~) .
a +2

Sixth order: For those groups with D3=0, then we
have

TrX =f6D6+B6TrX [TrX —A4(TrX ) ]

where

15
86 ——

a+8 (yo--'»+ —'y4),

Simple group

SU(N)
SO(2n + 1)
Sp(2n)
SO(2n )

G2
F4
E6
E7
Es

Order p

2,3,4, . . . , N
2,4,6, . . . , 2n
2,4,6, . . . , 2n
2,4,6, . . . , (2n —2), and n

2,6
2,6,8, 12
2,5,6,8,9, 12
2,6,8, 10,12,14,18
2,8, 12,14,18,20,24,30

where

+ A8(TrX ) (83)

C8 =
12

(yo —
—,y2 ——y6)

6=( +2)( +4) yo' 2yoy2 i'2y2'

Eighth order: For those groups with D3 ——D4 ——0, we
have

TrX =f8D8+CSTrX [TrX —A6(TrX ) ]

TrX =f4D4+ A 4(TrX )

where

(81)

Now, we give general formulas for trace identities as fol-
lows.

Fourth order: We have

(a +2)(a +4)(a +6)
35 2 1 1+ y2 ( yo y2).(a+2) (a+6)

Tenth order: For those groups with D3 —D4 —D5 —0,
the tenth-order trace identity is given by

TrX' =f&oD,o+E&oTrX [TrX —CSTrX [TrX —A6(TrX ) ]—As(TrX ) J

+C~o[TrX —A6(TrX ) ](TrX ) + A ~o(TrX2) (84)

where

5E]o=
(a +16) (9yo —6y2+ oy8)

5

2(a +2)(a +12)(a +14)

X [42(a +2)(6yo —7yz )yo+ —", (9a +28)y, '

+ [(9a +28)y, —12(a +7)y, ]y6 ],
35Aio-

(a +2) (a +4)(a +6)(a +8)

X [9(a +2)yo (3yo —5y~ )+ (3a +8)yo y2

For D3 ——D6 ——0,

TrX = 21 TrX4TrX2
2(a +8)

(TrX )2(a +4)(a +8)
For D3 ——D4 ——D8 ——0,

TrX = TrX TrX
40

3 a+12
175(1la +12)

24(a +2) (a +6)(a +12)
For D3 ——D4 ——D5 ——D6 ——D&o ——0,

Trx"= 33
2(a +16)

(86)

(87)

+ —,', (7a+24)y, '(y, —6y, )] .

For an adjoint rep, trace identities become a function
of only the dimension of the adjoint rep

For D4 ——0,

385(9a +8) (TrX ) . (88)
8(a +2) (a +4)(a +8)(a +16)

APPENDIX C: SO(N) TRACK IDENTITIES

Trx'= 5 (TrX )
2(a +2) (85) Here, we express the traces of adjoint and spinor ir-

reps in terms of traces of a vector irrep. We use the ab-
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breviation that X] =TrX " (j =0 for an adjoint rep and s
for a spinor rep) and xk ——TrX " (for a vector rep).

For an adjoint rep, we calculate for SO(N) (upper sign)
and Sp(N) (lower sign):

Xi ——(N+2)xt t

Xz ——(N + 8)xz+ 3x
&

X3 =(N+ 32)x3+15x &x2,

Xg (N +——128)x~+28x )x3+35x2

X5 =(N+ 512)x&+45x &x&+210xzx, ,

For a spinor of SO(N) (N =2n +1) or a sum of two spi-
nors, X„and A,„,, of SO(N —1) (N =2n + 1), we find

X& ——2" x&,
X' = —2"-4x, +3X2"—'x '

L —2 x3 15X2" x&xz+ 15X2" x,

+4 ——]7X2 x4+7X2 x )x3

+35)&2" '
( —24xi xq+3xi +16x2 ),

X5 ——31X2" x& —765X2 xix4 —105X2" x2x3

+315 X 2 x
& x3 + 1575 X 2 x ]xp

—1575X2" ' x x +945X2" ' x,
Note that the coefficient of x~ for Xz (j =0 or s) is pre-
cisely Q(„(j=0 or s).
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