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We investigate whether a general class of solvable potentials, the Natanzon potentials (those poten-
tials whose solutions are hypergeometric functions), and their supersymmetric partner potentials are
related by a discrete reparametrization invariance called "shape invariance" discovered by Genden-
shtein. We present evidence that this is not the case in general. Instead we find that the Natanzon
class of potentials is not the most general class of solvable potentials but instead belongs to a ~ider
class of potentials generated by supersymmetry and factorization whose eigenfunctions are sums of
hypergeometric functions. The series of Hamiltonians, together with the corresponding supersym-
metric charges form the graded Lie algebra sl(1/1)SU(2). We also present a strategy for solving, in

a limited domain, the discrete reparametrization invariance equations connected with "shape invari-

ance. "

I. INTRODUCTION

The study of exactly solvable problems in nonrelativis-
tic quantum mechanics has a long and cherished history. '

By exactly solvable, one means those problems for which
the Schrodinger equation can be transformed to hyper-
geometric (or confluent hypergeometric) form. The first
unified venture in this direction was made by
Schrodinger who introduced the famous factorization
method. This approach was subsequently generalized by
Infeld and Hull and others. More recently, '

Schrodinger s factorization method was recognized to be a
rediscovery of a technique attributable to Darboux.

Fifteen years ago, Natanzon attacked this problem
from another angle. He obtained the most general form
of the potential for which the Schrodinger equation
reduces to hypergeometric form. A subclass of these solv-
able potentials were later rediscovered by one of the
present authors (J.G.) who also obtained scattering func-
tions for this subclass of potentials. In recent years, a
group at Yale has made a detailed study of these solvable
potentials from a group-theory point of view and have
shown that both the bound and scattering states of these
solvable potentials are related to the unitary representa-
tions of certain groups.

Starting in 1981 with the pioneering work of Mitten, '

it was recognized that supersymmetry (SUSY), a symme-
try containing commuting and anticommuting operators
and relating bosons to fermions, could be applied to quan-
tum mechanics as a limiting case (d =1) of field theory.
The subsequent development of supersymmetric quantum
mechanics has followed two main paths. In one, the goal
has been to clarify the relationship between supersym-
metric quantum mechanics and various formulations of
supersymmetric quantum field theory, and to use this
simple model to gain understanding of supersymmetric
theories in general. " The second line of investigation
studies supersymmetric quantum mechanics as an in-

teresting theory in its own right. Several authors' '
recognized that the supersymmetry transformation is
closely related to the Schrodinger factorization method
and, therefore, to the Darboux transformation. The for-
mal theory of supersymmetric quantum mechanics has
been developed by many authors, ' ' while a number of
interesting applications have been developed. '

A conceptual breakthrough in understanding the con-
nection between solvable potentials and SUSY was made
by Gendenshtein' who introduced a discrete reparametri-
zation invariance called "shape invariance. " Genden-
shtein showed that whenever the "shape invariance" rela-
tionship was satisfied by the two Hamiltonians related by
SUSY the spectra and wave functions could be deter-
mined by purely algebraic means.

The next conceptual advance came when several people
realized that if one knew the ground-state wave function
of a potential one could always factorize the Hamiltonian
and cast it into supersymmetric form. ' ' This led to
the further realization that there was a sequence of related
Hamiltonians generated by SUSY and factorization
differing by having n bound states removed (where
n & N =number of bound states of H, ) (Refs. 4 and 12).

In light of these developments we wanted to know
whether the Natanzon class of potentials (which depends
on six parameters) and a restricted class (Ginocchio class)
of Natanzon potentials (which depends on two parame-
ters) were shape invariant. If that were the case then we
could have used this fact to algebraically solve for the en-
ergy eigenstates and also determine all the wave functions
without solving the Schrodinger equation. The sequence
of Hamiltonians generated by SUSY and factorization
would all then belong to the same class and depend on
the same six (or two) parameters of the Natanzon (re-
stricted Natanzon) class. In fact, Gendenshtein' pro-
posed in his paper that all soluble potentials would have
the shape invariance property.

If this did not turn out to be the case (as we subse-
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II. REVIEW OF SUSY QUANTUM MECHANICS

In the Schrodinger picture, SUSY quantum mechanics
can be described by a pair of related bosonic Hamiltoni-
ans:

H 0'=iBV/t)t =[—d /dx + V~(x)]%,

where V+(x) are given by

V+(x) = IV (x)+ IV'(x) .

(2.1)

(2.2)

Here, a prime denotes diff'erentiation with respect to x and
we have set %=2m = 1.

The Hamiltonians H+ can be factorized as

H+ =HA, H (2.3)

quently discovered) then we would discover a new class of
solvable potentials whose wave functions would be more
complicated then hypergeometric (or Gegenbauer in the
restricted class) polynomials, but whose spectra would be
related to those of the Natanzon class of potentials, being
identical except for the absence of a certain number of
bound states.

We were able to prove that the restricted class (Ginoc-
chio class) of Natanzon potentials did not get mapped into
itself under the transformation that produced the tower of
Hamiltonians. Also, the new Hamiltonians had solutions
that were sums of Gegenbauer polynomials. In the gen-
eral case, the new Hamiltonians have eigenfunctions that
are sums of hypergeometric functions which suggest that
in the general case the new Hamiltoriians are also not in
the original Natanzon class. However, we do not have
complete proof of this.

Our results do not preclude the possibility that these
potentia1s may belong to a class of potentials having more
than six parameters, and in that class, shape invariance
might hold so that one might be able to solve these poten-
tials algebraically.

We arrange our paper as follows. In Sec. II we review
the relevant aspects of SUSY quantum mechanics. In
Sec. III we investigate whether or not the restricted class
of Natanzon potentials (Ginocchio class) are shape invari-
ant and prove that they are not. In Sec. IV we investigate
the shape invariance of the general class of Natanzon po-
tentials and are able to prove that when three of the pa-
rameters are restricted they are not shape invariant. We
also generate the first few Hamiltonians of the tower of
Hamiltonians related by SUSY and factorization and the
ground-state wave functions of these Hamiltonians. Since
the ground-state wave function of these Hamiltonians are
sums of hypergeometric functions it is unlikely that they
can be written in terms of a single hypergeometric func-
tion of a related variable as required by shape invariance.
In Sec. V we show that the generalized Hamiltonian gen-
erated by SUSY and factorization together with the relat-
ed SUSY charges Q; and Q; (i =1,2, . . . , n —1) can be
put into a representation of the graded Lie algebra
sl(1/1)g SU(2). In Sec. VI we give an ansatz for obtaining
solutions to the shape invariance equations of Genden-
shtein and recover all known solutions of these equations.

3 =d/dx+ W, 3 = —d/dx+8'. (2.4)

One can show that the Hamiltonians H+ are supersym-
metric partners. To this end, let us consider two-
component notation and introduce SUSY charges Q and
Q' by

0 0
0

'0

0 0 (2.5)

In this case the SUSY Hamiltonian HsUsY has the form

H 0
HSUSY IQ Q l

=
()

(2.6)

Note further that

Q =(Q ) —fHSUSY Qf lHSUSY~Q (2.7)

The supersymmetric algebra (2.6) and (2.7) is called the
sl(1/1) superalgebra. ' From the above one can immedi-
ately derive the following facts about the eigenvalues and
eigenfunctions of the two partner Hamiltonians Hz (Ref.
10).

(i) The ground state of H has zero energy (Eo =0)
provided the ground-state wave function Vo (x) given by
(A+o ——0)

4o (x) =Noexp —f IV(x')dx' (2.8)

is square integrable. In this case the supersymmetry can
be shown to be unbroken. We shall not discuss the case
of broken SUSY in this paper.

(ii) In the case where SUSY is unbroken one can show
that, apart from the ground state of H, the partner
Hamiltonians H+ have identical bound-state spectra. In
particular, they satisfy

E„+&——E+, n =0, 1,2, . . . . (2.9)

(iii) The eigenfunctions of H+ corresponding to the
same eigenvalue are related by

A 0„+&(x)= (E„+)' 4+(x),

A Ii+(x)=(E+)' 4„+&(x) .

(2.10a)

(2.10b)

It may be noted here that given a Hamiltonian H the
corresponding partner H+ is in general not unique, but
one has a class of Hamiltonians H+(A, ) that could be
partner Hamiltonians. This in turn has indicated a deep
relationship between SUSY quantum mechanics and the
inverse scattering method of Gelfand and Levitan. '

The next conceptual advance was the realization that
the superpotential IV(x) and, therefore, the factorization
of the Hamiltonian could be generated from the
ground-state solution of the Schrodinger equation. '
This in turn led to the fact that there are a hierarchy of
related Hamiltonians, H&, H2, H3, . . . , H„, having the
same bound-state spectra except m states are missing
and 0&m &N, where N+1 is the number of bound
states of H& (Ref. 12). To recapitulate this result we fol-
low Sukumar. ' If one has the Hamiltonian

where H = —V +V(x) (2.11)
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and we want to factorize the Hamiltonian as in (2.3) and
(2.4) with

V+(x,a)—:W (x,a)+ W'(x, a)

H=A 3+@, (2. 12)
= W' (x,a, ) —W'(x, a()+C(a, )

then W needs to satisfy the equation = V (x,a, )+C(a, ), (2.22)

W2 —W'= V —e .

One solution to this equation is

W= d —4(x, e)/qI(x, e),
where 0' obeys the equation

(2.13)

(2. 14) n

F.„=g C(al, ) .
A: =1

(2.23)

where a
& f (——a) and C (a

&
) is a constant independent of

x. Using Eo ——0 and Eq. (2.9) it then immediately fol-
lows that the complete bound-state spectrum of H is

(2. 15)

and to preserve the positive semidefinitness of 3
must have no nodes so that %(x,e) is Vo(x) and @=EO.

Therefore, once we know the ground-state energy e0
'

and ground-state wave function 40" of H' we can deter-
mine W' from

W'= —d ln(4"')/dx . (2.16)

We first generate the partner Hamiltonian

H2 —3) 3 )+g0(1) (2.17)

which by factorization and (2.9) can also be written as

H2 ——2 232+@)'(])

One obtains W2 by the SUSY relation (2.10):

=(e„+)—eo ) A)%„+),(2) (i) (]) —&/2 (&)

and the factorization result (2.14) by

W2 ———d in%0 /dx .

(2.18)

(2.19a)

(2.19b)

H3 ~2 ~ 2+60 = 2 333+62(2) f (&)

where

(2.20a)

(2.20b)

One then keeps iterating this method. For example, the
SUSY partner Hamiltonian of H2 is H3 which can be
written as

The remarkable thing is that the well-known solvable
potentials, such as Coulomb, oscillator, Morse, Rosen-
Morse, Eckart, Poschl-Teller, are all shape invariant [in
the sense of Eq. (2.22)] and, hence, Eq. (2.23) immediate-
ly gives their energy eigenvalue spectra. In the same pa-
per, Gendenshtein' then conjectured that shape invari-
ance is not only sufhcient but may even be necessary for
a potential to be solvable.

In a recent paper, Dutt, Khare, and Sukhatme, have
further shown that using SUSY one can also obtain the
bound-state energy eigenfunctions of H for shape-
invariant potentials. In particular, by using the fact that
the ground-state wave function of H is 'Po (x,a) [as
given by Eq. (2.8)] and using Eq. (2.10b) they show that
the nth-state eigenfunction 4„(x,a) is given by

+„(x,a)=A (x,a)A (x, a&) A (x,a„&)VO (x,a„) .

(2.24)

This is thus a generalization of the operator method of
constructing 4'„'s for the harmonic-oscillator problem
for which case a„=a„&——. ——a I

——a. These authors
have also shown that the leading-order SUSY WKB
approximation also reproduces the exact spectra (2.23)
for any shape-invariant potential.

We notice that (2.24) is exactly the same equation as
that found for the general hierarchy of Hamiltonians
(2.10) and (2.20), except that now one has that, from
shape invariance,

and
A„(x)= A, (x,a„)) (2.25)

W3 ——d in+0 ' /dh (2.21)

So we see if we know exactly the spectra and eigenfunc-
tions of a given Hamiltonian we can generate a sequence
of Hamiltonians by this method. In Sec. V we will show
that the degenerate states of this collection of Hamiltoni-
ans can be unified by having a super Hamiltonian which
has an additional SU(2) algebra formed from the A;. (A
picture of the sequence of Hamiltonians and their degen-
erate spectra is given in Fig. 4 for the case of a Ginocchio
class potential for H, .)

In a remarkable paper, Czendenshtein' explored from a
different perspective the relationship between SUSY, the
hierarchy of Hamiltonians, and solvable potentials. Let
us consider the pair potentials V+ (x, a), where a is a set of
parameters. Gendenshtein calls these potentials "shape
invariant" if they satisfy the relationship

and

Oo"' N„exp —f W——
& (x,a„~)dx

X
(2.26)

III. SOLVABLE POTENTIALS
AND SHAPE INVARIANCE

In this section we wish to discuss the six-parameter
solvable class of potentials of Natanzon and the restrict-

From these results one realizes that one can always cast
a solvable potential into supersymmetric form because we
know explicitly the ground-state wave function and thus
W. We can therefore ask whether a particular potential
we are studying belongs to a class of shape-invariant po-
tentials. If that is so we could have solved for the bound-
state spectra and wave functions without solving the
Schrodinger equation.
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ed class of Natanzon potentials having two parameters
(Ginocchio class ) to see if these classes of potentials are
shape invariant [that is, can we write Vz in terms of a
Vi which is still in the class of Natanzon (or Ginoc-
chio)].

A. Restricted class of Natanzon potentials

is given by

[ d—/dr + V(r)]%„(r)=e„+„(r),

where

V(x)=vpV(r) 6 =E Ivp

(3.2)

(3.3)

r =bx—= (2mvp/fi )'~ x (3.1)

In this case, the Schrodinger equation in dimensionless
units The potential function V(r) is given here only in terms of

the function y (r) by

V(r)= [ —A. v(v+1)+ —'(1 —A, ')[5(1—A, )y —(7—A, )y +2]](1—y ), (3.4)

where v and A. are dimensionless parameters which mea-
sure the depth and the shape of the potential, respective-
ly. Note that y is not explicitly known in terms of r.
However, r is explicitly known in terms of y and is given
by

rA, = [ arctanh(y) —(1—A, )'~

)&arctanh[(1 —A. )' y]I, k & 1

or equivalently

rA=[ a,rctanh(y)+(A, —1)'~

&& arctanh[(k —1) '~ y] I,

(3.5a)

(3.5b)

Thus, as —oo & r & op, y ranges through the finite interval
—1 &y & 1 and is symmetrical around r =0. From Eqs.
(3.5a) or (3.5b) we find that

[vj =N, (3.9)

where [v] means the largest integer smaller than v.
We next want to cast the potential (3.4) into supersym-

metric form, i.e.,

V (r)=V(r) —ep ——W, (r) —W', (r), (3.10)

where ep is the ground-state energy as given by Eq. (3.8)
and W, (r) is the superpotential. From Eq. (2.14) it fol-
lows that W&(r) can be computed from the ground-state
wave function:

Here C„' '(z) is a Gegenbauer polynomial when n is a
non-negative integer (n =0, 1,2, . . . , n, „;n,„&v).

In this Ginocchio class of potentials, the number of
bound states X is simply related to v:

dy/dr=(1 —y )[I+(A, —1)y ] . (3.6) W, (r)= —+p(r)/Vp(r) . (3.1 1)

As shown in Ref. 8 the bound-state eigenfunctions for this
case are given by

Since in our case the ground-state wave function is given
by

where

[g (y) l

x C„" (&y/[g (y)]' '),
+p(r)~(1 —y') ' [g(y)]

hence,

W&(r)= —,'(1 —A, )y(y —1)+ppyX

(3.12a)

(3.12b)

g(y) = I+(&'—l )y' (3.7)

while the corresponding energy eigenvalues are given by

&n= Pn ~ ~ Pn&0~ (3.8a)

where

p„A, =[A, (v+1/2) +(1—k )(n +1/2) ]' —(n +1/2) .

(3.8b)
[

where pp is as given by Eq. (3.8b). As a check, one can
immediately verify that this W, (r) indeed satisfies Eq.
(3.10) when V(r) and ep are as given by Eqs. (3.4) and
(3.8), respectively.

We would like to know whether this two-parameter
family of potentials is shape invariant. If it is, then we
can solve for the wave functions and energy spectra us-
ing (2.23) and (2.24). For shape invariance to be true, we
need [since y =y (A. , r)]

Wi (y(A, , r), Av) [+d&W(y(l, , r), kv. )/dy]dy(A, , r)ldr

= Wi (y (A, 'r), v', A,
'

) —[d W, (y ( A, ', r ), v, A, ) Idy]dy ( A. ', r) /dr +C ( v, A, ), (3.13)

where dy (A, , r)ldr is given by (3.6) and C is independent of r. It is quite difficult to solve (3.13) for v'(v, A. ), A.'(v, A, ),
and C(v, A, ) because unless A, =A, ' we do not have an explicit way of determining y (k, r) in terms of y (A, , r), since y is
only an implicit function (unless A, = 1) of A, r as given b, y (3.5). To get around this difficulty we realize the shape in-
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variance and the SUSY relationship (2.9) require that the energy levels of Hi and H2 be related:

E„+,(v, k)=E„(v', A, ')+f (v, A, ), (3.14)

where f must be independent of the level number n Als. o Hz must have one fewer bound state than H, (for the same
values of the parameters) so that if H2 also belongs to the Ginocchio class of potentials one necessarily has, from (3.9),

[v'} =N —1 . (3.15)

We can use the condition (3.14) to show that, for this class of potentials, X =A is a necessary condition for (3.13) to be
satisfied. Equation (3.14) leads to

e„+i(v,A) —e({v,A) —e„(v', A, ')+so(v', A,'):—0 .

Using (3.8) leads to

(3.16)

(1, —2)(n +3/2) —(A,
' —2)(n +1/2) +eo(v', A, ') —e&(v, l, )=2(n + I/2)[A, ' (v'+1/2) +(1—A,

' )(n +1/2) ]'
—2(n +3/2)[k (v+1/2) +(1—A, )(n +3/2) ]'~

(3.17}

By squaring this equation, bringing all terms to the left-
hand side except for the remaining square root, and then
squaring again, this equation is reduced to an equation
which is an eighth-order polynomial in n which is identi-
cally equal to zero. In order for this latter equation to be
satisfied for all n, the coe%cient of each order in the poly-
nomial must be identically zero.

Satisfying these conditions results in

(3.18)

we obtain the constraint

A = —
—,'(1 —k ), B = —po+ —,'(1 —A, ) . (3.25)

Solution (ii):

(3.24)

On the other hand, using Eqs. (3.12) and (3.22) in (3.21)
gives us the following two solutions (A, &I ).

Solution (i):

and

v'=v —1 .

(3.19)

(3.20)

A= —,'(1 —A, ),

B = —2 —po/3 ——", (1 —A, ),

(3.26a)

(3.26b)

Hence, the only solution to the shape-invariance condi-
tion is the Poschl-Teller potential which has already been
shown to be shape invariant. '

When k =k' we can directly use the Cxendenshtein
equation instead of (3.16) to rule out shape invariance. If
shape invariance is true and if we do not change k then
W2(r) must be a cubic in y which is odd from (3.12):

V+(r)=—W& (r)+ W', (r)= Wq (r) —Wz(r}+e& —Eo,

(3.21)

where

and

-', [—,'(1 —X ) —po] =(2—A, ) —6(1—A, ) . (3.26c)

Straightforward algebra immediately shows that neither
solution (3.25) nor (3.26) satisfies the square-integrability
constraint (3.24) so that none of them is an acceptable
choice.

There is yet an alternative way of proving that the class
of potentials (3.4) is not shape invariant for A, =A.'. The
point is that since the potentials (3.4) are exactly solvable
we can directly compute Wz(r). Using (2.10a), we obtain

W2(r)—:Ay +By (3.22)
%0+(r) ~ [d/dr + W&(r)]+&(r), (3.27)

with A and B being constants to be determined from v
and A, . In view of Eq. (2.8) it follows that this W'2(r) will
be an acceptable choice if and only if the corresponding
ground-state wave function +0+(r) defined by

40+(r) oc exp —f W2(r')dr'

and then using Eq. (2.14),

(3.28)

Using 0', (r) and W, (r) as given by Eqs. (3.7) and (3.12),
respectively, we find that

=exp —f Wz(y ')(dr /dy ')dy ' (3.23)
where g (y) is given by (3.7) and

is square integrable. In view of Eq. (3.5) this implies that
Vo+ should vanish as y~+l. Using Eqs. (3.6) and {3.22)
in (3.23) and demanding the vanishing of +0+ at y =+1

f (y) =1+(BOA, —p, A, —1)y

and, hence,

(3.29)
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W2(r) =—'(1 —A. )y(y —1)+@~A,y —[2g(y)(poA, —p, iA, —1)y(1—y )]/[f (y)] . (3.30)

On comparing W, (r) and Wz(r) as given by Eqs. (3.12)
and (3.22), respectively, it is clear that the class of poten-
tials (3.4) for fixed A, are not shape invariant except when
A, =1. For A, =1, using (3.8b) we find that in (3.22) only
the second term survives and in that case (3.4) reduces to
the Poschl-Teller potential which is a shape-invariant po-
tential.

We have explicitly verified that Eq. (3.21) is satisfied by
Wi(r) and Wz(r) as given by Eqs. (3.12) and (3.30), re-
spectively, when use is made of Eq. (3.8). Thus, although
W2 is a ratio of polynomials P~(y)/Qz(y), the quantity

W, ' —(d W, /dy)dy ldr (3.31)

is a sixth-order polynomial in y. This is not so with the
potential for 03..

W'2 +(dW2/dy)dy/dr (3.32)

W, (y) = Ay +By + Cy +D, (3.33a)

so that we now have a five-parameter family of potentials,
but we do not allow k to change under reparametrization.
So we allow in principle four parameters to change under
reparametrization. The first thing we find is that in order
for the ground state to be square integrable we obtain the
conditions that

which is the ratio of a tenth-order polynomial in y over a
fourth-order polynomial in y: Pio(y)/Q4(y) and Q is not
a factor of P. Thus for fixed k we are discussing poten-
tials which are quite different from those expressed by
(3.4) which is a sixth-order polynomial in y. As we will
see later the wave functions of the Hamiltonians generated
by factorization and SUSY will also differ from those
given by (3.7).

Before finishing the discussion about the potential
(3.4) we would like to remark that the Ginocchio class of
potentials is quite rich and can have multiple-well struc-
ture. It is a sixth-order polynomial in y and can have
four real zeros apart from y =+ 1 in the region
—1 &y & 1 which maps into the whole real axis
—Oo &r & oo. In particular, it is easy to show that the
potential (3.4) can have double-well structure when the
quantity A. v(v+1) is less than —,'(A, —1)(A, —9). For a
given v this implies that the potential has a double-well
structure e when A. is either sufticiently small or
suSciently large.

In conclusion we see from our above discussion that if
we restrict our potentials to have the two parameters of
the Ginocchio class that we cannot satisfy the shape-
invariance condition. Instead we generate potentials
which are more complicated functions of y (ratios of poly-
nomials).

We could of course have asked if a more general class
of potentials which are sixth-order polynomials in y (for
fixed k) can be shape invariant. This question is easily
answered in the negative.

Suppose we generalize the potential of Eq. (3.4) by
choosing

3+C)0, B=—D,
so that

Wi(y)= Ay'+Cy+B(y' —1) .

If we now try to rewrite

W ( A, B,C)+[dW( A, B,C)/dy]dy/dr

(3.33b)

= W (A', B', C') [dW—( A', B',C')Idy]dy/dr

+f ( A, B,C), (3.33c)

we find there are no solutions that satisfy the square-
integrability condition on the wave function 3'+C'=0.
Thus, by enlarging the class of potentials in this trivial
way to keep the potentials sixth order in y was not
sufhcient to obtain a shape-invariant class of potentials.

It would be nice to know if it is possible to enlarge the
parameter space of this class of potentials to have only a
finite number of parameters and still be shape invariant.

B. General Natanzon class of potentials

where

+ [ a +[a +(c& —co)(2z —1)]/[z(z —1)]
—56/4R Iz (1—z) /R (3.34)

R =az +(c, —co —a)z +co2 (3.35)

and

b, =(a —co —c, ) —4coci .2 (3.36)

This potential is a function of six dimensionless parame-
ters f, ho, h„a, co, and c, . The subclass of potentials
considered in Sec. III A has only two parameters. The
parameters are co ——0, c&

——1/X, a =c
&

—1/A. , ho ————,',
b i

———1, and f =(v+1/2) —l.
As shown by Natanzon the transformation from r to z

which transforms the Schrodinger equation to a hyper-
geometric form is such that 0 & z & 1 as —m & r & ~ and
furthermore,

dz Idr =2z(1 —z)/R ' (3.37)

This equation like (3.6) implicitly defines z (r).
For simple cases of R (z) one can explicitly solve for

z (r) and one obtains all of the known, potentials which are
explicitly given as functions of r. These potentials are also
known to be shape invariant. When R (z) is of the form
R =c

&
z one obtains the Poschl- Teller potential for

R =c&z one obtains the Manning-Rosen' potential; for
R =c

&
one obtains the Rosen-Morse' potential; for

In this case, the Schrodinger equation in dimensionless
form is again given by Eq. (3.2) [see also Eqs. (3.1) and
(3.3)] but now the potential V(r) is given in terms of the
function z (r) by

V(r) = [fz(z —1)+ho(1 —z)+biz +1]/R
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—:a„—p„—5„ (3.38a)

while the corresponding eigenfunctions are

R 1/4 ~»/2(1 )»/

X 2F, ( —n, a„—n; 1+P„;z), (3.38b)

where 2F, (o, o-2, o.3;z) is a hypergeometric function.
Using (3.38a) we can proceed as we did in the restrict-

ed case to determine whether the supersymmetry and
shape-invariance conditions (2.9) and (2.22) can be
satisfied. This leads to the condition (3.14) with the two
parameters v, A, replaced by the six parameters of the
Natanzon class. When applied to (3.38a), Eq. (3.14)
leads to the expression

p&& + I 5&& + ] +p» + 5&&

R =a (1 —z) one obtains the Eckart' potential. Thus, the
Natanzon class of potentials includes all solvable poten-
tials whose potentials are explicitly known and these po-
tentials are known to be shape invariant.

In the general case, the energy eigenvalues are given by

2n +1=(1—ae„+f)' (1——cpa„+hp)'
—(1 c&—e„+h ~

)'

W', (r) = [5pz —(1+Pp)(1—z)]/R '/

+ [(c)
—cp —a)z +2cp](1 —z)/2R / (3.40)

It is not difficult to verify that this W, (r) indeed satisfies
Eq. (3.10) when V(r) and Ep are given by Eqs. (3.34) and
(3.38), respectively.

We have not been able to implement (because of the
algebraic complexity) the general strategy to show that
the full Natanzon class of potentials are not shape in-
variant. However, if under shape invariance (2.22) we
do not allow for the parameters a, co, and ci, which
determine the transformation from z to r as given by
(3.35) and (3.37), to vary then we do not have to deal
with the change in z which would require solving impli-
cit relations (relating r and z). In that case we can
proceed as in the Cxinocchio class when k is held fixed.
Note that keeping a, co, and c& fixed leads to a different
class of potentials than the Ginocchio class.

In order to prove that this second type of restricted
class of exactly solvable potentials is in general not shape
invariant we shall use the same strategy as in Sec. III A
and compute %p+(r) and then Wz(r) by using formulas
(3.27) and (3.28). Using V&(r) and W&(r) as given by Eqs.
(3.38b) and (3.40) we find

Vp+(r) ~R ' z ' (1 —z) ' (Az +Bz+C)/(I+/3&),—1/4 ~[/'2

n =0, 1, . . . (3.39a) (3.41)

where the functions defined in (3.38a) depend on the same
energy, but different parameters, i.e.,

a„+,——(1 —ae„+)+f)'i /2

a„' =(1—a'E„+ )+f')' (3.39b)

etc.
The condition (3.39a) must be valid for all e„+, and

this leads to a 32nd-order polynomial in e„+& which
must vanish identically. Hence, the 33 coefficients of
this polynomial must be zero from which we can deter-
mine the six primed parameters in terms of the original
unprimed parameters. Since this is an overdetermined
system, one expects that only a small subspace of the
six-parameter space of unprimed variables will allow for
a solution. If these conditions are not met in general
then we can conclude that the Natanzon class of poten-
tials are not, in general, shape invariant. Unfortunately,
the algebra involved in solving the 33 simultaneous alge-
braic equations was too complex to attempt although
straightforward.

By studying (3.39) we discovered that there are rather
general solutions which are not connected with shape in-
variance. Thus, even obtaining a solution to (3.39) does
not necessarily prove that the Natanzon class of potentials
are shape invariant. For example, if we set co ——0 in these
equations, then /3 and p' are independent of n and are
constant. Solutions to (3.39) are a'=a, c'~ ——c~, f'=f,
h', =h, p'=/3+2. However, this subclass is not shape in-
variant as we shall see below, unless in addition either
c& ——0, cI ——a, or a =0.

Using (2.14) we find that the superpotential W, (r) is
given by

where

A =(5(—5p+P, —Pp+2)(a, —1),
B =(p~+ 1)(5p—5&)+(a~ —p})(pp —p~)+2(1 —a&)

(3.42)

W~ =P5(z)/[( Az +Bz +C)R / ], (3.43)

where P&(z) is a fifth-order polynomial in z. Comparing
Wt(r) and W2(r) as given by Eqs. (3.40) and (3.43), it is
immediately clear that the class of potentials (3.34) with a,
c&, and co fixed even though solvable are not in general
shape invariant.

Only in the cases R =c, , c,z, c&z, az(1 —z), cp(1 —z),
a (1—z) do we have shape invariance, but these choices
lead to the known solvable potentials mentioned earlier.

Using (3.42) we find that when we calculate V3 from

W2 (r)+ (d W2 Idz)(dz Idr),

V3 has a much more complicated dependence on z than
the Natanzon class potential V&, in that there are now ex-
tra ratios of polynomials in z multiplying the basic struc-
ture of (3.34). Since, in principle, this could lead to more
zeros of the potential on the real axis, it is hard to believe
that one stays in the same class of potentials (unless all of
the extra real zeros in z occur for z greater than 1). Also,
as we shall see later, the wave functions of the new Ham-
iltonians are sums of hyper geometric functions of

C=(P, —Pp)(l+P, ) .

If we now calculate W2 using (3.41) we find that Wz has
the form
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z(a, co, c&, r). Unless there are sum rules relating sums of
hypergeometric functions of z (a, co,c &, r) in terms of a sin-
gle hypergeometric function of z (a', coc ~, r), we leave the
general class of Natanzon potentials when we generate
new Hamiltonians by factorization and SUSY. Unfor-
tunately, in the general case, Eq. (3.39) which needs to be
solved to obtain the shape-invariance conditions is quite
complicated. We were not, therefore, able to obtain a
complete proof of the lack of shape invariance of the gen-
eral class of Natanzon potentials as we were able to do in
the Ginocchio class, where e„was explicitly given by (3.8).

shape invariant. In particular, we have

4o+(r) ~R& '
p

' exp( —a~p/2)(Ap B—p+C)
(3.50)

and, hence,

Wz(r) = [a,p —(f3 1)]—/(R& )' —(o &p+2co)/(2R ~ )

—(2p/R ' )(2Ap B)/—( Ap Bp—+ C),
(3.51)

where

C. Confluent hypergeometric case

where

(cr2+o, /p+——„'b, , /R, )p /R, (3.44)

and

R ) =(7 +0 ip+co2

5) =o (
—40 2co

2

(3.45a)

(3.45b)

Here gz, g&, o2, o.
&, co, and ho are six dimensionless pa-

rameters and the mapping from r to p is characterized by

dp/dr =2p/R] ~ (3.46)

As shown in Ref. 7, the energy eigenvalues for this case
are given by

2n +1=—(g i
—a i~. )/[2(g2 —a~~. )'"]

—(ho —coen + 1)1/2

= —(g, cr, )e/(2— )af3„, —
while the corresponding eigenfunctions are

(3.47)

%„~R&' p
" exp( —a„p/2)&F&( n; I +d„g—;a„p),

(3.48)

where &F&(a;P;p) is a confluent hypergeometric function.
Using Eqs. (2.14) and (3.46)—(3.48) the superpotential

W&(r) turns out to be

W~(r)=[aop —(1+go)]/(R&)' +(o.~p+2co)/(2R, ) .

(3.49)

As expected, this W&(r) satisfies Eq. (3.10) with V(r) and
6o as given by Eqs. (3.44) and (3.47), respectively. By ex-
actly following the same procedure as before we are now
able to show that this class of exactly solvable potentials
for the restricted case co, o.

&,
o.

& fixed is in general not

For completeness we shall now discuss the class of po-
tentials for which the Schrodinger equation reduces to
conAuent hypergeometric form. Again the Schrodinger
equation in dimensionless form is given by Eqs.
(3.1)—(3.3), but now the potential V(r), given in terms of
the function p(r), has the form

V(r) = (g2p +g&p+ho+ 1)/R
&

A =(a, —ao)a&,

B =(2a) —ao)(1+P, ) —a(1+Po),
C = (Pl —Po)(1+01) —2a 1 .

On comparing the W, (r) and Wz(r) as given by Eqs.
(3.49) and (3.51) we conclude, as before, that the restrict-
ed class of potentials with co, o.

&, o2 fixed is not, in gen-
eral, shape invariant. The exceptions are where R& ——co
(Morse potential); R

~

——o 2p (three-dimensional Coulomb);
and R, =cr&p (three-dimensional oscillator).

Again, when we calculate 03 we find that the p depen-
dence of V3 is more complicated than in (3.44), in that
there are extra ratios of polynomials P4(p)/Q4(p) (the
subscript refers to the degree of the polynomial) multiply-
ing the general structure of V, (p) as given by (3.44).
When we look at the eigenfunctions of the Hamiltonians
H2 H3 etc. , they consist of sums of conAuent hyper-
geometric functions of p(r, co,a„o~) Unless .these sums
of conAuent hypergeometric functions can be related to a
single hypergeometric function of p(r, co,oI,az), these
new potentials cannot be in the full Natanzon class (six
parameters). Again it is not precluded that there is a yet
larger class of potentials with more parameters in which
one can have shape invariance and an algebraic solution
to the spectra.

IV. NEW CLASS OF SOLVABLE POTENTIALS

In this section we shall generate a series of new solvable
Hamiltonians from the Natanzon class of potentials as
given by Eq. (3.34). The central idea of generating a new
solvable Hamiltonian from a given solvable one is re-
viewed in (2.11)—(2.21). Knowing %o and hence W&, one
can use Eqs. (2.19a) and (2.19b) to generate W2 and hence
a new solvable potential Vz defined by

Vz(r) = W2 (r) —W'2(r)+e& (4.1)

H~ ———d /dr + V~(r),

where

(4.2)

which has an identical spectrum to that of V(r) as given
by (3.34) except that the ground state of V(r) is missing
and its eigenfunctions are related to those given by Eq.
(3.38a) by relation (2.10a). In particular, on using Wz(r)
as given by Eq. (3.43), the new Hamiltonian takes the
form
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V2(r) eo+ [(pp+ 5p)(pp+ 5o+ 2)z (z —1 ) + (po —1 )( 1 —z) + (5p —1 )z + 1 ]/R

+ { a —[ci(3/3o+5o)+co(po+35o)+a (1 —po —5o)]/[z (z —1)]

—(2z —1)[(ci—cp)(/3p+5o+1)+a(pp —5p)]/[z (z —1)]+73/(4R)]z3(1 —z) /R3 . (4.3)

Although this expression is as siinilar in form as a function of z to that of Natanzon s as given by Eq. (3.34), it is quite
different in its dependence on the parameters. In particular, the term in the curly brackets must depend only on the pa-
rameters involved in the transformation from z to r (i.e. , a, ci,cp) in order to be in the Natanzon class.

The eigenfunctions of H2 are given by [see Eq. (2.10a)]

4'„', ~ [d/dr + W, (r)]%'„(r)

~R ' z n' (1—z) n' { (1 —z)[P„—Pp —z(5„—5p)]3Fi( —n, a„—n;1+P„;z)
—2z (1 z)n—(n + I+P„+5„),F2( —n + I;a„n—+1;P„+2;z)] (4.4)

and are linear combinations of hypergeometric functions
while the eigenfunctions of the Natanzon potential (3.34)
are proportional to a single hypergeometric function. As
we generate further Hamiltonians with n bound states de-
leted from the original bound-state spectrum, we find that
the eigenfunctions are sums of (n + 1) hypergeometric
functions and when n ~ 1, the structure of the Hamiltoni-
an as a function of z is changed from the Natanzon form
(see below).

To generate the next Hamiltonian in the sequence of re-
lated Hamiltonians, we start from the second excited state
wave function 'P2 as given by Eq. (3.38b) and by using
Eq. (2.20b) we can obtain the ground-state wave function
%'o ' of the third Hamiltonian H3 and, hence, 8'3 and
finally H3 itself, i.e.,

iI'p ' cc (d Idr + W2 )(d Idr + W, )iI'2(r)

and, hence,

W3(r)= —d {ln[Pp '(r)]] Idr

so that

(4.5)

(4.6)

H3 ———d Idr + W3 (r) —W3(r)+e3

d ldr + V3(r—) . (4.7)

On using Wz(r) as given by Eq. (3.43) we immediately see
that V3(r) will have an extra piece of the form (P, p is a
tenth-order polynomial in z)

P,p(z)/[R (Az +Bz+C) ] . (4.9)

The energy eigenvalue spectrum of H3 is identical to that
of the original Natanzon potential (3.34) except that two
of its lowest states eo and e& are missing in H3. The
eigenfunctions of H3 are given by an analogous relation to
that of Eq. {4.4) and, in general, they are linear combina-
tion of three hypergeometric functions. By explicit con-
struction one can demonstrate that V3(r) defined from
(4.7) does not belong to the Natanzon class for fixed

co c &,a. However, one can see this more simply by using
(2.19), i.e. ,

V3(r)= W3 (r) —W3(r)+ez ——W2 (r)+ W3(r)+e,

(4.8)

Vi(r)= Wi (r) —W'i(r),

V2(r) = W, '(r)+ W', (r),
V3(r) = W2 (r)+ Wz(r)+e& —ep,

(4.11a)

(4.11b)

(4.11c)

where Wi is given by (3.12), W2 is given by (3.30), and e„
is given by (3.8). In general, it is easier to plot V vs y
since then the whole domain of V can be shown. It is not
that dificult to get a uniform approximation for the func-
tion y (r) which is the inverse of Eq. (3.5). To accomplish
that one makes a Taylor-series expansion of (3.5) and re-

When we compare V3 with V& we find the original struc-
ture multiplied by the quantity P~(z) I( Az +Bz +C) .
It is interesting that W and (dW/dz)(dz/dr) are of the
form as V3. However, when we subtract the two terms
we obtain the structure of V2 which is similar to V&.

Proceeding in the same way, we can start from the
Natanzon potential (3.34) and generate a series of new
Hamiltonians H4, H5, . . . , H„which will have identical
spectrum to that of (3.34) except that the first
3,4, . . . , n —1 levels of the original spectrum as given
by Eq. (3.38) will be missing. However, the correspond-
ing potentials will have extra factors of the type

( Az'+Bz +C)'( A,z'+B,z +C, )'

&& ( A„,z'+B„,z +C„,)' (4.10)

in their denominators which are absent in (3.34). Furth-
ermore, their eigenfunctions will, in general, be linear
combinations of 4, 5, . . . , n hypergeometric functions.
The number of such potentials will be equal to the total
number of bound states N of the original Hamiltonian H&.

To compare these potentials we look at the restricted
class of potentials given in Sec. IIIA. Here there are
two parameters: v which determines the depth (the
number of bound states X = {v] ) and k which deter-
mines the shape. For v=7 (thus, there are seven
different related potentials) one has a single-well struc-
ture for V(r)=V, (r)+ep as given by (3.4) when A, =7,
and a double-well structure for V(r)= Vi(r)+ep when

To get a feel for what these families of potentials
look like, we will plot the first three potentials and the
first three eigenvalues (renormalizing Vi to have
ground-state energy zero). That is, we have
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verts the Taylor series. This gives a Taylor series of y(r)
of the form

)V
--.2

y(r)=r ga„r~". (4.12)
&z &o

4p

V

--2

-- IO

-OI'.O

I

—.8 .2 .4

& p-Ep

Ep

.6 .8 IO 7

(b)
V

! ~ I

—.25 —.2 —.I5 —.I —.05 —— .05 ~ I ~ I 5

2 ~O

Ci —Eo
I I

O
.2 .25

FIG. 1. V&, V2, V3 given by Eq. {4.11) and the eigenvalues
0, EI —6'p 6'3 —6'p for v=7, A, =7. In (a) we plot vs y. In (b) we
plot vs r. The variables r and y are connected by (3.5).

We know, however, that as r ~ ~, y ~1, so that a uni-
form approximation based on the Taylor series (4.12) is
obtained first by squaring the right-hand side of Eq.
(4.12), considering the sequence of larger and larger di-
agonal Pade approximants (which have a finite limit as
r~oo) and second by taking the square root of the
terms in this sequence. We find that by keeping 20
terms in the Taylor series and using the (10,10) Fade ap-
proximant we obtained an excellent approximation to
y(r) for all

~
y

~

&0.96.
In Fig. 1(a) we plot the case v=7, A, =7 for —1&y &1

which corresponds to the whole real axis —~ &r & ~.
[From (3.6) we note the change of variables is monoton-
ic.] We see that the potentials are higher than one
another and we see how the ground states of the higher
potentials are excited states of the lower potentials. In
Fig. 1(b) we replot these potentials versus r for

~

r
~

&0.22 which corresponds to ~y ~

&0.88. In terms
of r we see these potentials resemble square wells.

For the case of k= —,'„v=7, the energy spectra is
more hydrogenlike and progresses as 1/n . Here the se-
quence of potentials shows rather interesting changes in
shape. In Fig. 2(a) we plot V& and Vz from —1&y &1.
We see that V& is double welled, but, although the
ground state is in the two-well region, because the bar-
rier is very thin [see Fig. 2(b)] there is no almost-
degenerate partner. The next two states are for V2 con-

I p
I 0 y

—.2--

t'I '0
'2 'O

—2--

FIG. 2. Vl, V2, and the eigenvalues 0, el —E'p E'p —Fp for
v=7, A, = —,

' . In (a) we plot vsy. In (b) we plot vs r.

V. SYMMETRY GRQUPS

We know from factorization and SUSY that if we have
a Hamiltonian H& for which %'p and E'p are known, we can

nected by tunneling through two barriers since Vz has
triple-well structure but has no states purely in the
lowest well. The energy splitting here follows a hydro-
genic formula rather than exponential splitting. In Fig.
2(b) we replot these two potentials in terms of r. The
range ~r

~

&10 corresponds to ~y ~

&0.96. From this
picture we see that the barrier of V& is quite thin and we
also see that it is only at quite a long range that the ex-
cited states are bound.

In Fig. 3(a) we plot V&, V~, and V3 in the range
—0.9 &y & 0.9. We see that V3 returns to simple
double-well structure, but again there is no exponential
splitting between the states. The sequence of potentials
V), V2, . . . , V7 all have a finite asymptote at y =+1
which corresponds to r =+ ap.

In Fig. 3(b) we replot V&, V2, V3 vs r for ~r
~

&10
which corresponds to ~y ~

&0.96.
We have presented evidence that the Natanzon class of

potentials (3.34) forms only a small subclass among the
huge number of solvable potentials for which the energy
eigenfunctions are proportional to a linear combination of
hypergeometric functions. Clearly a similar analysis ex-
ists for the confluent hypergeometric case and we can gen-
erate a huge class of solvable new potentials which do not
belong to the Natanzon class (3.44) and for which the en-
ergy eigenfunctions are a linear combination of confluent
hypergeometric functions.
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--3.0

-- 2.0

-1000

-- 10

E'p Ep
6'I EP

1.0
VI

6'p—
—2000

E'p—
(I)

6'p

(2)
1

(3)

--10

FIG. 4. Spectra of the related Hamiltonians H&, H2, . . . , H7
for the sequence of potentials related to the potential of (3.4).
For specificity we chose v=7, A, =7 so that the first three po-
tentials are shown in Fig. 1.

which is a natural generalization of the charges in (4.5).
By construction, the supersymmetry implies

I I I I I I I

—IO -8 -6 —4
V

4 6 8

~p

EI 6P

10 r

3; 3;+e;
Using these relations we find that these charges satisfy

(5.4)

FIG. 3. V&, V2, V3 for v=7, A. = —,'o. In (a) we plot vs y. In

(b) we plot vs r.
Q;QJ =5;~(H —e; ))E,;

The Hamiltonian in the matrix formalism is given by

(5.5)

generate an entire class of Hamiltonians H;,
i =2,3, . . . , N, where N is the total number of bound lev-
els of the original Hamiltonian H1, which have the same
energy spectrum except that the first 1,2, . . . , (i —1) lev-
els are missing for H; (Ref. 12). That is

H= g(A;A;~e; ))E;;= +HE;; . (5.6)

With (5.4) we can prove that the charges commute with
H:

H;4'„'=6„"+'„', n =i —l, i, i+1, . . . , N —1, I.Q, Hl=[Q; H]=o. (5.7)

(5.1a)

where 4'„' and e„' are the eigenfunctions and eigenener-
gies of H;. This degeneracy implies that

Consequently any product of charges also commute with
H. The eigenfunctions of H are then given in terms of
column vectors:

E
(1) (2) (n + 1)

n n n n (5.1b)
(5.8a)

and is illustrated in Fig. 4. We may ask if there is a sym-
metry group which determines this degeneracy. Previous-
ly, a twofold degeneracy has been explained in terms of a
superalgebra' as discussed in the Introduction.

Instead of the two-dimensional matrix considered in
(4.5) and (4.6) we introduce n-dimensional matrices. For
convenience we use the notation E; to denote the n &n
matrix with a 1 in the ith row and jth column and zeros
elsewhere, i.e.,

(5.2)

X("=(O,e'„", . . . ), etc.

Then from (5.1) and (5.6),

Hy() ~ y()

(5.8b)

(5.9)

which expresses the degeneracy of H.
We can show that there are at least two symmetry

groups of H for which the eigenfunctions (5.9) for
i =1,2, . . . , n are in one n-dimensional representation of
H for all n. One of these groups is a supergroup and the
other a normal group.

Because Q; commutes with H we can define a charge
We introduce the n —1 charges

Q; =A;E;;+,, i =1,2, . . . , n —1,

Q;= A;E;+i;,
where

3; = —d/dx+ 8'

(5.3a)

(5.3b)

(5.3c)

g = y [HZ(H —~, , )]'"Q, .
i odd

Using (5.5) we can show that

[Q, Q ]=H,

I
O', Q'] = [Q, Q I =[Q,H] = [O',H]=o .

(5.10)

(5.11a)

(5.11b)
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That is, this charge satisfies the same subalgebra sl(1/1) as
the two-dimensional version described in the Introduc-
tion. However, this n-dimensional representation is re-
ducible under this superalgebra. From (5.3) and (5.10)
and the fact that

Qty(i+ i) y(i)

Qg(„'=0, i even,

Q X'„'+"=0, i even .

(5.13c)

(5.13d)

(5.13e)

we find

QX')=X('+", i odd,

QX(„"'=0, n odd,

(5.12)

(5.13a)

(5.13b)

From these relations we see that the representation is
block diagonal with (g'„',X'„'+'), i odd & n forming dou-
blets, and X'„"' forming a singlet for n odd.

However, we can enlarge the algebra and get all the
states in one irreducible representation if we introduce the
boson generators

n —3

L+ ———,
' g [(i+1)(n —i —1))' [[(H —E;)(H —e; i)] '

Q; Q;+, +[(H e; +—()( H—e;)] '
Q, +,Q;+2 I,

I Odd

(5.148)

L =L+
n —1

Lo —,
' g (——n/2 —i)(E;;+E;+i;+i),

i odd

(5.14b)

(5.14c)

where n =n for n even and n = n —1 for n odd.
This algebra is an SU(2) algebra. The n-dimensional

representation can be labeled by the "angular momen-
tum" I associated with this group. The allowed values of
I are

i = 1, . . . , n —1 are in one irreducible representation and
the last state with i =n is scalar.

However, there is an alternative symmetry group which
has all the eigenstates in one irreducible representation for
each n. Consider the generators

l = —,'(n/2 —1),
and for n odd only, also

I =0, n odd .

(5.15a)

(5.15b)

n —1

J+ = g [i (n i)/(H —e—; ))]'~ Q;

J =J+

(5.20a)

(5.20b)

m; = —,
' (n /2 i ), i odd, — (5.168)

For each state in the representation, the eigenvalue of Lo
is m; given by

n —I

Jo ———g (n+1 2i )E;; . — '

i =1
(5.20c)

m; = —,
'

( n /2 —i + 1 ), i even, (5.16b)

These operators form an SU(2) algebra which has all the
states, i = 1, . . . , n, in one irreducible representation
with the "angular momentum" j given by

m„=0, n odd . (5.16c) j =(n —1)/2 (5.218)

The generators are ladder operators which step between
the sl(1/1) two-dimensional representations:

and the state labeled p; is given by

p; =(n +1—2i)/2 . (5.21b)
X'„'=[(i—m;)(l+m;+1)]' 'X'„'

L g"=[(l+m;)(l —m;+1)]' X '+ ' .

(5.17a)

The ladder operators are given by

These ladder operators combined with those of (S.13)
mean that we can reach any state in the representation ex-
cept for n odd in which case 7'„"' is separate. Further-
more,

qP(i + i) [
~

( 1)])/2@I(i)

Furthermore,

[Jg,H] = [J(),H] =0 .

(5.22)

(5.23)

[L+,Q ]=[L+,Q]=[L+,H]=0
Hence, the group

(5.18) Hence, an alternative symmetry group is

U(1) SU(2) (5.24)

sl(1/1) SU(2) (5.19)

is a symmetry group for 8 which has all the eigenstates in
one irreducible representation for n even. For n odd the
representation is reducible, such that all eigen states

with U(1) being generated by the Hamiltonian H.
The analysis presented above holds in general for the

hierarchy of Hamiltonians generated by supersymmetry
and factorization and is not restricted to the Natanzon
class of potentials.
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VI. CLASSIFICATION OF SHAPE-INVARIANT
POTENTIALS

In this section we wish to raise the interesting question
of the classification of various solutions to the shape-
invariance condition (2.22). This is clearly a very impor-
tant problem because once such a classification is avail-
able, one could hopefully discover new shape-invariant
potentials which are solvable by purely algebraic methods.
Of course this is very difficult and we have not been able
to answer this question in its full generality. However, by
making use of some physical constraints on the observed
Schrodinger spectrum we are able to classify a fairly large
class of solutions to the condition (2.22).

To begin with, we notice that the eigenvalue spectrum
of the Schrodinger equation is always such that the nth ei-
genvalue E„at large n obeys the constraint

/n2(E„(n2 (6.1)

where the upper bound is saturated by the square-well po-
tential and the lower bound is obtained by the Coulomb
potential. For shape-invariant potentials it is therefore
not unlikely that the structure of E„be of the form, for
large n,

differential difference equation. This is a start in making
the functional differential equation tractable.

On using the above ansatz for 8' in the shape-
invariance condition

V+(x,a)—:W (x,a)+W'(x, a)

= W (x,a, ) —W'(x, a, )+C (a, )

= V (x,a&)+C(a&), (2.22)

W(x, a) =(m +c)g, (x)+h, (x)/(m +c)+f, (x) .

(6.8)

Using Eqs. (6.7) and (6.8) in Eq. (2.22) we find the follow-
ing three solutions.

one can obtain the conditions to be satisfied by the func-
tions g;(x), h;(x), and f, (x). One condition, of course,
is that the only 8 s admissible are those which give
a square-integrable ground-state wave function
exp[ —f W(x')dx']. We shall now try to classify the

different solutions to Eq. (2.22) in terms of the constraints
on the functions f~, g;, and h;.

Let us first start with the simplest possibility

E„—g K n , —2 & a & 2 . (6.2) (a) g&(x)=h, (x)=0, f&(x)= —,'cox+b . (6.9)

Now for shape-invariant potentials, E„ is given by (2.23):
In this case a ~

——a =co/2, C(a
~ ) =co and, hence,

E„=neo. The only potential that belongs to this class is
the shifted one-dimensional harmonic-oscillator potential.

E„= g C(a ). (6.3)
(b) h1(x) =0 (6.10a)

Hence, it follows that if with f, and g, satisfying the equations

then

C(a )- g m~

—3&P&1 .

(6.4)

(6.5)

ag, (x)—g', (x)+k, /2=0,
f', (x) f, (x)g&(x)+(k2/—4)(a+2c) —k, /2=0 .

(6.10b)

(6. 10c)

The real question to understand is how to implement the
constraints (6.4) and (6.5)? While we have no rigorous
answer to this question, it is easy to see that a fairly gen-
eral factorizable form of W(x, a) which produces the
above m dependence in C(a ) is given by

W(x, a) = [(m +c)g, (x)+h ~(x)/(m +c)+f, (x)]

In this case,

C(m)=k2m +k&, k&, kq const (6.10d)

and, hence, the energy eigenvalue spectrum of H is

given by

E„= g C(m)=k2n(n +I) /2 +k&n, ED ——0 .
m =1

where

+ [(n +d)g2(x)+h2(x)/(n +d)]+ .
, (6.6)

a =(m, n, . . . ), a, =(m, =m+a;n, =n+/3;. . . ) .

(6.7)

Note that the ansatz (6.6) excludes all potentials leading
to E„ that contain fractional powers of n, such as the
solvable potentials of the class (3.4) which have E„given
by (3.8). We showed that the potentials of class (3.4) are
not, in general, shape invariant. We also note that by as-
suming that the parameters change in the above simple
fashion (m ~

——m +a, etc. ) under reparametrization, we
convert the functional differential equation (2.22) into a

The various solutions to Eqs. (6.10) are as follows.

(i) W =cur/2 —(1 +1)/r
in which case

a =I +1, a~ ——I +2, C(a&)=2(a~ —a)cu .

(6.10e)

(6.11a)

(6.11b)

(ii) W= 3 Be—(6.12a)

This gives rise to the three-dimensional harmonic-
oscillator potential. Note that even n-dimensional
harmonic-oscillator problems with arbitrary centrifugal
barriers of the form a(a+1)/r belong to this class and
hence are shape invariant.
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in which case

a = A, a& ——A —a, C(a, )=a —a&

which gives rise to the Morse potential. '

(iii) W=A tanh(ax)+B sech(ax)

in which case

a =A, a& ——A —a, C(a~)=a —at

(iv) W = A coth(ar) Bcs—ch(ar), B ~ A

in which case

a =A, a& ——A —a, C(a, )=a —a,

(v) W = A cot(ax) Bcsc—(ax), A ~B
in which case

a =A, a& ——A+a, C(a, )=a, —a

(6.12b)

(6.13a)

(6.13b)

(6.14a)

(6.14b)

(6.1Sa)

(6.15b)

in which case

a=A, a&+3+o, ,

C(a& )=a —a~ +B (1/a —1/a& ),
(6.19b)

W(x, a)=(m +c)g~(x)+(n +d)gz( x) +f, (x) . (6.20)

When both g~(x) and g2(x) are nonzero one can show by
using condition (2.22) that h&(x)=hz(x)=0 and, hence,
we have not included them in (6.20). On using Eqs. (6.7)
and (6.20) in the shape-invariance condition (2.22) we find
that the functions g&, gz, and f, satisfy the conditions

which gives rise to the Eckart potential. ' We believe that
this exhausts all acceptable solutions to the shape invari-
ance condition (2.22) when W(x, a) is as given by Eq.
(6.8).

(iv) Let us now consider the more complicated case
when W(x, a) is given by

Note that for this potential 0(ax (m and one has to fur-
ther demand that 0'(x =0)='p(x =m/a) =0.

U (x) —U'(x)+(ak, +f3k2)/2=0,

where

(6.21a)

(c) f, (x)=0, h, (x)=k&, k& const

while g~(x) satisfies the Ricatti equation

ag& (x)—g', (x)+k2/2=0 .

In this case

C (m) = k2m +(a+ 2c)kq/2

—k( [1/(m +c +a) —1/(m +c) ]

and, hence, the energy eigenvalues of H are

E„= ,'kn (n +—1)+—,'(a+2c)k2n

+k, [1/(m +c) —1/(m +c +na) ] .

(6.16a) U(x) =ag, (x)+Pg, (x) (6.21b)

and, furthermore,

(6 16b) g', (x) —U(x)g)(x) —k, /2=0,
g2(x) —U(x)gp(x) —k~/2=0,

f ', (x) —f, (x)U(x)

(6.21c)

(6.21cl)

(6.16c) + [[k~(a+2c)+kq(P+2d)]/4 —k3/2[ =0 . (6.21e)

(6.21f}

In this case, C (a
&

) is given by

C(a, )=k, m+k, n+k, .

(6 16d) Two well-known solutions to Eq. (6.21) are

The various admissible solutions to (6.16b) lead to the
following.

(i) f&(r) =0, W(r) = A tanh(ar) Bcoth(ar),—

A ~ B ~ 0 (6.22a)
(i) W = A tanh(ax)+B/A

in which case

a =3, a&
——3 —cz,

C(a~)=a —a~ +B (1/a —1/a& ) .

(6.17a)

(6.17b)

(6.17c)

in which case

[a)=(A,B), [a&) =(A a,B+a—),
C(a ~ ) =( A —B) —( A B —2a—)

and

(6.22b)

(6.22c)

This W gives rise to the Rosen-Morse potential. ' In the
special case of 8 =0 this reduces to the Poschl-Teller po-
tential. '

(ii) W= —(1 +1)/r +e /[2(l +1))
in which case

a =l+1, a& ——1+2,
C(a, )=(e /4)(1/a —I/a& ) .

(6.18a)

(6.18b)

(iii) W = —A coth(ar)+B /A (6.19a)

This gives rise to the Coulomb potential in three dimen-
sions. It is easily seen that even the n-dimensional
Coulomb problem with arbitrary centrifugal barrier of the
type a(a+1)/r belongs to this type.

[a j =( A, B), [a; j =(A +a,B+a),
C(a, )=(A +B+2a) —(A +B)

(6.23b)

(6.23c)

It may be noted that, in this case, 0 (o.x (n/2 and
4(x =0)=4(x =m. /2) =0.

One can easily generalize (6.20) and consider the gen-
eral form

W(x, a) = f, (x)+(m + )gc~( )+x(n +d)g~(x)
. +(p+e)g;(x), (6.24a)

(ii) f&(x)=0, W(x)= A tan(ax) Bcot(ax), —
A, B )0 (6.23a)

in which case
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where

U =ag~(x)+13g2(x)+ +yg;(x)

again satisfies the Riccati equation

U'(x) —U'(x)+(ak, +13k,+ + yk, )/2=0

(6.25a)

(6.25b)

while f&,g&,gz, . . . , g; satisfy equations similar to those
given by Eqs. (6.21c)—(6.21e). In this case, C(a& ) is given

by

C(a, )=k, m+k2n+ . +kp+IC . (6.25c)

We have failed to find any solution to these equations.
In fact, knowing the general structure of the solutions to
the Ricatti equation, it is hard to imagine that a solution
exists for these equations.

It must be emphasized here that all of the above discus-
sions concern themselves with functions W'(x, a) which
are separable, i.e., the variables x and I aj are of the form

g f;(a)g;(x). We have nothing to say in the general case
when W(x, a) is not factorizable.

VII. DISCUSSIONS

In this paper we have used factorization and SUSY to
study the hierarchy of Hamiltonians and wave functions

IaI =(m, n, . . . ,p),
(6.24b)

Ia& ) =(m, =m +a, n
&

——n +P, . . . , p& ——p +y) .

On using this form in the shape-invariance condition
(2.22) one can show as in Eq. (6.21) that the combination

generated from the solvable Hamiltonians of the six-
parameter Natanzon class and the restricted two-
parameter subclass of Ginocchio potentials. We proved
that the Ginocchio class of solvable potentials is not, in
general, shape invariant and gave strong evidence that the
more general Natanzon class is also not shape invariant,
although certain special cases of the Natanzon potentials
are shape invariant. It, thus, appears that the solvable po-
tentials of the Natanzon class form a very tiny subclass
among the solvable potential family. By using SUSY and
factorization we have generated a whole class of new solv-
able potentials which have a very difterent form than that
given by Natanzon and for which the eigenfunctions are a
linear combination of hypergeometric (confluent hypergeo-
metric) functions. We have also shown that, in general,
the hierarchy of Hamiltonians along with the supersym-
metry operators that generate them form a graded Lie
algebra sl(l/1)SU(2). Finally, we have found a scheme
which allows us to classify some of the solutions to the
shape-invariance conditions [Eq. (2.22)].
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