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Abelian bosonization in curved space
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We analyze the massive Thirring model and the massive Schwinger model in curved space and
show the relationship between these models and the sine-Gordon theory.

I. INTRODUCTION

The study of field theory in a curved space can be
viewed as a first step towards understanding a full theory
where quantum gravity is available. One of the central
questions in this area is how the nontrivial structure of
space modifies the already known flat-space results.

In Aat space, two-dimensional field theories have been
successfully used for testing theoretical ideas such as
confinement and asymptotic freedom. One of the prop-
erties that showed up is the possibility of transforming
Fermi fields into Bose fields. ' Bosonization can be ob-
tained either by using the operator formalism or by em-
ploying the path-integral approach. '

In this paper, we are concerned with the study of bo-
sonization in two-dimensional curved space. By analyz-
ing the relationship between bosonic and fermionic mod-
els, we can obtain useful information about confinement
and/or charge screening. Here, we study the bosoniza-
tion of the massive Thirring model and the massive
Schwinger model in a curved Euclidean manifold which
is noncompact; i.e., it is infinite. The analysis of the
massless Schwinger model in curved space was made in
Ref. 4 and it was shown that even in the presence of a
gravitational background the massless Schwinger model
is equivalent to a system of massive scalars, a fact which
was foreshadowed by an analysis of the model at finite
temperature, i.e., on S'&&a'. However, when we consid-
er the massive Schwinger model in curved space we see
that it is equivalent to a massive sine-Gordon model
whose interaction term is position dependent. The
analysis of the massive Thirring model shows that it also
is isomorp hie to a position-dependent sine-Gordon
theory.

In our analysis we employ an important property of
two-dimensional spaces: any metric tensor may always
be cast in the form

where 1„ is the fiat metric tensor i„.=diag(1, 1). The
use of the conformal gauge (1.1) allows us to relate the

models in curved space with models in ftat space.
This paper is organized as follows. In Sec. II we ana-

lyze the equivalence between the massive Thirring model
and the sine-Gordon theory. Section III contains the
analysis of the massive Schwinger model. Our con-
clusions are presented in Sec. IV.

II. MASSIVE THIRRING MODEL IN CURVED SPACE

The dynamics of the massive Thir ring model in
curved space is determined by the Lagrangian density

g" =e,"ebg'

For the gauge (1.1) the zweibein are

e,"=0 '5"„e„'= f15„',
e"'=0 'g"', e„,=Qg„,

(2.2)

(2.3)

On our conventions the Oat Dirac matrices are Hermi-
tian and satisfy Iy",y']=2g" and ys is defined to be
y5 =—iypy &. It is useful to know that y„y& ——i@„y with
wpi r r w]Q
E =E'Q] = —EiP= —E =+ 1.

Our starting point is the generating functional

Zr N f [Dg][D&]——exp —f d xXr (2.4)

In order to reveal the relationship between this model
and one in fiat space we have to perform a change of the
fermionic variables. By defining /=X/~0 and
/=X/~0 the generating functional of the system reads

(2.1)

where J"=e,"gy'(x)g, g =detg~, and Z is a cutoff-
dependent constant. The zweibein fields (e,",e„') are
such that

a b
gp eye~ ggb

and

Zr ÃJ f [DX][DX]ex——p —f d x ——Xy, B,X— (Xy, X)(Xy,X)+i XX (2.5)
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The above change of variables possesses a nontrivial
Jacobian

conformally flat, we have to expect that the bosonization
procedure had to be modified.

J =exp f d x&g R in'
8n

which is related to the conformal anomaly. Since J is
independent of the fermionic degrees of freedom we ab-
sorb it into the normalization factor N. Had we been
studying a full theory, which includes quantum gravity,
we would have to keep track of factors such as this since
it depends on g„.

Looking at (2.5), we can recognize Zr as the generat-
ing functional of a massive Thirring model in flat space
with a position-dependent mass. So this model is
equivalent to a bosonic one, whose action is

III. MASSIVE SCHWINGER MODEL
IN CURVED SPACE

The massive Schwinger model is quantum electro-
dynamics of a Dirac particle of mass m and charge e in
a two-dimensional space. This model is defined by the
Lagrangian density (in order to keep the calculation sim-
ple we will work the 0=0 sector so one can integrate by
parts without paying attention to surface terms)

+QED ~g e 0 ) c) +el

S, = f d'x,'~"a.ya„y „&g—cos(Py) (2.6) + ,'F„„F"—"+imPP (3.1)

where P /4' = 1/(1+ A. /m ). Sz can also be written as

S, = f d'x&g, g'a„yaP „cos(P—y) (2.7)

Therefore, we can say that the massive Thirring model
in curved space is equivalent to the sine-Gordon model
when we allow the latter to have a position-dependent
interaction. This fact is not surprising. This
equivalence in flat space can be traced back to the
specific form of the free massless fermionic and bosonic
propagators in two dimensions. However, these propa-
gators behave differently under a conformal transforma-
tion. Once the most general two-dimensional metric is

X (gauge-fixing term) . (3.2)

Working in the Landau gauge V„A"=0, we can
write

A„=——&g e„,c)'o,
e

(3.3)

and the expression for Z&ED is then
2

where F„„=B„A—8 3„. The generating functional for
this model is

ZQED ——N f [DA „][D (i ][DQ]exp —f d x XQED

ZQED —N' f [Do][D&][D—&]exp —f d x&g —e,"p j'8„&—g y'eq—„d"cr p+ 'F""Fq +imp—Q . . (3.4)

Performing the change of variables /=X/&0 and /=X/&0 we obtain

ZQED (NJ) f [Do]e——xp —f d x o. Clcr f [Dg][D&]exp —f d x ——X j,c),X+LB,y, X+ ™g XX
I.

where B,=e,bc)&o. Now the fermionic part of (3.5) is a model in flat space in the presence of a gauge field B,(x) and
whose mass is position dependent. As has already been shown in Ref. 10, this fermionic system is equivalent to a bo-
sonic one and we can write

ZQED, (NJ) f [Dcr][Dy——]exp —f d x
v'g

o.CIQ + (c),p) + e,be, yBb — — cos(2y)+1 2 1 ecm &g 1 m g
2e 2~ ~' ' 2~3~2 n 4~

(3.6)

At this point we absorb all the y- and o-independent terms into the normalization S and we make the change of
variables o ~o. and y~g+o. which yields

ZQ, N' f [Dcr][Dy]ex——p —f d x&g cr Clcr+ g" d„pd~ cos[2(y+—o )]
1 1 ecm (3.7)

This last expression can be analyzed perturbatively by making an expansion in a power series of cos[2(&p+o )]. The
propagator PF(x) used in this expansion for the cr field satisfies
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Cl —— PF(x)=&g 5 (x), (3.8)

whose solution is

eIF(x)= —~ »m SF —,x aF—(m, x)
m~0 ~rr ' (3.9)

where b,F(p, ,x) is the propagator of a free scalar of mass p. From (3.9) we can see that the o field is equivalent to two
scalar fields: one has mass el&sr and the other is a massless field quantized with indefinite metric. This last one is a
manifestation in the path-integral approach of the zero-mass gauge excitation which appears in the Lowenstein-Swieca
solution for the massless Schwinger model. ' After rescaling the fields by &m we obtain

ZONED
——X' f [Dg][DX][D(p]e xp

—f d xi~g —,'g"'ti„Xi) X—,'g" r)„r—ir)„ri+,'g""t)„p—(j„p

2

X — cos[2&rr(X+ ri+ p) ]
2m 2 Q

(3.10)

Therefore, in curved space, the massive Schwinger model
is equivalent to a sine-Gordon theory whose interaction
is position dependent. By taking I =0 we recover the
result of Barcelos-Neto and Das in Ref. 4. If we set
Q(x) =1 in the last expression, we reobtain the fiat-space
result. "

IV. CONCLUSIONS

We have shown the equivalence between the massive
Thirring model and the sine-Gordon theory in curved
space. We have also studied the relationship between
the massive Schwinger model and the massive sine-
Gordon theory. We saw that the equivalence between
those models remain true even in the presence of a clas-
sical gravitational background. However, there is a
change when we go from flat to curved space. In order
for the equivalence to remain true, we must allow the in-
teraction in the sine-Gordon model to be position depen-
dent.

We can understand this fact through the following ar-
gument. At each point we can locally erect inertial
reference frames where the equivalence holds. However,

when we compare two distinct points we have to take
into account the change of scales which is built in

g&„——0 (x)ri@ . Since the mass of the fermion is a di-

mensional parameter and considering this change of
scales, we are naturally lead to a position-dependent
sine-Gordon model.

In the Schwinger model we were able to integrate out
the fermions and obtain a bosonic theory. This is a good
sign that this model in curved space continues to exhibit
screening or confinement of the charges associated to the
electromagnetic fields. ' This should be expected on
physical grounds since gravitation is an attractive force
so it helps confinement.
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