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The classical Euclidean action for general relativity is unbounded below; therefore Euclidean
functional integrals weighted by this action are manifestly divergent. However, as a consequence
of the positive-energy theorem, physical amplitudes for asymptotically Aat spacetimes can indeed
be expressed as manifestly convergent Euclidean functional integrals formed in terms of the physi-
cal degrees of freedom. From these integrals, we derive expressions for these same physical quan-
tities as Euclidean integrals over the full set of variables for gravity computed as metric perturba-
tions off a Aat background. These parametrized Euclidean functional integrals are weighted by
manifestly positive actions with rotated conformal factors. They are similar in form to Euclidean
functional integrals obtained by the Gibbons-Hawking-Perry prescription of contour rotation.

I. INTRODUCTION

When searching for a quantum theory to describe a
physical system, one in general starts by attempting to
quantize its classical counterpart. In the case of gravity,
such attempts have met with many difficulties of both a
conceptual and technical nature. This has led to propo-
sals for alternate quantum theories for gravity, such as
string theories, ' that hold promise for alleviating at least
some of these difficulties. However, although Einstein
gravity may not provide the correct theory of quantum
gravity, it is the correct theory in the low-energy limit ~

This means that an understanding of its quantum prop-
erties is interesting and useful as a qualitative guide to
the low-energy limit of proposed quantum theories for
gravity. In addition, quantized Einstein gravity is a use-
ful tool in investigation of quantum cosmology and in
minisuperspace models, where one is interested in the
qualitative behavior of the theory below the Planck
scale.

In order to study the quantum mechanics of a theory,
one needs to construct quantities such as wave functions
describing the possible states of the system and transi-
tion amplitudes between these states. There are two
parts to this; first one needs to develop formal expres-
sions for these quantities that incorporate the kinematics
of the theory. In general, these expressions will contain
ultraviolet divergences. Therefore, next one needs to re-
gulate and renormalize these formal expressions in order
to get physical answers. In the case of Einstein gravity,
the theory calculated perturbatively is nonrenormaliz-
able. However, quantities can still be computed to a
given order in perturbation theory by including the ap-
propriate counterterms; the problem is that in order to
compute to all orders, an infinite number of different
counterterms must be included. However, in order to
begin to regulate and renormalize, one must have the re-
sults of the first step; formal expressions for the physical
quantities.

One productive method of formulating the kinematics

of a theory is to express such quantities as functional in-
tegrals, an approach that is especially convenient for fur-
ther formal manipulation. Functional integrals directly
implement the sum over histories formulation of quan-
tum mechanics which connects the quantum amplitudes
to the classical action. They are especially useful in the
case of theories with local invariances because functional
integrals for quantum amplitudes can be formulated to
manifestly display these invariances. Lorentzian func-
tional integrals,

d x exp iS x

give quantities such as transition amplitudes by summing
over the appropriate class of field configurations weight-
ed by the classical action S [P]. Euclidean functional in-
tegrals, which involve sums over field configurations
weighted by the classical Euclidean action I [P],

f dtt (x)exp[ I [P( )x] I, — (1.&)

2~
RaP + RaP (1.4)

express ground-state wave functions or generating func-
tions in a form useful for actual computations.

One proposed approach to quantizing Einstein gravity
is to use Euclidean functional integrals to construct the
states of the theory. In this approach one forms
these integrals using the Euclidean action for general re-
lativity. The appropriate action when the induced
three-metric h;~ is fixed on the boundary is

1'I[g]= —f d xg'~ R —2 f d'x h'~~K, (1.3)
M av

where l =(16~6)' is the Planck length in the units
fi=c =1 and K is the extrinsic curvature of the bound-
ary hypersurface BM. Immediately, there is a difficulty;
unlike the Euclidean actions for more familiar gauge
theories such as electromagnetism, that for gravity is not
positive definite. This can be seen by writing the metric
g & in terms of a metric g & in the conformal
equivalence class of g & and a conformal factor A:
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This decomposition is fixed by requiring g & to satisfy a
coordinate invariant condition of the form

R (g)=0 (1.5)

and fixing boundary conditions on 0, such as 6=1 on
BM. In these variables the action (1.3) becomes

I I [g, Q]= —j d x g
'~ [II R (g )+6(VQ) ]

M

dM
(1.6)

It is readily apparent that (1.6) will become arbitrarily
negative for 0 that vary rapidly enough. Consequently
Euclidean functional integrals for gravity of the form
(1.2) weighted by (1.6) will be manifestly divergent.
This divergence is one appearing in the kinematical for-
mulation of the theory; it is not related to the ultraviolet
divergences. It must be taken care of first before one
can regulate and renormalize these quantities.

In order to construct convergent Euclidean functional
integrals for the kinematics of the theory, Gibbons,
Hawking, and Perry proposed an additional forrnal ma-
nipulation called conformal rotation. First change the
variables of integration in the functional integral from
g & to Il and g & which satisfy the condition (1.5). Next
distort the contour of the 0, integration to complex
values. The action (1.6) then becomes positive definite;
the integration over the conformal factor becomes mani-
festly positive and for asymptotically flat spacetimes the
positive action theorem guarantees the positivity of the
surface term. Consequently, the resulting Euclidean
functional integral is then convergent.

Conformal rotation provides a method of forming
convergent Euclidean functional integrals for gravity.
However it does so by starting with a divergent Euclide-
an gravitational integral, a quantity that does not really
exist, and manipulating it to produce a convergent one.
This manipulation is not needed to construct Euclidean
functional integrals for more familiar theories with in-
variances such as electromagnetism and Yang-Mills
theories; the classical Euclidean actions of these theories
are manifestly positive. Therefore it would be useful to
have a more physically based motivation for Euclidean
gravitational integrals in their conformally rotated form.
In this paper we will provide such motivation. In doing
so we will concentrate on the kinematical formulation of
the theory; in the rest of the paper we will not discuss
regulating and renormalizing these quantities. Instead
we will assume that these procedures can be carried out
following the standard methods to handle the ultraviolet
divergences in Einstein gravity as needed. Therefore, in
this paper the term convergence will refer to the formal
properties of the Euclidean functional integrals alone.
To begin, we will first construct physical quantities as
manifestly convergent Euclidean functional integrals
from the fundamental formulation of the quantum
theory in terms of its physical degrees of freedom. We
expect that we can do so for asymptotically flat space-
times by virtue of the positive-energy theorem. ' Then
starting from these integrals in the physical variables we
derive convergent parametrized Euclidean functional in-
tegrals with rotated conformal factors for the same phys-

ical quantities. First we will do so for the theory of
linearized gravity, reviewing previous work done in col-
laboration with Hartle. ' We will then discuss how to
extend this to perturbative gravity, by which we mean
Einstein gravity in asymptotically flat spacetimes when
the metric configurations are treated as perturbations on
a flat background.

Classically, theories with local invariances such as
gauge or parametrized theories are usually given in a
form in which not all field configurations are physically
distinct. In electromagnetism for example, fields A „
that differ by a gauge transformation, A„~A„+B„A,
are physically equivalent. The classical dynamics of
such theories is summarized in an action that is a local
functional of the field variables and this is also manifest-
ly invariant under both the local invariance and Lorentz
transformations. However, the initial data cannot be
freely specified for theories with local invariances be-
cause it has to be compatible with the invariance for the
evolution of the system to be consistent. This means
that the full set of variables contains redundant fields as
well as the physical degrees of freedom. The physical
components are invariant; their initial data can be freely
given. The rest are redundant variables needed to
display the symmetry of the theory in a local set of
fields. In electromagnetism, the physical fields are the
transverse components of the vector potential A;; the
longitudinal and time components, A; and A o, are
redundant variables which change under gauge transfor-
mations. As the action is manifestly invariant, its physi-
cal content can be expressed in terms of the physical
variables alone. However, in general this form of the ac-
tion will be nonlocal in the original potentials and will
not display all of the invariances of the theory. For ex-
ample, the action for electromagnetism can be written in
terms of A; alone; however this form is neither local
nor manifestly Lorentz invariant.

Although a theory with invariances is most elegantly
presented classically using redundant variables, its quan-
tum mechanics is really based on the dynamics as given
in terms of the physical degrees of freedom. Physical
amplitudes can be constructed as sums over histories in
the physical degrees of freedom weighted by the physical
action. For example, the ground-state wave functional
for electromagnetism can be given as a Euclidean func-
tional integral over A; weighted by the action of the
theory expressed in terms of A; . When the physical
variables can be explicitly solved for, as in electromagne-
tism, these integrals are similar in form to those of scalar
field theory. These integrals for quantum amplitudes
contain the correct physical content of the theory; how-
ever, they usually do not display all its invariances in the
most transparent form. They also typically do not
present the theory in a tractable form for calculation
when the physical fields cannot be explicitly isolated.
Therefore it is useful to have expressions for these same
quantities as functional integrals over the full set of vari-
ables. Starting with the integrals in terms of the physi-
cal degrees of freedom, one inserts additional integrals
over the redundant variables to recover expressions
displaying the original invariance and locality of the
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classical theory. These redundant integrals must be add-
ed in a way that leaves the value unchanged, so that the
resulting parametrized integrals give the same ampli-
tudes as those in the physical variables. This process
can be demonstrated explicitly when the physical de-
grees of freedom can be explicitly isolated; it can be car-
ried through formally if they cannot. This procedure is
most familiar for Lorentzian functional integrals; it pro-
vides the correct form and measure for Lagrangian in-
tegrals in the full set of variables from the Hamiltonian
form given in the physical fields. "' lt can be carried
out for Euclidean functional integrals as well.

Euclidean functional integrals for both linearized
gravity and perturbative gravity are convergent when
given in the physical variables. This is manifestly so for
linearized gravity; it is implied by the positive-energy
theorem for asymptotically flat spacetimes in the in-
teracting case. We shall therefore study how to relate
these convergent integrals in the physical degrees of free-
dom to those over the full set of variables in order to
gain a more physically based understanding of conformal
rotation. We will show that indeed parametrized Eu-
clidean functional integrals weighted by positive actions
for physical quantities can be derived from those given
in terms of the physical degrees of freedom.

Before we proceed to treat gravity itself, it is useful to
introduce some of the basic techniques in a simpler con-
text. In Sec. II we shall use a simple model to illustrate
some basic issues in adding redundant variables to Eu-
clidean functional integrals. Next, in Sec. III we shall
derive convergent Euclidean functional integrals for the
ground state given in terms of the physical variables for
both linearized gravity and perturbative gravity. Be-
cause the physical variables can be explicitly solved for
in the linearized case, the connection between the
parametrized Euclidean functional integral and that in
the physical variables can be carried out explicitly. In
Sec. IV we shall make this connection and derive the
conformally rotated Euclidean functional integral for the
ground state of linearized gravity. As the physical vari-
ables cannot be explicitly solved for in the case of the in-
teracting theory, it is not practical to parametrize the
Euclidean functional integral for the ground state direct-
ly. In Sec. V we will discuss how to proceed in this case
and derive conformally rotated Euclidean functional in-
tegrals for gravity when the metric configurations can be
treated as interacting perturbations on a flat back-
ground.

II. FUNCTIONAL INTEGRALS FOR THEORIES
WITH INVARIANCES

We will first discuss quantizing theories with invari-
ances using a simple model which is a generalization of
one discussed by Hartle and Kuchar". ' '' It allows us to
outline the basic techniques in the more familiar context
of single-particle quantum mechanics. (1) Beginning
with the classical theory expressed in its manifestly
gauge-invariant form, one first iso]ates the physical de-
grees of freedom and expresses the dynamics in terms of
them. (2) One next formulates the quantum theory as
functional integrals in the physical variables weighted by

the appropriate physical action (the one that gives the
dynamics in the physical variables). (3) Finally, one adds
in integrations over the redundant variables to recover
the manifest invariance expressed in the full set of vari-
ables. One does this in such a way that the resulting
parametrized functional integrals equal those given in
the physical variables. The model will be too simple to
adequately illustrate all of the issues, but will be a useful
conceptual guide when we turn to the case of gravity.

Let us consider a system consisting of n variables q '( t)
which are the physical degrees of freedom and two vari-
ables P(t) and k(t) which are the redundant variables.
The Lagrangian is

L =1(q', q ')+1~(Q, Q, A, ), (2.1a)

where

I (q', q ') = —,'6,bq 'q —V(q'),

lg($, $, k) = —,'p(P —A, ) —ir(P —A, )F(q') .

L is invariant under the transformation

P(r) =P(r)+A(r),
X(r) =A(r)+A(r),

(2.1b)

(2.1c)

(2.2a)

(2.2b)

(2.3)

It reflects the fact that k is not a dynamical variable; it
is a Lagrange multiplier. The rest of the mornenta can
be solved for in terms of the velocities. What this means
is that the classical phase space of the system is smaller
than what one would naively guess; it consists of the
variables q' and P and their respective conjugate mo-
menta p, and ~. One finds that the Hamiltonian corre-
sponding to (2.1a) is

H =h (q', p, )+h~(A, , ir, P)+A, ir, (2.4a)

which serves as the analog of a gauge transformation in
the model ~ Because of the invariance, there will be a
constraint on the initial data for the model; it has to be
consistent with (2.2) so that the system will evolve
preserving it. Of course, gauge theories are not usually
written in a set of variables in which the physical de-
grees of freedom are obvious. More typically they are
described in a set of fields in which the gauge-invariant
components are not already isolated but in which the in-
variance is manifest. However, the model does display
the basic content of a gauge theory, albeit in a very sim-
ple form.

A useful way of displaying the constraint on the initial
data and showing how it is preserved by the dynamics is
to study the system in its Hamiltonian form. In the fol-
lowing we will briefly discuss constrained Hamiltonian
dynamics; we refer the reader to the literature' ' for a
more thorough and elegant presentation.

One first solves for the momenta conjugate to the vari-
ables in terms of the velocities using p, =BL/Bq '. Im-
mediately, one finds that this Legendre transformation is
singular; A. has no conjugate momenta as it occurs in
(2.1a) without time differentiation. This is a primary
constraint on the system:
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h (q', p, ) = —,'5'"p, pb+ V(q'), (2.4b)

hg(A, , vr, g, q') = [~+irF(q')]1

2p
(2.4c)

Infinitesimal canonical transformations of the phase-
space variables are implemented by taking their Poisson
brackets with the generator of the transformation. The
brackets are defined by

0B
Bq ~p

(2.5a)

where a labels the n variables q' and P. The fundamen-
tal brackets between the canonical variables is

(2.5b)

Of special interest are canonical transformations that
give the invariances and dynamics of the system. In par-
ticular, Hamilton's equations of motion, p = —BH/Bq
and q =OH/Bp, follow from the brackets of the vari-
ables with H, which is the generator of time evolution.

The initial conditions for solving Hamilton's equations
are given by a point in the phase space of the system
(p, q ). However, this point cannot be freely specified;
in order for the system to evolve consistently it must
stay in the phase space, so (2.3) must be preserved. Con-
sequently, the equations of motion imply that the
momentum conjugate to P vanishes:

Ipi, H I =sr=0 . (2.6)

5~/= [(h, vrI A=A . (2.7)

The variables p, and q' are unchanged; they are gauge
invariant. Again for consistency, Eq. (2.6), called a
secondary or dynamical constraint, must also be
preserved in time. It is, because [~,H) =0. Therefore
we have found all the constraints needed for consistent
evolution of the model.

What (2.6) tells us is that not all regions of phase
space are allowed by the dynamics. The allowed region
consists of configurations of p, , q', and P with 7r=O.
When restricted to this region, the Hamiltonian

How is this constraint related to the invariance (2.2) of
the model? It generates the infinitesimal gauge transfor-
mations of the canonical variables. The variable P trans-
forms as in (2.2a):

this analysis tells us that the physical degrees of freedom
are p, and q' and their evolution is given by the physical
Hamiltonian (2.8).

Having isolated the physical degrees of freedom, we
see that the Hamiltonian when written as a function of
the full set of variables is not unique. ' We could, for
example, add any function of the constraint to it,
~ =~+g (p, q )7r, and it would still generate the same
dynamics. This means that the action in the full set of
variables, S = f dt(p q H),—is also not unique if the
requirements leading to its form in the original set of
variables are relaxed. There are many alternate actions
that will generate the same dynamics as that correspond-
ing to (2.1). The constraints themselves can be similarly
generalized; they only have to vanish up to constraints
as well. This emphasizes that the physical dynamics is
not contained in the canonical form of the full Hamil-
tonian but only in its value when the constraints are
satisfied.

We have introduced a lot of analytical machinery to
study the dynamics of a simple model. However, the
power of the Hamiltonian formulation of constrained
systems is that this kind of analysis can be carried
through when the physical degrees of freedom cannot be
explicitly isolated. (1) Primary constraints arise in sys-
tems with invariances because some variables are
Lagrange multipliers. (2) Consistent time evolution then
requires secondary constraints on the canonical vari-
ables. These constraints generate the gauge transforma-
tions of the theory. (3) The variables canonically conju-
gate to these secondary constraints are arbitrary parame-
ters specified by choice of gauge. The dynamics of the
system is independent of this choice as it is gauge invari-
ant. (4) The physical phase space is the subspace of the
canonical phase space that is orthogonal to both con-
straints and their canonically conjugate variables. The
physical content of the theory is determined by the
Hamiltonian on this space. We shall use the extension
of this formalism to field theory to isolate the physical
degrees of freedom for gravity in Sec. III.

Having explicitly reduced the model to its physical de-
grees of freedom we can proceed to construct quantum
amplitudes as sums over histories in terms of them. We
shall take the states of the model to be labeled by

~

q', t ). The transition amplitude or propagator is then

Kh~= —,
'5' p,pb+ V(q')+ F (q')

2p
(2.8) = f dp, dq'exp i f dt[p, q

' —h~(p„q')] (2.9)

is a function of p, and q' only. The variable P does not
enter into the dynamics; it is a redundant variable whose
value is arbitrary. Therefore the physical phase space is
just (p, , q'); the physical content of the theory is de-
scribed in terms of these variables. However, note that
the presence of the interaction terms between the redun-
dant and physical variables in the Lagrangian (2.1) has
resulted in an added term of [lr /(2p)]F to the poten-
tial in (2.8). It is the analog in the model of a nonlocal
interaction induced when the redundant fields are elim-
inated in a self-interacting gauge theory. In summary,

The sum is over phase-space paths which begin at q' at t
and end at q' ' at t'. The measure (in which we do not
display constant factors) is the canonically invariant
Liouville measure on paths in the physical phase space:
dp dq/2mB. The action in the exponent is the classical
action for the physical theory in Hamiltonian form. The
integrand of (2.9) as it stands is purely oscillatory; in or-
der to define the functional integral one needs to make it
convergent. ' This can be done by inserting factors of
the form exp( —5 I dt p, ) where 5 is a positive real
constant for all the variables and taking the limit 5=0
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after evaluation. This prescription defines these integrals
independent of the phase of the integrand. We shall as-
sume that this procedure is implied when we write
Lorentzian functional integrals in the rest of the paper.

Equation (2.9) is a formal expression for the transition
amplitude; in order to make it concrete we need to spell
out how to compute the sum over paths. There are vari-
ous different methods for doing this. One standard way
is by time slicing ' the interval t' —t is divided up into

N discrete time steps of length e where Ne=t' —t. By
giving the value of the physical phase-space coordinates
(p, (i),q'(i)) at every time step, paths can be described
by straight lines connecting (p, (i),q '(i) ) to
(p, (i + 1 ), q '(i + 1) ) for all N steps. The boundary con-
ditions fix q'(0) =q' and q'(N) =q' '. The functional in-
tegral (2.9) is then evaluated for N steps and the transi-
tion amplitude results in the limit as N~ oc while keep-
ing Ne=t' —t:

dp. (0) ~ —' dp. (i)dq'(i)q'', t'
~

q', t = »m (2ir)"; i (2ir)"
exp[iS~[p, (i),q'(i)] ) (2.10a)

q'(i + 1) q'(i—)S~=e p, (&)
i =0

—h~(p. (i),q'(i)) (2.10b)

&q'', t' q', t ) = f dq'exp f dt lj'(q', q '), (2.1la)

2

l~(q', q ') = —,'5,bq 'q "—V(q') — F (q') .
2p

(2.11b)

The transition from (2.9) to (2.11) provides the correct
form of the measure from the canonically invariant one
of Hamiltonian quantum mechanics. It is especially use-
ful in field theories where the correct form of the
Lorentzian measure is not obvious.

Euclidean functional integrals provide expressions for
certain states of the system; an important example is the
ground-state wave function. The Euclidean functional
integral for the ground state can be derived from the
Feynman-Kac formula' and the transition amplitude
(2.9) or (2.11). Given a complete set of eigenstates

(q') with energy E of the physical Hamiltonian, the
transition amplitude can be written as

(q', 0
~

q' ', t ) =g 'p (q')4* (q' ')exp(iE t) . (2.12)

Next take q'' to be at a minimum of V(q), which for

The initial p, (0) is summed over, but the final p, (N) is
not because (2.10b) is independent of it. Another useful
way to implement the integral is to expand the variables
in a Fourier decomposition and write it as a product of
integrations over mode amplitudes. We shall use this
method to evaluate functional integrals for linearized
gravity. The precise form of the measure in (2.9) will de-
pend on how the sum over paths is specified; different
methods contribute different factors to the measure in
the same way that changing coordinates in an ordinary
functional integral introduces factors of the Jacobian.
From now on we will assume that some such prescrip-
tion for the path integrals is supplied and concentrate in-
stead on the main issue of constructing functional in-
tegrals for physical quantities.

Because the physical Hamiltonian of our model is
quadratic in the momenta, the momentum integrals can
be carried out explicitly. This results in the familiar La-
grangian form of the functional integral for the transi-
tion function

concreteness we take at q''=0, and rotate t~ —i~. If
the energy spectrum of the physical Hamiltonian is
bounded below then the dominant contribution as
~~ —oo will be proportional to the ground state; if Ep
is renormalized to zero then one has

lim (q', 0 0, —i r) —'Po(q')4'o (0)7~ oo
(2.13)

as all other terms fall off exponentially. If we carry out
the same procedure resulting in the Feynman-Kac for-
mula using the path-integral form of the transition am-
plitude (2.11) instead of (2.12), the result is a Euclidean
functional integral for the ground-state wave function up
to a normalization:

+o(q ') =JV f dq ' exp( —i ~[q ']), (2.14)

where i~ is the Euclidean action

0 2
i~= f dr —,'6, i, q 'q + V(q')+ F'(q')

oo 2p
(2.15)

The class of paths summed over in (2.14) is all those
matching q' at v=0 that go to 0 in the infinite past. JV
is the normalizing constant which includes the factors
needed to renormalize the ground-state energy to zero.
We also have, using (2.9),

%o(q') =IV f dp, dq'exp f dr[ip, q
' —h~(p, ,q')]

(2.16)

[Note that the momenta are not rotated in passing from
(2.9) to (2.14) and a divergent expression would result if
they were. ] The usual configuration space integral (2.14)
can be derived from (2. 16) by integrating over the mo-
menta. The functional integral over the phase-space
variables for the ground state (2.16) is less familiar but it
is useful especially when the physical degrees of freedom
cannot be isolated explicitly. One sees that if the Hamil-
tonian in terms of the physical variables is bounded
below, then the Euclidean functional integrals of the
theory will be convergent. This will be the case in the
model if V + [x l(2p ) ]F is bounded below.
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By adding integrations over the redundant variables,
the functional integrals can be expressed as integrals
over the full set of extended variables. It is easy to see
that there are many different ways to do so, correspond-
ing to different ways of forming identities out of these
variables. Therefore, what do we want to achieve by
this procedure? As stated at the beginning of this sec-
tion, one would like to recover the manifest gauge in-
variance in the full set of variables. If possible, one
would like to recover a functional integral weighted by
an action that is a local functional of the original vari-
ables as well. Both of these goals can be achieved for
Lorentzian functional integrals by aiming to recover an
integral weighted by the classical action. Whether or
not this is the case for Euclidean functional integrals will
depend on the properties of the classical Euclidean ac-
tion for the theory.

For our simple model, the parametrization can be car-
ried out directly because the action we want to recover
is quadratic in the redundant variables. In order to add
in the redundant variables to the transition amplitude

I

(2.11) we will use the following two integrals. First, sup-
pose f (x) is 0 for a unique value of x. Then one has the
identity

1=f dx 5[f(x)] .df (2.17)

The second integral is a Gaussian:

exp( —ia ) = —exp(ix + 2i ax ) .
4x

—- &iw
(2.18)

It can be verified by completing the square in the ex-
ponent. Now consider for a moment the form of the
physical Lagrangian; it consists of two parts. One is
l(q', q '), which is the first of the two terms in the origi-
nal Lagrangian (2.1). The other, [w /(2p) ]F, comes
from the term coupling F to the redundant variables.
This suggests combining integrals of the form (2.17) and
(2.18) so that we form this extra term. Specifically, what
we want is

I 2 I

exp —i f dt F (q') = f dPdA, det 5[&(P)]exp i f dt l~(P, P, R)
2p 5$

(2.19)

where N(P) is a function that vanishes for only one
value of P. Equation (2.19) can be verified by doing the
integration over X (it is a Gaussian of the form (2.18)
and then doing the integration over P using the 5 func-
tion. It is manifestly gauge invariant; l~ (2.1c) is mani-
festly invariant and the determinant in (2. 19) is the prod-
uct of factors needed to make the integral over the 6
function unity for any N. It is the Faddeev-Popov deter-
minant for the analog of the gauge-fixing condition
4(P)=0 in the model. This formula (2.19) can be con-
structed explicitly using some method of summing over
the paths. For example, using time slicing, one imple-
ments the determinant and 6 function by using the iden-
tity (2.17) on each time slice.

If we now substitute the right-hand side of (2.19) for
the left in (2.11) we arrive at the manifestly invariant
functional integral for the transition amplitude

(q'', r'
~

q', r )

= f dq'dP dA, det —5[4&($)]exp(iS [q', P, k]),6N

(2.20)

where S is the manifestly gauge-invariant action made
from the sum of I and l~. Thus we have recovered the
familiar Faddeev-Popov prescription for the functional
integral for the transition amplitude in a gauge
theory "'

The above analysis is not a very general or powerful
way to look at adding redundant variables to a theory.
A much more general way is to begin with the Hamil-
tonian form of the functional integral and add in in-

2 oo 8X 2exp( —a ) = —exp[ —(x —2iax ) ] . (2.21)

Note that the integrand is complex on the right-hand
side, but the integral results in a real quantity. As an ex-

I

tegrations over the redundant phase-space variables us-
ing functional 6 functions. It is an especially useful ap-
proach when the physical degrees of freedom cannot be
isolated explicitly. By exponentiating the 6 functions of
the constraints with the Lagrange multipliers of the
theory and then performing the momentum integrations,
one can produce the familiar Faddeev-Popov form of
functional integrals for gauge theories. ' ' We will not
discuss these methods further here because we will be
doing so in the case of gravity in later sections. Howev-
er it should be emphasized that the fundamental idea
behind all these methods is that the quantum amplitudes
are given as functional integrals in the physical vari-
ables; integrations over the redundant variables are add-
ed to recover the manifest invariance of the theory.

The ideas used to find parametrized Euclidean func-
tional integrals from those in the physical variables are
directly analogous to those in the Lorentzian case.
However there is an additional restriction on the pro-
cess; in order for Euclidean functional integrals for phys-
ical quantities to be well defined they must be conver-
gent. Therefore, beginning with convergent Euclidean
integrals in the physical variables, we add in convergent
integrals in the redundant variables to recover well-
defined parametrized Euclidean integrals that display the
manifest invariance of the theory. Again we may add
quantities using 5 functions as in (2.17) but (2.18) be-
comes
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I [q', P At. ]=i +I~,
i = f d ,'6.bq—'q"+V(q'),

Ig= f dr ,'p(P ——A,)' 2ia—(P —A. )F(q') .

(2.22a)

(2.22b)

(2.22c)

It is obtained from the Lorentzian action by rotating
both t ~—i ~ and k~ik; the rotation of X is required in
order to preserve gauge invariance. This Euclidean ac-
tion is uniquely determined by requiring gauge invari-
ance and the same form as the Lorentzian action in the
original set of variables. Note that this prescription has
resulted in a complex term. Using (2.22c) as a guide, we
can construct the analog of (2.19) for Euclidean func-
tional integrals using (2.17) and (2.21):

ample, we will consider how to derive a manifestly in-
variant form of the Euclidean functional integral for the
ground state (2.14) using these identities. First of all, the
classical form of the manifestly gauge-invariant Euclide-
an action corresponding to (2.1) is

1 = f dP d A. det 6[@(P)]
5N
6

0 2&&exp — dr[ ——,'p(P —A, ) ] (2.26)

The action that this integral is weighted by is positive,
but is no longer of the same form as the Lorentzian ac-
tion in the original set of variables, as reflected in the
sign of p and the form of the interaction. This change
in the form of the action will correspond in the case of
gravity to the Euclidean action being nonlocal in the
original set of variables. It could be obtained from
(2.22a) formally by performing an additional rotation on
the variables /~i P and A. ~iX, the analog of conformal
rotation.

The action (2.25b) we obtained is not unique; there are
many other positive actions that we could have used in-
stead. For example, we could have constructed the man-
ifestly gauge-invariant identity

This identity is true when p is positive. However when

p is negative the Gaussian integration over the redun-
dant variables becomes manifestly divergent. Therefore
(2.23) does not exist for p (0. In that case we cannot re-
cover a parametrized integral for the ground state
weighted by the local Euclidean action (2.22a). This
does not mean that Euclidean functional integrals do not
exist for the theory; as we have already seen, they do in
terms of the physical variables if V+ [a. /(2p)]F is
bounded below. Nor does it mean that a manifestly in-
variant parametrized integral cannot be found.

Instead of adding redundant variables by using I~ we
can form an identity which is a manifestly convergent
Gaussian integral when p &0. It is

,xp
' ~ F&q~
—co 2p

= f dP dl, det 5[&5(P)]exp( I [q', k, P]), —

I"=f dr[ —,'p. (P —A. )'+~($ ——A,)F(q')] .

(2.24a)

(2.24b)

Not only has the sign in front of p been changed but the
interaction term has also been modified from its local
Euclidean form (2.22c); it is now real. This is necessary
in order to get the sign of the F term to be the same as
that in the physical Euclidean action. Using this identi-
ty in (2. 14) we find a manifestly convergent integral for
the ground state:

0'0(q ') =JV f dq 'd $ d A. exp( I [q ', P, A]), (2.2—5a).
I =i' [q']+I '[q', ~, 4] . (2.25b)

2

exp — F q'
2p,

nc ~= f dPdkdet 5[&(P)]exp( Ig[g, k])—.
6

(2.23)

Using this identity one could recover a manifestly
gauge-invariant ground state of the form (2.24a) weight-
ed instead by the action

I=i~[q']+ f dr[ —ip(P —k) ], (2.27)

where i~ is (2.15), the action in terms of the physical
variables.

Because the interaction between the physical and
redundant variables is simple in the model, appropriate
convergent identities are easy to guess. For a more com-
plicated interacting theory, the appropriate modification
of the interaction terms may not be so obvious, as is the
case in the full theory of gravity. The fundamental re-
quirement is that it be chosen so that the parametrized
integral equal that in terms of the physical degrees of
freedom when evaluated. However, the model does
demonstrate the basic principle; convergent, manifestly
invariant Euclidean functional integrals can be found for
the theory that equal those given in terms of the physi-
cal variables. The quantum mechanics of a system with
redundant variables is really given in terms of the physi-
cal degrees of freedom. If the Hamiltonian in terms of
the physical variables is bounded below, the quantum
theory is well behaved. In that case convergent Euclide-
an functional integrals for the states of the theory can be
formulated in terms of the physical variables. We can
also find convergent Euclidean integrals for these states
that reflect the invariances of the theory, even if the
classical Euclidean action is unbounded below. Howev-
er, if it is unbounded, then we cannot recover integrals
that are weighted by a Euclidean action that is a local
functional of the variables. They are weighted by nonlo-
cal actions; moreover the form of the nonlocal action is
not unique. Which nonlocal action one wants to use de-
pends on what is most convenient.

III. THE GROUND STATE

Physical amplitudes for gravity such as ground-state
wave functionals can be expressed as convergent Eu-
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ds —— 1 — dt + 6;, + dx'dx~2M 2 2Mx 'x~

r r3
r

+0 1

r2
(3.3)

Thus, also choosing a coordinate system in which the x '

are asymptotically Euclidean, the conditions on the
metric components and their derivatives are

g; —5; —1/r, dkg; —1/r

N —1 —1/r, BgN —1/r
N'- 1/r, 0~ N' —1/r

(3.4)

as r approaches infinity.
The Hamiltonian corresponding to (3.1) is

H = f d'x N"A„+E, (3.5a)

&0 I G;&k(m. "m"' hR——(h ), —— (3.5b)

clidean functional integrals in terms of the physical de-
grees of freedom for asymptotically flat spacetimes. This
will be possible because the Hamiltonian is positive
definite for such metrics by virtue of the positive-energy
theorem. To illustrate this we will construct the Eu-
clidean functional integral that describes the ground
state for asymptotically flat metrics in the physical fields.
We shall give a precise definition of this integral by
treating gravity as interacting metric perturbations on a
flat background. This will be the starting point for
deriving a convergent parametrized Euclidean functional
integral for the same state.

The appropriate action for Einstein's theory of rela-
tivity when the induced three-metric h, is fixed on the
boundary is

I'S[g]=f d x g'~'R (g)+2 f d'x h '~'K, (3.1)
M am

where K is the extrinsic curvature of the boundary of the
manifold BM. It is invariant under general coordinate
transformations, x ~x, which change the metric
g p(x)~g t((x ). The invariance of the action means
that some metric components are not physical as the
form depends on the coordinate system. Thus, as in the
model problem, there will be constraints. In order to
display these constraints and isolate the physical degrees
of freedom, we will write the theory in Hamiltonian
form 22 —24

It is convenient to begin by dividing the spacetime
into a family of spacelike hypersurfaces labeled by t, a
function constant on each hypersurface. The four
metric is decomposed with respect to these surfaces:

ds = —(N N;N')dt +—2N;dx'dt +h;~dx'dx~ . (3.2)

For the spacetime to be asymptotically flat, the metric
components must satisfy certain falloff' conditions.
A sufficient behavior is that in an appropriate set of
coordinates the metric components fall off like the
Schwarzchild metric at spatial infinity:

E =—f d s;(8 h; —8;h"), (3.5d)

where ~'~ is the rnomenta conjugate to h, , the metric on
the constant t hypersurfaces, D is the corresponding co-
variant derivative, and G, k(

———,'(h, (, h (+h, (h (, h—, h("().
Indices in (3.5) are lowered using h,". E is the surface in-

tegral needed in order to get the correct equations of
motion for asymptotically flat spacetimes from
Hamilton's principle. N and N' have no conjugate
momenta. This is because of the general coordinate in-
variance of the theory; not all components of the metric
are dynamical as metrics that differ by coordinate trans-
formations describe the same spacetime. Consequently
N and N' are Lagrange rnultipliers enforcing the con-
straints &0 and &, . &0 is a factor of h '~ different from
its usual form; this choice simplifies subsequent calcula-
tions. Therefore N also differs from the conventional
lapse N as given in (3.2); N =h '~ N . This results in the
Hamiltonian density having an overall weight of one as
required by the density of the original action (3.1). The
action expressed in terms of the phase-space variables is

S= dt d x ~'~h,
q
—H (3.6)

where t and t' label the boundary hypersurfaces of the
manifold. The overdot means the derivative with
respect to t.

As in the model problem, the invariances and dynam-
ics of the theory can be conveniently displayed using
Poisson brackets. The constraints are the generators of
the infinitesimal gauge transformations of the canonical
variables:

5 h;( ) —ih;, ( ) fd 'F( ')&„( )I, (3.7a)

5(;~"(x)= ~"(x),f d FX"( x)& (x') (3.7b)

computed using the fundamental brackets

I7r' (x),hk((x')] = —5$((x,x'),
5I(((x,x') = —,'(5I, 5]+5I5( )5(x,x') .

(3.7c)

~; generates infinitesimal diffeomorphisms by F' in the
spacelike hypersurface and & generates the infinitesimal
transformations of the variables caused by deformations
of the hypersurface by F in the direction of its normal.
The algebra of the constraints closes which means the
constraints are first class:

I&„(x),&,(x')] = f d x "U~~, (x,x', x")& (x") . (3.8)

=hh "(x")5,(x,x')[5(x,x")+5(x',x")],
Uo(x, x';x")=5;(x,x')[5(x,x")+5(x',x")],
UJ(x, x', x" ) = 5,"5 J(x,x')5(x', x ")

(3.9a)

(3.9b)

UI' are the structure functions of the theory which de-
pend on the three-metric; the nonvanishing ones are

Uoo(x, x ',x" )

2DJ vrj, — (3.5c) +5i5;(X,X')5(x,x"), (3.9c)
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where the spatial derivative is with respect to the first
coordinate in the 6 function. The action (3.6) is invari-
ant under the gauge transformation (3.7) provided that
N" transforms as

oFN"(x)= F "(x)
—f d'x'd x"U" (x', x"; x)N (x')F~(x")

(3.10)

and the initial and final hypersurfaces are not deformed,
F (x, t)=F (x', t')=0. Therefore the classical action is
in completely parametrized form; it is manifestly
diffeomorphism invariant.

What does this mean? The physical content of the
theory is independent of the parametrization of the fami-
ly of hypersurfaces or the choice of coordinates in them.
Because the constraints generate these gauge transforma-
tions the physical degrees of freedom must have vanish-
ing Poisson brackets with them. Given h;~ and ~' that
commute with the constraints on an initial hypersurface,
the closure of the algebra and the form of the Hamil-
tonian (3.5) ensures that they evolve such that they do
on future slices too. Therefore it is su%cient to isolate
the physical degrees of freedom on the initial data.

The physical variables are identified as those canonical
variables (h;J, ~ ) that identically satisfy the constraints
on the initial constant t hypersurface. The constraints
can be viewed as fixing four conditions on the six metric
components and their conjugate momenta. Suppose we
could make a change of variables to a set of canonical
variables for gravity in which the constraints were four
of the momenta. Then as in the model problem, the
fields conjugate to these momenta are also no longer
dynamical. They are arbitrary parameters in the theory
corresponding to a choice of coordinates. Therefore,
four gauge conditions can be given to fix this choice.
The same holds true when the constraints are written in
terms of (h;~, n'~). Four functions fixing gauge must also
be specified on the canonical variables in addition to the
constraints to reduce the system to its physical degrees
of freedom. Counting these degrees of freedom, the
twelve canonical fields have been reduced to four: two
metric components and their conjugate momenta. This
is what is expected for a massless spin-2 field.

The identification of the physical variables can be car-
ried out explicitly for the theory of linearized gravity;
they are the transverse trace-free components of the
metric perturbation and its conjugate momenta. The
Hamiltonian for linearized gravity is obtained from that
of the full theory by expanding the metric components
in perturbations around Hat space, g,~

= 6;~ + l y;~,
N =1 l+(n —

—,'y', ), N'=ln', and truncating the result
at quadratic order. The y,' contribution to the expan-
sion of X is from it being a density of weight —1. The

leading term in the expansion of N &0 cancels the sur-
face term E; the result is

H = —,
' f d x [4(vr'J) 2—(~,') +(B„y, ) —(B„y', )

—2B„y"'(8,y', —r), y', )+ n "&„"], (3.11a)

(3.11b)

(3.11c)

where we have used the convention that
(~'~) =6;k5JI~'Jvr"' with similar contractions holding for
any other tensor written in this notation. Also, in ex-
pressions for linearized gravity, indices are raised and
lowered using the flat metric 6; . The physical degrees
of freedom can be isolated using the Fourier decomposi-
tion of the perturbations on an initial hypersurface. La-
beling the Fourier transform of the spatial dependence of
the tensor fields by the wave vector k', the perturbations
can be written as Fourier components on the tensor
space. There are six different types of components for
each value of k'. three which are parallel to k', two that
are transverse to k' and trace-free, and one that is the
trace of the transverse part of the tensor. The con-
straints (3.11b) and (3.11c) fix the longitudinal com-
ponents of the momenta and the trace of the transverse
component of the metric perturbation. The variables
conjugate to these will no longer be dynamical and
therefore depend on the choice of gauge. Thus the phys-
ical part of the three-metric and its conjugate momenta
are the two independent Fourier components of each
that lie in the tensor subspace that is both transverse to
k' and trace-free, that is, y," and ~'gT

Formally, the physical variables for general relativity
are isolated using the same method illustrated above for
the linearized theory; however, unlike linearized gravity,
these variables cannot be explicitly constructed because
of the full theory's nonlinear interactions. This means
that it is very useful and necessary to be able to express
quantities in terms of the full set of fields that are
equivalent to those in the physical variables. An exam-
ple of how this can be done will be discussed for the case
of the transition functional for the interacting theory.

Having identified the physical degrees of freedom, the
quantum mechanics of the theory can be formulated in
terms of them. A basic unit in this is the transition
functional which gives the evolution of the metric
configuration specified on an initial hypersurface to that
fixed on the final hypersurface; it is the generalization of
the transition amplitude or propagator in quantum
mechanics. When the physical configurations can be ex-
plicitly found then this integral is the direct analog of
(2.9). This is the case for the theory of linearized gravi-
ty:

6[h';z, t', h;z, t]= f dy J dn'pT exp i f dt J d x 7r'pry;J h2[y, vrTT]— (3.12a)

(3.12b)
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The sum is over all paths in the physical phase space
which consists of the field configurations (m'Pr, y;)~)
where the transverse traceless metric perturbations take
on the values h ', and h, ". fixed on the constant t ' and t
hypersurfaces, respectively. The measure is the func-
tional generalization of the Liou ville measure of the
model problem. Again constant factors will not be
displayed in the measure in general, although we will
when providing an explicit formulation of the functional
integral for linearized gravity in the Appendix.

When the physical degrees of freedom cannot be
found explicitly, functional integrals that are equivalent
to those in terms of the physical variables can be formu-
lated in terms of the full set of canonical variables. This
is done by using functional 6 functions of the constraints
and gauge degrees of freedom in the measure to elimi-
nate all but the physical variables from the sum. Let us
consider this first for linearized gravity, where we can
add back in the other phase-space variables explicitly.

In this case, erg the longitudinal components of the mo-
menta are fixed by the momentum constraints (3.11c).
Their conjugate variables y;~ are fixed by specifying
three gauge-fixing conditions. Similarly, y;~, the trace of
the transverse component of the metric is fixed by the
hnearized Hamiltonian constraint (3.11b); its conjugate
variable tran is also fixed by a choice of gauge. Writing
the gauge-fixing functions as G, the following identity is
true:

1=f d&„'"dG 5[&„'''(7rL,y )]5[6 (y, ~r)] . (3.13)

Next change the variables of functional integration from
gf„'" and G' to the redundant phase space variables; the
Jacobian of this transformation is simply the deter-
minant of the Poisson brackets of the constraints with
the gauge-fixing functions:

~

[&„"',G")
~

. If we add the
resulting form of the identity into the transition func-
tional (3.12), we arrive at the following functional in-
tegral:

G[h',J, t', h;~, t]= f dy;~der'~5[&„"]5[G']
~

[A„",G']
~

exp i f dt f d x tr'~y,) H2— (3.14)

Because the constraints are enforced by 6 function, the action for linearized gravity in terms of the extended variables
can be used in (3.14). This integral over the full set of canonical variables is manifestly identical to that written in the
physical degrees of freedom.

This same procedure can be carried out when the physical degrees of freedom cannot be explicitly isolated. The re-
sulting transition functional for the full theory of gravity is

G[h;;, t', h;, , t]= f dh„der"5[~„]5[G ] ~ [~,, G ] ~
exp t f '

dt f d'x tr"h;, (3.15)

This integral is weighted by the classical action (3.6)
with the constraints set to zero. G'(n'~, h,~) are four
functions of the canonical variables fixing the gauge. In
order to do this, they must have nonzero Poisson brack-
ets with the constraints. The sum is over all metric
configurations matching the initial and final data on the
boundary hypersurfaces t and t'. Note that the gauge
choice must be consistent with this data. The deter-
minant

~ [&„,G ] ~

included in the measure is precisely
the factor needed to make it equal to the Liouville mea-
sure in the physical degrees of freedom. In order to
make this path integral meaningful, the class of metric
configurations summed over must be specified. In this
paper we shall make this integral concrete by defining it
to be over metric perturbations. One first selects a one-
parameter family of constant t hypersurfaces and
chooses coordinates on those surfaces that are asymptot-
ically Euclidean. The metric of each hypersurface is
then taken to be of the form h; =5, +ly; where y, is a
bounded function with the falloff behavior (3.4). Its cor-
responding momentum ~'~ is also bounded with falloA'
behavior m'J - 1/r at spatial infinity. The sum over
geometries matching the boundary data is then done by
summing over all fields with this behavior on each inter-
mediate hypersurface between the initial and final hyper-
surface. This sum over geometries does not include
those geometries that cannot be written in this form in
this coordinate system or those that develop singulari-
ties. However the transition functional will be useful for
cases where the initial and final metrics are almost flat

I

because then one expects the major contribution to its
value to come from nearby configurations that are also
almost flat.

Both sides of Eq. (3.15) really depend on the physical
degrees of freedom only; however, the specification of
the path integral depends on the gauge chosen. This is
because we cannot express the true {gauge-invariant) de-
grees of freedom explicitly but only in a particular
gauge. The two components of h;~ that we choose as
physical are free data on the t =const boundary hyper-
surface; the other components of h;~ must agree with the
gauge choice.

From transition functionals in the physical degrees of
freedom we can derive Euclidean functional integrals for
the ground state by continuing t ~—i ~ and then taking
the leading behavior as ~~ —ap in analogy to the
Feynman-Kac prescription in quantum mechanics.
These integrals will be convergent and therefore this
procedure is allowed if the physical Hamiltonian is posi-
tive. In linearized gravity, the Hamiltonian (3.12b) in
terms of the physical variables is manifestly positive; im-
plementing the construction procedure used in Sec. II on
the transition functional (3.12a) one obtains the Euclide-
an functional integral for the ground-state wave func-
tional for linearized gravity:

e,[h,,"]=Af dy, ',rd~Pr

Xexp d~ d x i~' z-j';~ —h2
L

(3.16)
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The sum is over all transverse traceless tensors matching
the data h;& given at the boundary ~=0 that fall oft' fast
enough at Euclidean infinity so that the action is finite.
A' is a normalization factor independent of the perturba-
tions. The equivalent configuration-space functional in-
tegral can be derived by doing the quadratic momentum
integrals:

%0[h; )=JV f dy;, exp( i,—),
d4 ~ TT 2 g TT 2

4

(3.17a)

(3.17b)

When evaluated, this integral results in a wave function-
al composed of the product of harmonic-oscillator
ground states whose arguments are the two independent
amplitudes of the transverse traceless Fourier com-
ponents for each wave vector k ' (Refs. 27 and 28).
Therefore the Feynman-Kac procedure is explicitly seen
to give the ground-state wave functional in this case.

For asymptotically flat spacetimes, the positive-energy
theorem ' states that E is positive for nonsingular vacu-
um spacetimes where h;~ and ~'~ satisfy the constraints.
This means that we can formally construct convergent
Euclidean functional integrals over the physical vari-
ables. However, the analog of the ground-state wave
functional (3.16) for linearized gravity cannot be written
explicitly because the physical degrees of freedom cannot
be explicitly isolated. Formally this state can be derived
for asymptotically flat spacetimes by first computing the
transition functional and then using the Feynman-Kac
prescription. By the positive-energy theorem, the
minimum energy metric configuration is flat space; this
means the analog of setting q' at the minimum of the
potential is to fix the initial geometry to be Oat. The
final geometry is taken to be the argument of the wave
functional. For the transition functional (3.15) one has

%0[r;~ ]= lim (JUG [6;i +lr;~, 0;5;~, —ir]), (3.18!

where t is continued to —ir in (3.15) and the data given
on the r=0 boundary is almost tlat. In (3.18) we have
written the argument of the wave functional in terms of
the perturbation from flat space y;~ for convenience. Be-
cause the functional integration is carried out before the
analytic continuation, the constraints are enforced and
the Hamiltonian is positive. Thus (3.18) will be a well-
defined procedure for obtaining the ground state; howev-
er it has several disadvantages. It does not exploit the
simplicity of the boundary conditions as (3.17) does be-
cause it cannot be explicitly written in terms of the phys-
ical variables. It cannot be easily writ ten as a
configuration-space path integral because it is necessary
to exponentiate the constraints to make it quadratic in
the momenta before performing the momentum integra-
tions. The transition functional itself is not
parametrized and thus does not display the manifest in-
variances of the theory. Equation (3.18) is our starting
point; our aim is to derive a corresponding convergent
parametrized Euclidean functional integral for this state.
Before proceeding to do this for perturbative gravity, it
is instructive to study how the ground-state wave func-
tional for the linearized theory (3.15) is parametrized.

We shall do so in Sec. IV and then treat the interacting
case in Sec. V.

IV. LINEARIZED GRA VITY

The transition from Euclidean functional integrals
over the physical variables to those over the extended
variables can be explicitly worked out for the linearized
version of Einstein's theory. This is because the physical
degr es of freedom can be explicitly identified and the
action in terms of them (3.17) is a quadratic functional.
In this section we shall review work done in a previous
paper' showing how this connection is made for the
ground-state wave functional for linearized gravity.
Boulware has also obtained this result in the linearized
theory. The results of this section will be a useful
guide to carrying out the construction of the
parametrized Euclidean integral for the ground-state
wave functional for asymptotically flat spacetimes calcu-
lated perturbatively.

Our starting point is the ground-state wave functional
for the linearized theory (3.17). What we want to do is
to add integrations over the redundant variables to this
expression until we arrive at an expression for 'Po that is
manifestly gauge invariant under the linearized
diA'eomorphisms of the full theory:

r.p= r.p+ 2a(Dp) (4.1)

and O(4) invariant. What form of the parametrized ac-
tion can we expect to get? An O(4)-invariant, gauge-
invariant Euclidean action that is also local in the per-
turbation y ~ is the linearized version of (1.3):

~p= ——,
' f d x y ~G

p
—

—,
' f d'x r "(K;,—5;,K),

,'(r„—a—;ro,—a, ro; —»
where y p is the trace reversed metric perturbation

yap yap 2 ~apy6

(4.2c)

(4.3)

We cannot end up with a functional integral for Vo in-
volving this action because, as in the full theory, it is not
positive definite. In particular, on perturbations of the
form y p

——2+5 p,

I2 ———6 d x B~X (4.4)
M

However (4.2a) is not the only gauge- and O(4)-invariant
action for linearized gravity. As in the model, there are
many others if the action is not required to be local in
the original set of variables. We shall find such an ac-
tion by adding in integrations over the redundant vari-
ables to the physical functional integral; our aim will be
to construct one as close as possible in form to (4.2a).

To add back the redundant integrations it is useful to
decompose y p into pieces corresponding to the physical
variables and pieces corresponding to the redundant
ones. As the result (4.4) suggests, it is convenient to be-

(4.2a)

G.,= ,'( a—'y—.,—S.,a,—a„y»+ a.a, r- g+ a,a, r- P,
(4.2b)
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gin by decomposing y & into conformal equivalence
classes

following arguments will be clearer if a particular gauge
is fixed. The choice

y p
——P p+2X6 p (4.5)

a (y)=ay p=o (4. 1 la)

R'"(y) =a.ay.P—a'ypP=o . (4.6)

This decomposition is fixed by the O(4)-invariant,
gauge-invariant condition when combined with the condition (4.5) fixes the P p

components up to a gauge transformation (4.1) where f
also satisfies

P is now related to y ~ by the second-order equation a f =—0. (4.11b)

R "(y)= —6a x (4.7)

Pap tap+lap+Pap+Pap ~

T L (4.8)

where the components are defined as follows: let n be
the unit vector orthogonal to the surfaces of constant ~.
Consider the subspaces of the space of tensor functions
whose elements t p, I p, P p, and P p satisfy the condi-
tions

Btp ——0, n t13 ——0, t =0, (4.9a)

a l.,=O, l:=O, f d4xt pl.,=O, (4.9b)

subject to the boundary conditions that 7=0 on the
r =0 hypersurface and at Euclidean infinity.

The perturbation P p is then decomposed as

This remaining gauge freedom can be eliminated by
fixing the value of these components on the boundaries.
Boundary conditions on the other redundant variables
must also be specified in order to define the class of ten-
sor field configurations that will be summed over. A
simple and convenient set of boundary conditions that
corresponds to those given for ground state in the physi-
cal variables (3.17) and satisfies the above requirements
on the redundant ones is to (1) take t p to match the ar-
gument li; of the wave function at &=0, (2) require
that 7=0 and the spatial part y;J of the remaining com-
ponents vanish there, (3) require that the gauge condi-
tion (4.11a) be satisfied on the boundary, and (4) take all
components of P p and X to vanish rapidly enough at
Euclidean infinity so that the action is finite. On
configurations satisfying these four conditions, the sur-
face term in the action (4.10) vanishes.

In terms of the decomposition, the action i2 (3.17b) in
the physical degrees of freedom is

asap 0, n Pp ————0, f dxt Pgp 0, ——(4.9c)
i, =-,' f d x(a t p)'. (4.12)

f dxtPP =0, f dxlPPp 0, ——

d4x T~~ L =0.
(4.9d)

If the orthogonality conditions are required to hold for
all tensors in the subspaces, then the decomposition of

(4.8) is unique. A more explicit version of the
decomposition will be given in the Appendix. The con-
dition (4.6) is seen to fix P p

——0. The tensors t p corre-
spond to the physical variables y;~; the rest are redun-
dant.

The utility of this decomposition is that under gauge
transformations (4.1) t p, l p, and X are unchanged.
Since the action (4.2) is a gauge invariant, it can be ex-
pressed in terms of these variables:

I = —,
' f d x[(a t p) +(a I p) —24(a X) ]

M

——,
' f d x n a [2(nPlpz) ——', (nPni'lpga) ] . (4.10)

Using this decomposition of the metric we can
proceed to add in the redundant degrees of freedom by
inserting in (3.17) identities composed of gaussian in-
tegrals over the gauge-invariant quantities and gauge-
fixing 5 functions over the noninvariant ones. Although
the final answer is independent of the gauge choice, the

Next, we want a positive-definite action quadratic in the
redundant variables that is gauge invariant and O(4) in-
variant to use in forming Gaussian integrals. If, in addi-
tion, we require this integral to be at most quadratic in
the derivatives, the most general form of the action that
satisfies these requirements is

Itl= —' f d x[(a l p) +a(a X) ], (4.13)

where a is an arbitrary positive constant. O(4) rotations
that mix n with the spatial unit vectors I' will mix the
components t I3 and l &,

' therefore the coeKcients of
these terms must be the same if O(4) invariance is to be
preserved in the full action. This does not similarly re-
strict the coefficient of (a X) as it transforms as a sca-
lar. The constant a must be positive, however, for the
action to be positive definite.

As in the model problem, integrals over the action
(4.13) and the gauge-fixing condition (4.11a) can be add-
ed to the Euclidean functional integral for the ground-
state wave function by forming the appropriate combina-
tions of Gaussians and 6 functions. In this case we want
the identities

yea1=f dl pdP pdX6[@ (P)] p exp( I(][1,X]), —
of P

(4.14a)
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(4.14b)

0.p=0 p+25 ~ . (4.15)

As for the Faddeev-Popov determinant, this one is com-
puted using the spectrum of the operator determined for
the boundary conditions that co vanishes at ~=0 and at
Euclidean infinity.

In (4.14) the functional integrations are over the
configurations that we have specified by the decomposi-
tion and the boundary conditions. A specific measure is
required for these identities to be true. This will be
given explicitly in the Appendix for calculating these in-
tegrals using mode amplitudes. The determinant in
(4.14a) is the Faddeev-Popov determinant of the opera-
tor constructed by varying the gauge-fixing term
(4.11a) with respect to the gauge parameter f (4.1).
The boundary conditions for this operator are deter-
mined by those on the gauge parameter. In order to
keep the boundary conditions fixed, f =0 at v=0 and
at Euclidean infinity. The determinant is calculated us-
ing the spectrum of this operator subject to these same
boundary conditions. The determinant in (4. 14b) is of
the operator constructed by varying the condition fixing
conformal equivalence classes (4.6) by an infinitesimal
conformal transformation

These determinants can be conveniently represented
using functional integration over Grassmann variables. '

Let —i C„and C" be eight real anticommuting
Grassmann fields. Then the Faddeev-Popov determinant
in (4.14a) becomes

= f 1C&dC" exp( I("[C—, C ]), (4.16a)

(4.16b)

The determinant in (4.14b) can also be exponentiated in
a similar manner; however, we will choose to leave it in
the measure.

Inserting these identities into the Euclidean functional
integral and exponentiating the Faddeev-Popov deter-
minant using (4.16) we arrive at the following expression
for the ground-state wave function:

where 6,' 'N" is the value of the gauge-fixing function on
the linearized gauge transformation (4.1) with C" as the
gauge parameter. The boundary conditions needed to
compute the spectrum of the operator are implemented
by requiring that C„and C" vanish at r=0 and Euclide-
an infinity. Again, a particular measure is needed for
this identity to hold. For the gauge-fixing choice (4.11a),

(4.17)

R( )

0'o[hj ]=f dP„+XdC„dC "5[&5 (P)]5[R ' (P)] exp( —(I2[Q,X]+I("[C,C])] (4.18)

Here I2 is the sum of i2 and I(1

I = —,
' f d x[(B t ii)+(8 1 p)+a(BX) ], (4.19)

144 c}2
(4.20)

where a is any positive constant. The integral is over all
ten components of P ii and over the linearized piece of
the conformal factor 7 in the class of configurations de-
scribed previously. Thus the integral is of the form of
one over all gauge inequivalent metrics in a conformal
equivalence class fixed by R"'=0 plus an integration
over the conformal factor.

The action (4.19) is gauge invariant, O(4) invariant
and, for positive a it is positive definite so that the in-
tegral (4. 18) converges. This action cannot be made to
agree with the action I~ (4.10) because this would re-
quire that a be negative and lead to a divergent function-
al integral. The action Iz when a is set to 24 is exactly
what would be obtained formally from Iz by conformal
rotation; that is, rotating grig.

As suggested before, the action I2 is not local in the
original metric perturbation y &, however, it can be ex-
pressed in terms of it

Iz[l']= Iz[X]

It is physically equivalent to I2, gauge and O(4) invari-
ant, and positive definite for a ~0. Thus at the expense
of locality, one can construct convergent Euclidean func-
tional integrals for gravity that manifestly display the in-
variances of the theory. There are many different forms
of these convergent Euclidean functional integrals as the
nonlocal action needed is not unique; a is not fixed by
the process. These integrals are very similar to those ob-
tained by the Gibbons, Hawking, and Perry prescription
of conformal rotation applied to the linearized theory.
However, the Gibbons, Hawking, and Perry prescription
omits the Faddeev-Popov determinant

~

5R '' /5' of
the decomposition fixing 6 function in the measure. Our
analysis shows that this factor is needed for the mani-
festly invariant Euclidean integral to equal that given in
terms of the physical fields.

We have derived (4.18) directly from the Euclidean
functional integral for the ground state given in terms of
its physical variables. This is not the only way to arrive
at this integral. Alternatively, we could have begun by
first parametrizing the Lorentzian transition functional
(3.12a); however, instead of aiming for its usual form
weighted by the local action S2 we construct one weight-
ed by the Lorentzian version of I2. This parametrized
Lorentzian functional integral can be derived along the
same lines as the Euclidean one; the result is
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gg (I)
G[h';, r, t', h r, t]= f dp ttdXdC„dC"6[4 (p)]6[R"'(p)] exp(iS&[p, X]+iS(]"[C,C]), (4.21)

where the class of configurations summed over is
specified by the Lorentzian analogs of the decomposi-
tions (4.6) and (4.7), the gauge-fixing condition (4.11),
and boundary conditions on both the initial and final hy-
persurface. The action Sz is the Lorentzian version of
(4.19)

S2 ————,
' f d x[(B&t tt) +(B&l &) +a(B&X) ] . (4.22)

The ghost term S(" is the analog of (4.16b) where the
gauge transformation is done using the Lorentzian signa-
ture. The usual form of the Lorentzian functional in-
tegral weighted by the action S2 can be recovered by set-
ting a = —24 and doing the integral over g using the 6
function of R'". By choosing a positive, the analytic
continuation of t ~—i r can be carried out on (4.21) be-
cause the corresponding Euclidean action is positive.
Taking the initial data to vanish and the limit ~~ —~
results in precisely the same Euclidean functional in-
tegral for the ground state (4. 18) obtained directly.

V. PERTURBATIVE GRAVITY

In the previous section we showed how convergent
Euclidean functional integrals for linearized gravity
could be derived by appropriately adding integrals over
the redundant variables to the Euclidean functional in-
tegral in terms of the physical variables. We found that
in order to maintain the convergence of the integral we
were led to a parametrized action that was not local in
the original metric perturbation. This motivates us to
look for a convergent Euclidean functional integral
weighted by a nonlocal action for the ground-state func-
tional (3.18) of the full theory, where it is not possible to
parametrize the physical functional integral directly.
We will derive this in three steps. (1) We will
parametrize the Lorentzian transition functional (3.15) in
phase space and perform the momentum integrations to
get the parametrized local Lorentzian transition func-
tional in configuration space. This will be carried out
using Becchi-Rouet-Stora (BRS) invariance following the
method of Fradkin and Vilkovisky. (2) Then, as suggest-
ed at the end of the previous section, we will find an al-
ternate Lorentzian functional with a nonlocal action that
equals the first term by term in perturbation theory.
This new Lorentzian functional integral will be con-
structed so as to have manifestly positive Euclidean ac-
tion. (3) We shall then use this alternate transition func-
tional in the definition of the ground state (3.18). Conse-
quently the rotation of t ~ —i ~ can be carried out term
by term. Doing this will result in a manifestly conver-
gent parametrized Euclidean functional integral for the
ground state.

The basic idea is to parametrize the Lorentzian func-

IP„(x),C (x')I = —6„'(x,x'),

[ P'(x ), C „(x'
) I

= —6„(x,x ' ),

I P„(x),.V (x') I = —6„'(x,x'),
(5.1)

where the Poisson brackets of the Grassmann fields are
anticommuting, IP„,C "I =

I
C', P„I. The Poisson brack-

ets of quantities containing both commuting and an-
ticommuting variables can be computed using the rela-
tion

[A,BCI=IA,BjC+(—1) " BIA, CI, (5.2)

where the parity of a quantity, for example o. z of 3, is
odd if it contains an odd number of Grassmann variables
and even otherwise.

The next step in constructing the transition functional
on the extended phase space is to define the BRS trans-
formation on the extended variables. It generalizes the
local gauge transformations of general relativity to a glo-
bal transformation that mixes the commuting and an-
ticommuting variables. The generator of this transfor-
mation is

I

tional integral (3.15) in phase space by introducing ex-
tra fields to exponentiate the functional 5 functions and
determinants. The gauge conditions used in (3.15) are
given on the canonical variables; one would like to gen-
eralize these to include the additional variables so that
calculations can be done in other gauges. For this gen-
eralization to be correct, the parametrized integral must
be manifestly independent of gauge choice and must
equal the original transition functional in a canonical
gauge. Fradkin and Vilkovisky proved that this is
indeed the case for gauge theories and gravity in a series
of papers. ' ' It is useful to review how this connec-
tion is made for asymptotically Hat spaces and to discuss
the boundary conditions needed in the parametrized
transition functional.

The canonical phase space (h;1, n'~) is extended by
adding the lapse and shift X"' and their conjugate mo-
menta P„. In addition, eight real anticommuting
Grassmann fields C" and —i C„and their conjugate mo-
menta, P„and iP" are also added. The Grassmann pari-
ty, o, of the anticommuting variables is odd and that of
the commuting variables is even. There is a new struc-
ture on this extended phase space, the ghost number. P"
and C" have ghost number 1 and P& and Cz have ghost
number —1. The rest of the variables h;~, m'~, 1V", and
P„h eavghost number 0. Quantities composed of prod-
ucts of these fields have ghost number equal to the sum
of that of their components. The corresponding Poisson
brackets are

0= f [ i P"(x)P„(x)+C"(x)W—„(x)—,'C "(x)C"(x')U~„(x',—x;x")P(x")], (5.3)
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where we have introduced the convention to be used in this section that all spatial variables x,x, etc, repeated under
the integral sign are to be integrated over. The U, ,„are the first-order structure functions (3.9). 0 has ghost number
1 and it follows by the algebra of the constraints and (5.2) that it is nilpotent, {II, Q j =0. The BRS transformations of
the variables are given by their Poisson brackets with 0:

{h;J(x),Be}= f C"(x') {h;,(x),W„(x') je, (5.4a)

{ir' (x), Be}= f [C"(x'){ir' (x),A„(x') j
—

—,
' C"(x')C'(x"){tt' (x), Ut,'„(x",x';x ) }P (x )]e,

{N4(x),Be}=iP'(x)e, {P„(x),fir} =0,
{C"(x),Aej = f —,

'C'
( x')C t(x")U" (x",x', x)e,

{P„,Ae j = —&„(x)e+f C'( x')U „t( x', x; x")'P (x")e,

{C„(x),Qe j =iP„(x)e, {P'(x), Qe j =0 .

(5.4c)

(5.4d)

(5.4e)

(5.4f)

The constant anticommuting parameter e is introduced so that the transformation preserves the Grassmann parity of
the variables. From its form, one sees that these transformations will contain those of the canonical variables (3.7)
with C"e as the transformation parameter.

The action needed to form the transition functional on the extended phase space is the generalization of the action
(3.6) to the extended variables. It is found by requiring it to be BRS invariant and have ghost number 0. The general
form of this action is

SFv ——f dt([tt"(x)h;, (x)+P„(x)N "(x)+'i (x)C„(x)+C"(x)P„(x)] E+ {&b—, Qj ) .
1

(5.5)

N is an arbitrary functional of any of the variables on the extended phase space such that it has ghost number —l. It
is the analog of the gauge choice in the usual Hamiltonian form. This is more apparent if we take a specific form for

N = f [iC„(x)g"(x ) +P„(x)N" (x )], (5.6)

where y" is an arbitrary function with ghost number 0 of the extended set of variables. It is convenient to restrict it
to be independent of the momenta P" and P„. The Poisson brackets of &P with 0 is then

{C&, A} = f ( —N"(x)[W„(x)—C'(x') U~„(x',x;x")Pp(x" )]—iP„(x)P"(x) P„(x)(p"(x—)

+i C„(x){cp"(x),&,(x') j C"(x')+C„(x){rp"(x),P, , (x') j'i '(x')

,'i C„(x)C~—(x')Ct'(x"){cp"(x),U', , (x",x', x'")}P~(x"')) . (5.7)

With this choice, the action (5.5) contains terms corre-
sponding to the functional 6 functions of the constraints
and gauge-fixing condition and measure as well as addi-
tional terms that give dynamics to the extra fields. The
integrand of (5.5) will transform into itself under BRS
transformations. This is because (1) the factor of the
form pdq is canonically invariant, (2) E commutes with
II, and (3) { I&&, Q},Q} =0 by the Jacobi identity because
0, is nilpotent.

The BRS transformation will also act on the values of
the variables fixed on the t and t' constant boundary hy-
persurfaces. In general, initial and final data for half of
the variables is specified to determine the classical evolu-
tion of a Hamiltonian system. For the corresponding
classical action (5.5) to be BRS invariant, a consistent
BRS-invariant set of such data must be selected. We
shall choose a set of boundary conditions that generalize
those used in the physical transition functional (3.15).
The three-metric h, equals its values given on the t and
t' constant hypersurfaces as before. Next, note that un-
der an infinitesimal BRS transformation (5.4a), com-
ponents proportional to C" and C& are added to h;~.
Therefore C" and C„must vanish on the boundary to

G[h, t', h;, t]= f Dp exp i f dt SFv (5.8a)

where the measure is

Dp =d ~"dh;~dN"dP„d C"d C„dP "dP„ (5.8b)

and the sum is over all phase-space paths subject to the
boundary conditions already discussed previously. The
measure in (5.8b) is the usual canonically invariant Liou-
ville measure on paths in the extended phase space. Be-
cause all the variables are dynamical there are no diver-
gences arising from summing over equi valent field
configurations. This is because the BRS transformation
is not a local gauge transformation but a global one.
The transition functional (5.8) is BRS invariant because

preserve the initial and final values of the three-metric.
In order that C„=O be unchanged by BRS transforma-
tion, the condition that P„=O on the boundaries is also
required as seen by (5.4fl. The remaining variables tt'J,
P', P„, and N" are not fixed on the boundaries and will
be integrated over on the initial hypersurface.

The transition functional on the extended phase space
1s
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both the action and measure are invariant. As seen in
the case of the physical transition functional (3.15), the
gauge choice + must be compatible with the data fixed
on the boundaries.

How is the transition functional on the extended set of
variables related to (3.15)'? Fradkin and Vilkovisky
proved a general theorem ' that for theories with first-
class constraints such as Yang-Mills theories and Ein-
stein gravity, the value of this BRS-invariant transition
functional is independent of the choice of N. In addi-
tion, by appropriately choosing g" (5.8) reduces to (3.15)
when the extra phase-space variables are integrated over.
Specifically, one takes y"=1/PG" where P is an arbi-
trary constant and rescales C"=/3C~", P„=PP&. The
measure of (5.8) is unchanged by this scaling because one
variable is Grassmann and the other is not. Because of
the Fradkin-Vilkovisky theorem, the functional integral
is independent of the value of P. This allows one to set

P=O. Doing the integrations over the extended vari-
ables, one now obtains the expression for the transition
functional in the physical variables (3.15). Therefore the
transition functional (5.8) is equal to the physical transi-
tion functional for arbitrary choices of gauge including
those involving the redundant variables. Thus, (5.8)
displays the equivalence of canonical and covariant
gauge choices for gravity.

We have obtained a general parametrized path in-
tegral for the physical transition amplitude. Because it
is quadratic in the momenta, the integrations over these
variables can be performed to arrive at the equivalent
parametrized configuration-space transition functional.
This is most easily discussed by restricting cp" to be in-
dependent of the momenta ~" although it can be shown
for more general cases. ' ' One shifts the momenta ~",
P', and P„ in the action (5.6) by the appropriate com-
bination of variables to bring it into quadratic form:

m'j(x)=~"(x)+h' [K'j(x)—h'jK(x)] — C (x), C (x'),l 5ip"(x ) o

fih, , (x') (5.9a)

P"(x)=P"( x) i C "—(x)+ f [ ——,'C~(x )C "(x')CP(x")[y (x ), U",(x",x', x) I iN'(x")C—~(x')U", (x',x";x)], (5.9b)

P„(x)=P„(x)+iC„(x)+J C,(x')[q& (x'),P„(x)I, (5.9c)

where K;~ is the extrinsic curvature

1
Kij =

0 F12 (hij 2D(;Nji)
2N h

(5.9d)

(K;j differs from the usual form because N is a density of weight —1.) The additional term in (5.9a) arises because
the Poisson brackets [y,&„] in (5.7) is linear in the momenta. After this shift the action becomes

It
S„v= dt [—t P„(x)P"(x) NG;, i, im"(x—)vr"'(x)]+St (5.10a)

t

SL —— d xN h K'iK~ —K +R h — dtE

+ J dt( P„(x)C&"(x) i C„(x—) [@"(x),A', (x') I ~,&C "(x')

—i C„(x)[@"( )x, P (x') I [C (x') Ni'(x")C "(x )Ui~(x—",X;x')]) . (5.10b)

The notation [&0"(x),& (x') I ~,~
means to evaluate the

Poisson brackets at the classical value of
m,'~~ ———h ' (K'j —h'jK). SL is the sum of the classical
Lorentzian action for Einstein's theory, the integral over
the Arnowitt-Deser-Misner (ADM) energy and contribu-
tions from ghost terms. The gauge choice

+P —N P gP (5.1 1)

has been redefined to simplify the form of the ghost
term. Performing the integrations over rr'j, P", and P„
in (5.8) using the action (5.10a) results in a contribution
of the determinant

~

N G;ji,i ~

' to the measure.
The transition functional is now over the configuration

space variables. However the part of (5.10b) that gives
the Faddeev-Popov determinant still appears in the
Hamiltonian form; the infinitesimal gauge transforma-
tion of the gauge-fixing term is implemented by the Pois-
son brackets with the constraints. In order to convert
this term into Lorentzian form, where infinitesimal

gauge transformations can be implemented by Lie
derivatives, we need to make another change of vari-
ables. This change can be found by comparing the result
of performing an infinitesimal Lorentzian gauge transfor-
mation parametrized by the vector f",

fijg.~=f&a,g.ti+g.,e?3f&+gtj, ad&, '
(5.12)

Fl f I +NIf 0 Po Nof 0 (5. 13)

Therefore, in order to rewrite the Poisson brackets in
(5.10b) as a Lorentzian gauge transformation the vari-
able C" has to be changed as indicated in (5.13); this
change of variables will introduce a factor of N in the
measure. The final result for the pararnetrized transition
functional is

to the result of performing a Hamiltonian one (3.7)
parametrized by the vector F". What choice of F" will
give the same transformation of the metric using (3.7) as
f" does using (5.12)? The answer is
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G [h, , t '; h;, , t) = f DP 5[4")exp( ist ),
where

1 S =S[g]—f dt E+Ss"[g,C, C],
S"= dt —i „x 6@+"x

(S.14a)

(5.14b)

(5.14c)

and S(" is the quadratic Lorentzian ghost term corre-
sponding to (4.16b). The Sk and Sg" are the contribu-
tions to SI of order k —2 in l that come from the expan-
sion of the curvature and ghost terms in (5.14b) to the
appropriate order in the metric perturbation. The ex-
ponential of the interaction term is then written as its
power series

1Dp=,
I
N'G;, „, dh; dN"d C"d C„

E is given by (3.5d) and S(g) is the Einstein action (3.1).
The measure is

G[y,', t';y;, , t]
oo

= f Dp 5[&5"]exp[i(sq+S)" )] g (St )'
gl

(5.16)

=g (g) ~ dg &dC "dC„. (5.14d)

SL, =S,[y J+S("[C,C]+St[r C C]

s, = y s.[r]+SE"[r ~ c']
k=3

(S.1Sa)

(5.15b)

where S2 is the Lorentzian action for linearized gravity
corresponding to the linearized Euclidean action (4.1)

I

The notation 5~4" means to perform the infinitesimal
transformation (5.12) on the gauge-fixing term with C"
as the vector field. The action and measure have been
rewritten in terms of the metric g ~. The integration
over P" has resulted in a gauge-fixing 6 function in the
measure of (5.14a). The boundary conditions on the
remaining variables are C"=C„=O and h;~ matches the
values on the t and t' constant hypersurfaces; the N" are
integrated over on the initial hypersurface.

By the series of steps sketched above we have derived
the Lorentzian transition functional in its fully
parametrized form. It is local in the metric variables

g ~ and manifestly invariant. To make this path integral
definite, we shall take the class of tensor field
configurations summed over to be defined in terms of
metric perturbations as discussed in Sec. III for the tran-
sition functional (3.15). Choosing an asymptotically flat
coordinate system, the metric is written as g &

=g &+ly &. The initial and final data are taken to be
of the form h; =6;~+ly;~ and the sum is taken over all
bounded perturbations y & with the fall-oF behavior (3.4)
that match this data at t and t'.

The transition functional (5.14a) defined on this class
of metric configurations cannot be computed exactly but
we can compute its asymptotic expansion in powers of I
using perturbation theory. To do this, the action (5.14b)
is expanded in the metric perturbation ly & and separat-
ed into a quadratic piece and an interaction piece which
contains the higher-order terms. One finds that

and the order of functional integration and integration
over spacetime points is interchanged. The terms in-
volving g & in the measure Dp (5.14d) are also expanded
in powers of l. For simplicity we will assume that +" is
linear in g &. The 6 function of the gauge-fixing condi-
tion will then be linear in y &. If N is not linear in the
metric, then its 6 function will be more complicated to
evaluate; basically additional terms will enter into the
measure of the functional integral from the change of
variables needed to make it linear.

The leading-order contribution to this Lorentzian path
integral for the transition functional is simply that for
the linearized theory. The changes to the transition
functional introduced by the interactions are computed
perturbatively to the desired order in l by including the
appropriate contributions to the transition functional for
the linearized theory from Gaussian integrations over
S2+S(" weighted by the interaction terms. In order to
explicitly carry out these computations to arrive at phys-
ical quantities, the theory needs to be regulated and re-
normalization counterterms need to be introduced.
However, as stated in the Introduction, we are concen-
trating on finding formal integrals expressing the kine-
matics of the theory and therefore will assume that the
standard procedures for handling the divergences in
these quantities can be implemented as needed.

Given the transition functional as computed in pertur-
bation theory the next step is to construct an alternate
transition functional that is (1) identical to (5.16) order
by order in perturbation theory and (2) convergent when
t ~—i ~. The observation that the leading-order term in
(5.16) is linearized gravity and the discussion of Sec. IV
suggest the following approach to finding a nonlocal ac-
tion for the full theory that is physically equivalent to
the local invariant one (5.14b). First decompose the
metric perturbation into the equivalence classes of the
linearized theory (4.5), y & P&+2Xti ~

—where X=O on
the boundaries. Using this set of variables (5.16) be-
cornes

G[y,'", t';y, , t)= f D"p'5[+"]5[R ' (P)]e px(i S[2Q,X] +i S("[ CC]) g ,
(St[/, X,—C,C]~

g
'I

(5.17)

where S2 and SI are now written in terms of the decom-
position (4.5) and

Dp'= [g (g) ] ' dP pdX d C"d C„. (5.18)

The factors of g in (5.18) are also written in terms of the
decomposition (4.5). This form of the transition ampli-
tude is identical to (5.16) as it differs only by a change of
variables. To lowest order in 1, (5.18) is the transition
functional for linearized gravity weighted by the local
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action S2. In Sec. IV we argued that the alternate tran-
sition functional (4.21) weighted by the nonlocal action
Sz (4.22) is physically equivalent. Moreover, when a is
positive, the Feynman-Kac procedure implemented us-
ing this alternate functional produces a manifestly con-
vergent Euclidean functional integral for the ground
state. Therefore we will construct the alternate transi-
tion functional by using S2(Q, X) instead of Sz(Q, X) in
the exponent of (5.17) and then appropriately modifying
the interaction terms so as to obtain the same result. It
is convenient to set a =24 in S2 to match the absolute
value of the coeScient of the corresponding term in S2.
Then we will demonstrate the equivalence.

The next step is to find the correct interaction terms
for the alternate transition functional. This can be done
by studying the form of the Gaussian integrations over P
in (5.17). An arbitrary interaction term in (5.17) can be
written as

(S,[y,X, C, C]) = f X(x, )X(x, )
. X(x„)

XF(P, C, C;x i,x2, . . . , x„), (5.19)

where F is a function of the other variables and will in

general contain 6 functions of the coordinates and par-
tial derivatives. The integrations over X in (5.17) are
then of the form

F[P,C, C]=f dXexp +6i f d x(B X)2
M

X X&] X+2 '''Xx„
XF(P, C, C;xi, xz, . . . , x„)]. (5.20)

The sign of the 7 term in Sz has opposite sign from that
of S2. Because X=o on the boundaries, the classical
contribution to this integral vanishes. The only contri-
butions to this integral will come from the fluctuations
around the classical path; this means that only interac-
tion terms even in g will contribute as Gaussian in-
tegrals over an odd number of variables vanishes. If n is
even then the integration over X in (5.20) will give a fac-
tor of ( —1)"~ relative to integration over the same in-
teraction term weighted by an exponential with opposite
sign. If we now modify the interaction terms by taking
7 to iX, as well as changing the sign in the exponent
then the added factor of (i)" will give the same contribu-
tion; consequently

F[P,C, C]=f dXexp 6i f—d x(B X) f (i) X(xi)X(x2) X(x„)F(Q,C, C;x, , x2, . . . , x„) .
M

(5.21)

A transition functional weighted by a nonlocal action that is physically equivalent to (5.17) in perturbation theory is
thus

G[)",, t', 1';, t]=f DV'&[+"]&[R "(0)]e p(tS2[W, X]+ S3")
gf

(5.22)

where the factors of X that appear in the measure (5.18) are also taken to iX The m. odified action in (5.22) is complex;
however, the resulting transition functional is the same as that weighted by the real action because only terms even in
7 contribute to it.

Now the rotation of the time coordinate can be carried out before functional integration order by order in I because
the resulting quadratic action I2 is manifestly positive definite. The resulting parametrized Euclidean functional in-
tegral for the ground-state wave functional (3.18) is

+0[@,"]=f Dp'5[ @"]5[R"'( P ) ]exp( Iz If" ) g (I—t [P,i X—, C—, C ] )~
gf

(5.23)

where Iz are the Euclideanized interaction terms corre-
sponding to (5.15b). This integral is convergent and O(4)
invariant; it does not manifestly display the coordinate
invariance of the theory because the conformal factor
was isolated using the linearized scalar curvature. How-
ever, its action is simply related to the manifestly gauge
invariant one of the full theory.

Can we recover a parametrized, convergent Euclidean
functional integral that is manifestly diffeomorphism in-
variant? The answer is a qualified yes. One can do so
by using an alternate Lorentzian perturbation theory to
evaluate (5.14); however, because this new theory is very
nonlocal in terms of the original perturbations, it does
not obviously reproduce the same physical integral. To
get this alternate Lorentzian perturbation theory one
first forms the identity

1=f dn 5[R(&-'g)], (5.24)

6 [h 1, t '; h;J, t] = f Dp 5[+ ]5[R (g ) ]exp(iSL ),
(5.25a)

where the scalar curvature is evaluated on 0 g &. The
integration over 0 is defined to be over configurations of
the form Q = 1+IX where 7- 1/r at spatial infinity and
vanishes on the boundaries. The metric is assumed to be
perturbative, g &

——g &+Ih &, with appropriate falloff
behavior as before. This identity is true if the scalar cur-
vature of g & is sufficiently small. One then inserts (5.24)
into (5.14) and then changing variables to g ~

——0 g p
one obtains
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where

D = ( ) fl id dXdCdC6R
g p P

I

(5.25b)

Si is (5.14b) evaluated with g i3
——6 g &q. One can in

principle define this integral in a perturbation expansion
in l using g ii ——i) ii+ lg &, Sl= 1+IX; however, in prac-
tice evaluating it is difficult because one has to solve a
nonlinear equation for P & in order to integrate over the
decomposition fixing 6 function. If one proceeds by
solving this equation for one component of P ii in terms
of the others as a power series in I, one can then similar-
ly expand the action and measure by performing this
substitution. The leading order of (2.25a) is found to be
the transition amplitude for linearized gravity weighted
by its action Sz[Q,X]. One again can make the same ar-
guments of (5.18)—(5.22) to derive the corresponding
nonlocal action. The resulting Euclidean functional in-
tegral in this case is then

Oo[y; ] = f DP, 6[&&"]6[R (g )]exp( I ), —(5.26a)

where

I=I [g, 0]—f dr E [(b, i X]+Is"[p, i X, C. , C ] . (5.26b)

I [g, Sl] is the Euclidean action for Einstein gravity (1.6)
evaluated for 0=1+ii,7. E and I " are the appropriate
forms of (3.5d) and (5.14c) and again, factors of X are
taken to i7 in the measure. The above functional in-
tegral is to be evaluated perturbatively in the same
manner as (5.23). The difficulty with this form is check-
ing that it equals (5.23) order by order in perturbation
theory; that is, that the interactions obtained by solving
the decomposition-fixing 5 function perturbatively in @ ii
give the same results as the local Lorentzian perturba-
tion theory. That it does can be verified to the next or-
der in / after linearized gravity explicitly; the equiv-
alence was checked with the help of the MACSYMA
ITENSR package. However, it is difficult to carry this
out to higher orders. This Euclidean functional integral
is manifestly diffeomorphism invariant and convergent.
It is weighted by a nonlocal action different than that
used in (2.23) and it is plausible, though not explicitly
verified to all orders, that it equals the functional in-
tegral in the physical fields. We thus have obtained two
prescriptions for Euclidean functional integrals with
manifestly positive actions. This emphasizes that the
form of the convergent parametrized Euclidean function-
al integral is not unique when its action is nonlocal in
the original set of variables.

VI. CONCLUSION

When the Euclidean action for a theory with invari-
ances is unbounded below, Euclidean functional integrals
for its quantum states may or may not exist. Whether
or not they do is determined by the action for the theory
expressed in the physical degrees of freedom. In the
case of linearized gravity, the physical degrees of free-
dom can be explicitly identified and the Hamiltonian in
terms of them is positive definite. One can proceed to

quantize the theory in its physical variables and indeed
can form convergent Euclidean functional integrals in
terms of the transverse traceless metric perturbations.
Although the physical variables cannot be explicitly iso-
lated for Einstein's theory in asymptotically flat space-
times, the Hamiltonian is positive for metric
configurations that satisfy the constraints by the
positive-energy theorem. Again this means that conver-
gent Euclidean functional integrals for the theory can be
given in terms of the physical variables. However, in ei-
ther theory, because of the unboundedness of the Eu-
clidean action, one cannot find expressions equal to
those given in the physical fields involving an action that
are manifestly invariant and local in the full set of vari-
ables. Still, one can find useful parametrized forms of
the Euclidean integrals that come close to achieving
these goals.

For linearized gravity, we can recover functional in-
tegrals weighted by a manifestly gauge- and O(4)-
invariant Euclidean action. It is even local in the set of
variables P„ii and X. However it is nonlocal when ex-
pressed in the original metric perturbation y &. The ac-
tion weighting these convergent Euclidean functional in-
tegrals is the same as would be obtained by conformally
rotating X in the classical Euclidean action (3.1) for
linearized gravity.

For the case of asymptotically flat spacetimes, the task
of finding convergent parametrized Euclidean functional
integrals is more difficult because the physical variables
cannot be isolated explicitly. However, as we showed,
one can proceed by using the manifestly invariant form
of the Lorentzian transition functional as a guide. One
looks for a parametrized transition functional weighted
by an alternate nonlocal action that equals the first when
both are evaluated in perturbation theory. There are
many such nonlocal actions which will have this proper-
ty. In addition we require that this action be chosen so
that the Euclidean functional integrals corresponding to
the alternate transition functional will be manifestly con-
vergent. In Sec. V we demonstrated that one such
choice resulted in manifestly convergent, O(4)-invariant
Euclidean functional integrals. This action was not
manifestly diffeomorphism invariant; however it was
simply related to the manifestly invariant one of the full
theory. This particular form of the Euclidean functional
integral is local in the variables P ~ and X of the linear-
ized theory used to derive it; in this sense it is almost lo-
cal in the metric perturbations y &. This property
makes it an especially convenient form for calculation.

Can convergent Euclidean functional integ rais for
physical quantities be weighted by manifestly
diffeomorphism invariant actions? The procedure by
which (5.24) was derived suggests that such integrals
correspond to another choice of a nonlocal action.
However, there is a price to be paid; such integrals are
highly nonlocal in the metric perturbations. This makes
explicitly verifying their equivalence to those expressed
in the physical degrees of freedom via perturbation
theory difficult. However, as discussed at the end of Sec.
V, the equivalence can be verified to hold through the
first order in the interaction for the conformally rotated
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action of the full theory.
How are these Euclidean functional integrals for both

linearized and perturbative gravity related to the confor-
mally rotated ones of Gibbons, Hawking, and Perry' ?

Their form suggests that these functional integrals could
be obtained formally by an appropriate distortion of the
contour of integration over g to i X. However, this
prescription of conformal rotation begins with an Eu-
clidean functional integral that is manifestly divergent
and consequently not well defined. In addition, it is
hard to get the correct Jacobian factor in the measure by
this method. Moreover, we showed that there are many
more prescriptions for convergent Euclidean functional
integrals than this one as there are many possible posi-
tive nonlocal actions. A more satisfactory way to view
these integrals is the one presented in this paper; they
arise naturally in the course of quantizing a theory with
invariances. First one isolates the physical degrees of
freedom. Then one constructs functional integrals for
physical quantities in terms of them. Finally one adds in
integrations over the redundant variables to recover
manifest invariance. When doing this for quantities ex-
pressed as Euclidean functional integrals, there is an ad-
ditional restriction on the parametrization process; one
is only allowed to add back in manifestly convergent
quantities. However, the result of this process is mostly
determined by the form that is desired for the final
answer; the content of the theory is contained in the
functional integrals given in the physical variables.
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APPENDIX: THE MEASURE

To show that the functional integrals in (4.15) and
(4.16) have a definite and concrete meaning, we shall
evaluate the factors making up the measure dP pdX,
etc. , in a particular set of "coordinates on the function
spaces" with the specific gauge choice (4.1la). To make
the mode sums discrete, we will take our spacetime to be
a finite box of volume I. interior to the planes &=0,
~= —I., and x ' =+I. /2. We shall then use the
coefFicients of the Fourier expansion of the integration
variables in this box as our coordinates on the function
space. The expansion is

2

& p(x)=&"p(x)+ g g'&"(kit''p)(k, x),
v=1 k

3

1 p(x)= y y'l "(k)l( p'(k, x),
v=1 k

4

v=1 k

P„p(x)=g' P (k)(b p(k, x),
k

(Al)

s (k, x) = sin(kor)sin(k;x'), k )0
L 2

= 2
sin(k()r)cos(k;x'), kI 3

L 2

l ko
p (k,x) = ~s(s)r(k, )xn + s(k, x)s

p p(k, x)= [(s~B~) s(k, x)n np
k

—2s~r)~sn( sp)+s's sp],

(A2)

where s (k) is the unit vector in the direction of the pro-
jection of k onto the space orthogonal to n and
k =(k k )'~ . Using e", two orthonormal vectors
transverse to both k and s, we then construct the unit
tensors

r())( k ) Q2 ()) (2)

v'2 (A3)

v'2

X(x)=g'X(k)s(k, x) .
k

This expansion is done by expanding around the classical
solution of the linearized Einstein equations which
satisfies the boundary conditions as fixed in Sec. IV.
t "p(x) is the classical solution which matches the argu-
ment of the wave function h;~ on the ~=0 boundary
and vanishes on the other boundary surfaces; with our
boundary conditions, the classical solutions of the other
metric components vanish. (We assume that the finite
volume box is chosen to be large enough so that the
compact support of the initial data at ~=0 is interior to
it. )

The class of configurations that is summed over for
the fluctuations around the classical solution is specified
by the boundary conditions that the spatial components
of the fields vanish at ~=0 and ~= —L. and are periodic
in the spatial directions. The gauge choice we shall use
is (4.11a). The modes on the right-hand side of (Al) will
be constructed to satisfy these conditions. The notation

in (Al) means the sum over all k ~0 and k such
that k'&0. Modes with k'=0 will have infinite action in
the infinite-volume limit and thus will not contribute to
the functional integrals; we omit them for convenience
in defining the tensor modes. To explicitly construct
these modes it is useful to first define, for a given k
satisfying the above restrictions,
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Then the tensor modes are

t' p(k, x)=s(k, x)t' p(k),

P p(k, x) =s (k, x)(h p(k),

~I )B„s(k,x),

B ~„(k,x),

v=1,2,

(A4)

and iz'[h;, ] is the classical action evaluated for the ap-
propriate classical solution. The functional 6 functions
and Faddeev-Popov determinants are, in the gauge
(4.11a),

6G 4

n[B.y P], =~ D, g S[ky'~'(k)] [k']',
of

(A7a)

P p '(k, x)=
z

B Bps(k, x),
k

l'p(k, x) =v 2E('pp)(k, x), v=1,2,
l'p'(k, x)=( —,

')'i P p(k, x) —( —', )'i p p(k, x) .

These tensor modes are real and normalized to 1 on the
finite volume. The real functions t' '(k), P "(k),

'(k), and X(k) become the coordinates on the space
of functions over which we integrate and the actions
may be expressed in terms of them. For example, the
action I~z (4.12) is

I$ =g' If(k),

5[R")(P )] =g'Dq5[k P (k)][k ],
5co

(A7b)

dl pdP pdg

where D1 and D2 are numerical constants determined by
the normalization of the fields and implementation of the
5 functions and determinants. The products of factors
[k ] and [k ] in Eqs. (A7) are the Faddeev-Popov
determinants represented as modes. Defining the mea-
sure (4.13) as

kIf(&)= g [[l"(k)] +a [g(k)]i I
v=1

and the action i2 is

ip ——ip'[h)~ ]++'i~(k),
k

(A5)

(A6)

3

g dl (k)
k 1 v=1D

dP p
——Q' dP (k),

k 2

4

Q dP '"'(k) dX(k),
p=l

(ASa)

(ASb)

and using (A5) and (A7) Eqs. (4.15) become (suppressing
the label k on the mode amplitudes)

3 4
1=f ~'lV g dl'" dX Q dP" '5[kg""'] [ ']' p[ —f( )],

k v=1 @=1

1=f Q'd4'&[k'0'l[k'l
k

(A9)

where X is a constant needed to set (A9) to unity including a factor of a ' as well as other numerical constants.
Using the Fourier modes (Al) the path integral over the physical degrees of freedom can also be made concrete.

Defining the measure over the fluctuations around the classical solution to be

2

dt =Q' —Q dt' '(k)
k v=1

(A 10)

and using (A6), the wave functional is

2

4 [h; ]=JVe px( —i'[h; ]) f g' — Q dt '(k) exp[ —i (k)],
k v=1

(A 1 1)

where JV is a normalization parameter that can be computed explicitly in the following way. First evaluate the path
integral (Al 1) over the fiuctuations in the finite volume L . Then fix JV by requiring that the resulting wave function-
al be the normalized product of the ground-state harmonic-oscillator wave functions whose arguments are the ampli-
tudes of the Fourier transform of h;, (x) in the appropriate measure as L ~ ~. One finds that JV is the properly nor-
malized ground-state wave functional for 0 initial data on the boundary surface at ~= —L.

Finally for completeness we give the form of the parametrized wave functional (4.1S) in the Fourier coordinates
after integration over the Grassmann fields:
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4

+ [h,rr]=A' f Q' d' ((dy g 5[kg '"'] 5[k P ][k ]'e p( I—[h;, , t' ', 1',X]),
k @=1

where +k [rrN/(4D&Dz )]d '
(() dX is the product of (A8a), (A8b), and (A10) and I2 is the sum of (A5) and (A6).
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