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A field theory constructed on a space with a moving boundary illustrates many of the physical
characteristics of Hawking radiation from black holes. We review this analogy with a number of
new refinements. We construct a model in which the Bogoliubov transformation, which is induced
by the moving boundary, can be computed explicitly. This model is used to discuss correlations in
the final state of the quantum field. This discussion can, in turn, serve as the basis for an investi-
gation into Hawking’s proposal that black holes can induce the evolution of quantum-mechanical

pure states into mixed states.

I. INTRODUCTION

In contemplating a quantum-mechanical theory of
gravity one encounters a number of paradoxes which
play upon our fundamental notions of spacetime and of
quantum measurements. These paradoxes may be
viewed as obstacles to the construction of a viable theory
of quantum gravity or as opportunities for insight into
the structure such a theory will ultimately have. This
second viewpoint has been quite fruitful, leading, for ex-
ample, to Hawking’s discovery! of a mechanism by
which black holes can radiate away their associated
mass. Hawking has even speculated’ that black holes
might disappear in consequence of this mechanism, with
the net conversion of a pure quantum state into a
thermal or, more generally, mixed quantum state.

We would like to establish a framework for investigat-
ing this speculation. To this end we will study in this
paper a simple system which is in many ways analogous
to the system considered by Hawking—that of a quan-
tum field evolving in the classical background metric of
a massive object undergoing gravitational collapse. The
system which we choose to study is one of several which
other authors® have used to exhibit certain physical as-
pects of Hawking radiation. It involves a quantum field
in a two-dimensional flat spacetime bounded by a
reflecting wall. Particles, or field quanta, are produced if
this moving mirror undergoes an acceleration. And if
the mirror trajectory is suitably chosen, the particle flux
can mimic the particle flux expected in consequence of
gravitational collapse.

Our development of the moving-mirror analog will
parallel existing treatments in the literature, but with
refinements at each stage. We will try to emphasize why
we think that the model is particularly relevant to the
question of pure states evolving into mixed states. And
in a sequel to this paper* we will apply the model to pre-
cisely this question.

An outline of our approach is as follows. In Sec. II
we review Hawking’s arguments for particle production
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in the process of gravitational collapse, emphasizing
those aspects which we feel to be physically most
relevant. In Sec. III we formulate our moving-mirror
analogy and explain why we reject other possible
simplifications of the general problem of gravitational
collapse. Choosing a particular trajectory for the mov-
ing mirror, we are able to exhibit the final state of the
quantum field with no further approximations. Our ap-
proach makes it easy to examine stimulated-emission
processes, as we do in Sec. IV. These processes em-
phasize the quantum nature of the problem and under-
score the existence of correlations that are induced by
the moving boundary. These correlations are studied
more explicitly in Sec. V, where we compute correlation
functions involving the stress-energy tensor of the quan-
tum field. These correlations will form a key element in
the sequel to this paper. In Sec. VI we remark upon
some general properties of these correlations, including
their relation to the Einstein-Podolsky-Rosen effect.’

An effort has been made to make this paper more or
less self-contained for readers who are not familiar with
the extensive literature on this subject. For those who
are well versed in the literature, we should point out
which aspects of our arguments are genuinely new. We
choose a trajectory® which generates a constant flux of
Hawking radiation and permits an exact computation of
the associated Bogoliubov transformation. We are able
to diagonalize this Bogoliubov transformation and pro-
vide an explicit construction of the quantum state at late
times. This construction exhibits all final-state correla-
tions and facilitates an examination of the process of
stimulated emission. The treatment of stimulated emis-
sion includes a case previously treated by Wald.” But it
also deals with a new physical process whose existence
derives entirely from correlations in the quantum field.
The computation of correlation functions of the stress-
energy tensor is also a new result. Finally, there are our
remarks about the Einstein-Podolsky-Rosen effect which
emphasize the great physical importance that correla-
tions play in our model. This emphasis will carry over
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to our sequel and will dominate our discussion of the
possible evolution of pure states into mixed states.

II. HAWKING RADIATION

This section contains a brief review of Hawking’s ex-
planation of particle creation in the gravitational field of
a collapsing mass. We emphasize the essential physical
features of this process, which we will extract to con-
struct an easily comprehended mechanical analog. In
subsequent sections we will construct this analog system
and pursue more detailed questions in the context of this
analogy.

Hawking considered the evolution of a quantum field
under the influence of the classical gravitational field of
a collapsing massive object. For definiteness and simpli-
city we will assume that the quantum field describes
massless scalar particles. Properties of the massive ob-
ject need not be specified in any detail, save the fact that
its mass M should be much larger than the Planck mass
mp. This assures that the Schwarzschild radius of the
object should be much larger than its Compton wave-
length so that its gravitational field may be described in
classical terms.

Radially incoming null geodesics (or classical trajec-
tories of our scalar particles) can be labeled by a coordi-
nate v, outgoing null geodesics by a coordinate u. A
typical particle might approach the collapsing object
along a trajectory v=const. It would undergo a blue-
shift as it approached the object and passed through its
center. From there it would undergo a red-shift as it
emerged from the object along a trajectory:

u=f().

Since the massive object is collapsing, the red-shift along
the outgoing trajectory must exceed the blue-shift along
the incoming trajectory. This net red-shift is encoded in
the function f(v). More significantly, if the object col-
lapses to form a black hole, there will be a final trajecto-
ry, v =v,, that just escapes falling into the black hole.
This implies a singularity in the function f(v), with
f(v)— 0 as v —v,. It is the nature of this singularity
which determines the properties of Hawking radiation.

The singularity at v =v, divides the space of incoming
trajectories into two distinct regions. This fact has pro-
found consequences for the quantum field. In the distant
past, modes of the quantum field can be described in
terms of wave packets in the variable v. Continuity of
the functions which describe these wave packets forces
any given wave packet to have components in both of
the regions v >vy and v <vy. Obviously this effect is
most pronounced for packets centered close to v =vy.
The component with v <v, corresponds to particles
which can escape the gravitational pull of the black hole;
the component with v > v, describes particles which fall
into the hole.

Consider now a description of the quantum field at
late times. A complete basis must account for both the
escaping and trapped particles. Suppose we examine a
wave packet which corresponds to some outgoing parti-
cle. The evolution of this packet can be traced back to

(2.1)
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the v <vy portion of some wave packet in the distant
past. The v >wv, portion of this same wave packet de-
scribes particles trapped by the black hole. Thus we can
conclude that there is a correlation between escaping
particles (or, more properly, modes of the quantum field
which correspond to escaping particles) and particles
which are trapped by the black hole (or, rather, the cor-
responding modes of the quantum field).

To make this correlation more explicit, and to exploit
it more fully, we should exhibit the precise form of the
singularity in f (v). Hawking found that, as v —v,,

f)~—k"n[k(vy—v)], (2.2)
where
2
mp
K= Y, (2.3)

denotes the surface gravity of the black hole (i.e, the
gravitational acceleration at the Schwarzschild radius).
It follows from Egs. (2.1) and (2.2) that an outgoing
wave packet, described at late times in terms of the vari-
able u, will have the same functional form at early times
in terms of a variable

V=—K*‘1ntx(u0—u)]. (2.4)

In particular, if the width of the packet in the variable u

is Au, then its width in the variable V is
AV =Au . (2.5)

Hence from Eq. (2.4) the width of the packet in the vari-
able v is

Av =e VAV ~e “"Au . (2.6)
For late u (and v ~vy) it is apparent that
Av << Au . (2.7)

The functional form (2.4) applies to the region v <vy,
but we can analytically continue past the singularity at
v =vq. In the region v > v it is convenient to define

W =k In[k(v —vy)] . (2.8)
Analytic continuation takes
Vs —WFimk™ !, 2.9)

with the sign depending upon the sense in which the
singularity is passed. The upper sign corresponds to an
incoming wave packet of positive energy, the lower sign
to an incident packet of negative energy. The fact that
an outgoing mode of positive energy is linked to incom-
ing modes of both positive and negative energies, tells us
that there is a nontrivial Bogoliubov transformation
linking the vacuum states of the quantum field at late
and early times. This implies that particle creation takes
place under the influence of the gravitational field of the
collapsing object.

In what follows we will make the preceding arguments
more precise and explicit. In the interest of simplicity
and clarity we would first like to isolate those features of
the problem which are essential to the physical results
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that we can extract. Note that our discussion has so far
dealt only with radial trajectories. Although angular
coordinates are necessary to describe the modes of the
quantum field in the gravitational field of a collapsing
three-dimensional object, and the mode functions have a
nontrivial dependence upon angular momentum, the
essential physics of particle production seems to involve
the radial coordinate more directly and more fundamen-
tally. Therefore, it should be possible to extract the
physics of particle production from some two-
dimensional (one space plus one time dimension) model.
Note further that the crucial element for describing par-
ticle production and correlations among the produced
particles is the Bogoliubov transformation linking the
early and late time vacua of the quantum field. This
means that we can concentrate on Bogoliubov transfor-
mations in two-dimensional quantum systems. The
relevant Bogoliubov transformation should be based on
the function f(v) as in Eq. (2.1), but we need not involve
ourselves with details of the matter distribution which
generated this function in the original four-dimensional
(three space plus one time dimension) problem.

There is a class of two-dimensional models which have
been studied extensively in this context. These involve a
reflecting wall which is accelerated away from a distant
observer. The observer sees a flux of particles generated
in consequence of the accelerating boundary. If the ac-
celeration is constant, there results a thermal flux exactly
analogous to the flux deduced in Hawking’s original
work. We will develop this model in the following sec-
tion.

III. MOVING MIRRORS

The moving-mirror analogy is only one of several
pathways to simplicity that have been followed in the
literature of the Hawking effect. We will comment
briefly on possible alternatives in order to emphasize the
salient physical features of the moving-mirror approach.
Let us begin with Rindler models,> which compare the
observations of a fixed observer with those of an ob-
server moving at a constant acceleration. There is a Bo-
goliubov transformation which connects the observations
of the two observers. But this transformation correlates
particles seen by the accelerating observer with particles
in the “second Rindler wedge,” a region of spacetime
which is inaccessible to the accelerating observer. We
reject this correlation as an inappropriate analogy to the
case of gravitational collapse, where the correlation in-
volves emitted particles and particles falling into the
hole—both of which can interact with an observer out-
side the black hole. In the following section we will ex-
hibit the nature of this interaction in a study of certain
processes involving stimulated emission.

The existence of unphysical correlations in the Rindler
model is related to the existence in that model of a
“white-hole” horizon in past times which appears
symmetrically with the expected black-hole horizon to
the future. Another model which simplifies the dynam-
ics of the Hawking process and which also exhibits a
white-hole horizon is the so-called eternal black hole,’ in
which the gravitational field is represented by the
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Schwarzschild solution for a static distribution of
matter. Although by a clever choice® of boundary con-
ditions along the white-hole horizon, one can mimic the
particle production which occurs in gravitational col-
lapse, this model is flawed by unphysical correlations, as
in the Rindler model. Therefore, we feel that this model
is inadequate for investigating such questions as the pos-
sible evolution of pure states into mixed states or even
the physical correlations which are induced by gravita-
tional collapse.

We would like to select a model which exhibits the
essential physical features of the Hawking process but
which is as simple as possible for practical computations.
To this end we will construct a moving-mirror trajectory
for which particle emission occurs at a constant rate.
Here the Bogoliubov transformation is so simple that it
can be diagonalized explicitly, permitting us to construct
an explicit representation of the state of the quantum
field at late times. This example will be useful in estab-
lishing the nature of the correlations that will persist in
more complicated examples. Our simplest model corre-
sponds to an emitter of fixed temperature, rather like the
eternal black hole; but we can easily modify the model to
incorporate a temperature which increases as the
effective mass of the black hole decreases to match
Hawking’s general arguments. The Bogoliubov transfor-
mation cannot be explicitly constructed for this model,
but one can discuss* the structure of correlations which
occur.

We will now begin to examine the evolution of a mass-
less scalar field ¢ in a two-dimensional space bounded by

a movable wall whose position is given by
x =z(t). (3.1)

The time and position coordinates ¢ and x are related to
null coordinates of the previous section by

v=t+x, (3.2)

u=t—x. (3.3)
The boundary condition at the wall is

¢t —z(1),t +2z(¢))=0. (3.4

Modes of the field which satisfy this boundary condition
can be expressed as

¢w(u,v)=e——iwu_efiwp(u) . (3.5)
The function p (u) can be written as
plu)=27r,—u , (3.6)

where 7, denotes the time at which the wall reaches the
null coordinate u:

T, —2(1T,)=u . (3.7)

The function p (u) is simply the inverse of the function
f (v) which appears in Eq. (2.1). For our purposes p (u)
will be more convenient to use than f(v), since p (u) is
real for all values of u, while f(v), as emphasized previ-
ously, is singular at v =v,. From Egs. (3.6) and (3.7) it
follows that the first derivative of p (u) is directly related
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to the red-shift suffered by a particle which is reflected
from the wall:
pu)= 142(¢)
1—z(2)
The energy-momentum tensor, which describes the flux
of particles produced by the accelerating wall, can be
given entirely in terms of p'(u) and its derivatives:

(3.8)

(T, )=—1—(p")172,2p") =172 |

27 (3.9)

with other components vanishing. The integrated ener-
gy flux is given by
[du(T,) = [duld,np" )], (3.10)
u 48T “
where we have dropped surface terms in the integral on

u.
A constant energy flux is obtained if

plu)=—k"le " (3.11)

The corresponding mirror trajectory is given by the hy-
perbolic equation

I+Z(I):—K7167KI+KZ(I), (312)

whose solution is plotted in Fig. 1. Note that this trajec-
tory exhibits a future horizon at v =v,=0, in that

t+4+z(t)<0, Vu . (3.13)

There is no past horizon, meaning that the trajectory
covers all real values of u =¢ —z(z). In this regard our
trajectory differs from a Rindler trajectory:

FIG. 1. Mirror trajectory with a future horizon at v=0.
Rays incident from J~ with v <O reflect from the mirror and
travel outward to J%. Rays with v> 0 never strike the mirror
and pass on to J} .
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z=—x"'In[2 cosh(xk1)] , (3.14)

which coincides with our trajectory at late times, «t >>1.
The Rindler trajectory has

eK[I+Z([)]+67K[l—Z(Il]:1 , (3.15)

and hence exhibits a future horizon at v=0 and a past
horizon at u=0. There is, however, a superficial resem-
blance to our trajectory in that

142 :872” .
1—-2

(3.16)

This has the same functional form as our Eq. (3.11) but
involves the variable 2¢ in place of u.

We would now like to construct the Bogoliubov trans-
formation induced by the moving boundary Eq. (3.12).
To this end consider an expansion of the field ¢ in terms
of the normal modes ¢, of Eq. (3.5):
dlu,v)= L

3.17
47 Yo ( )

iw“—’[awgsw(u,u)+aj,¢;(u,u>] .
Since the mode functions ¢, have the structure of plane
waves on J, the creation operators a, have a natural
interpretation in terms of particles which leave 7~ in
the distant past. The mode functions ¢, do not have a
simple interpretation on J*. Therefore, we seek an al-
ternative to Eq. (3.17), which will involve an expansion
of ¢ in terms of creation and annihilation operators for
particles which approach J% in the distant future.
Owing to the horizon, J* consists of two components,
Ji and Ji. In terms of our analogy, right-moving
quanta, which escape to JZ, correspond to particles
which can escape from the black hole. Left-moving
quanta, which asymptotically approach J;, correspond
to trapped particles. Plane waves on Jj are represented
by the functions e ~/*¥. Therefore, the mode functions

SR (u,v)=—e "1 p oIS WIG(_y) | (3.18)

have a simple physical interpretation on J3. The func-
tion f(v) is the inverse of p(u), so that, given our ex-
pression for p (u), Eq. (3.11), we have

¢5(u,v)= __e—iwu_*_eAing( —v) ,

with V given by Eq. (2.4).

There is more arbitrariness in the choice of mode
functions appropriate to JJ;, since there will be no actu-
al observer stationed at the analogous position in the
case of gravitational collapse. (This would involve an
observer stationed along the horizon.) It proves con-
venient to select a set of modes complementary to those
of Eq. (3.19) in the form

dL(u,v)=e ""o(v) , (3.20)

where W is given by Eq. (2.8). Normalization of the

modes ¢, and ¢/ (I =R,L) is discussed in the Appendix.
Suppose now that we expand ¢ in terms of the modes
I,

(3.19)

1 do I It 41
#up)=7-3 | Rl CHEACRORT AL AU

(3.21)
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The creation operators a,{j have an obvious interpreta-
tion in terms of outgoing particles propagating toward
Jg or Jf (for I =R and I =L, respectively). The Bogo-
liubov transformation describes the relationship between
the operators a,, and a’:

a, :ﬁ p> i df(a;,wag B alt) . (3.22)
An explicit expression for the Bogoliubov coefficients
al., and Bl,, may be obtained from the overlap of the
mode functions ¢, with the functions ¢/, as described in
the Appendix. There results the explicit expressions

—iw/K
g,m:z‘iem/u 0)7 F(lw/K) , (323)
iw/K
BRy=— 2L e—morm | O D in/k),  (3.24)
K K
iw/Kk
ab, =22 o |21 D iy /) (3.25)
K K
—iw/Kk
o= — 20, o/ | Miow/K) . (3.26)
K K

The orthogonality and completeness relations appropri-
ate to these Bogoliubov coefficients are also described in
the Appendix.

The Bogoliubov coefficients (3.23)-(3.26) have ap-
peared previously in the literature,® but in a subtly
different context. Following Hawking, other authors
have obtained these expressions as the approximate Bo-
goliubov coefficients for a trajectory which differs some-
what from our Eq. (3.12). There is, however, no
difference in the two trajectories at late times, so the ap-
proximate Bogoliubov coefficients could legitimately be
used to deduce the late-time properties of Hawking radi-
ation. With our particular trajectory, the coefficients
(3.23)-(3.26) are physically meaningful at all times.

The Bogoliubov transformation can be used to express
the zero-particle state on J—, which we define to be the
vacuum state |vac) of the scalar field ¢, in terms of
operators ag acting upon the zero-particle state on J7:
|0g,0, ). It is apparent from the form of Eq. (3.22),
which mixes creation and annihilation operators, that
|[vac) and |Og,0; ) cannot be identical. An explicit ex-
pression of |vac) in terms of | 0g,0; ) can be obtained if
we can explicitly diagonalize the Bogoliubov transforma-
tion, Eqgs. (3.23)-(3.26).

Considering the derivation of these equations, one
realizes that this can easily be achieved. Suppose that
instead of the mode functions (3.5), one were to expand
¢ in terms of functions
(—kv +ie e iou
( l—e -21ra)/K)1/2

)iw/K_

DR(u,v)= (3.27)

and

(—xv _+_i€)~iw/’<_e —iwu

L —
(I)“’(u’v)_ (QZTT&J/K_I)I/Z

(3.28)
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These modes are normalized in the same way as the ¢,,.
Like the ¢,, they describe positive-energy solutions of
the Klein-Gordon equation. One can easily verify that,
owing to the ie prescription for passing the singularity
at v=0, the ®! are orthogonal to all negative-energy
solutions ¢, so the corresponding Bogoliubov transfor-
mation does not mix creation and annihilation operators.
Let us now expand

_ b do LgL It gl *
dluv)=—- ;f I E AR HE AT

(3.29)

The creation operators Aif do not create simple plane
waves upon J~, but they do create particles in the same
sense as the a,, and we have

A, |vac)=0. (3.30

The overlap between the mode functions ¢! and the
functions @/, is simple to evaluate and is diagonal in fre-
quency labels @ and ®’. One finds that

AR =cosh(6)a® —sinh(0)aL’, (3.31)

AL =cosh(6)aL —sinh(6)a R’ , (3.32)
where

tanh@=e ~"O/¥ (3.33)

Given this simple result, it is easy to construct a unitary
transformation U such that

A=UaU". (3.34)
The explicit form of U is
(% do
U =exp Ef—aj—(ayay—aﬁaf,) (3.35)
Since, by definition,
ak|0g,0,)=0, (3.36)

it follows from Egs. (3.30) and (3.34) that we must have
|vac)=U | 0x,0. ) . (3.37)

This exhibits the structure of the quantum state on J™,
which has evolved from the initial state |[vac) on J~.
The transformation U describes a superposition of corre-
lated left- and right-moving quanta. In the next section
we will examine the structure of these correlations in
more detail. We will also show that if one constructs a
reduced density matrix, by tracing over the coordinates
of the left-moving quanta, one obtains a simple thermal
density matrix for the right-moving quanta.

IV. CORRELATIONS AND STIMULATED EMISSION

The structure of the quantum field on J*, as exhibited
in Eq. (3.37), contains correlated left- and right-moving
quanta. In this section we will explore some physical as-
pects of these correlations. The right-moving quanta are
uncorrelated among themselves and have the apparent
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structure of a thermal ensemble. The quantum nature of
these particles is underscored by the possibility of stimu-
lated emission processes involving these particles. The
correlations imply further that one can stimulate the
emission of right-moving quanta through the addition to
the system of left-moving quanta. In terms of the
black-hole analogy, this means that one can stimulate
Hawking radiation by dropping particles across the hor-
izon. Neither type of stimulated emission process proves
to be of great practical importance (as a means of ex-
tracting energy from the hole), but their existence is a
necessity in any quantum model of black-hole decay.

Let us now consider the detailed structure of the state
specified by Eq. (3.37). The operators a’, and a,’j which
appear in Eq. (3.35), commute for o’#®. It follows that
the state U |0g,0;, ) has the structure of a direct prod-
uct of terms of states of the general form

| Q) =exp[6(afa) —aga;)]|00) , 4.1)

where the operators ag and a; correspond to operators
a ﬁ and af,, respectively, averaged over some small fre-
quency interval, and the state |00) designates a state an-
nihilated by the operators ag and a; . The precise struc-
ture of the state (4.1) may be obtained by algebraic

means. Let

X*=aja} (4.2)
and

X =" =aga; . 4.3)
Then

[X 7, X" ]=-2X;, (4.4)
where

X3=%(aZaL+aRa;)=%(a2aL+a;aR+1) . (4.5)
The commutators of the various X’s close, with

(X35, X ]=+X* . (4.6)

One recognizes that Eqgs. (4.4) and (4.6) define the Lie
algebra of the group SU(1,1). Therefore, the transforma-
tion in Eq. (4.1) is simply an element of the group
SU(1,1), and an explicit representation of the transfor-
mation can be displayed in terms of the representation
matrices of this group.
By the identifications
Xt ~iJ*t, X ~iJ

- X;~J5, 4.7)

we can associate representations of SU(1,1) with infinite-

dimensional representations of the group SU(2). This
correspondence has
JP=LJ T H+T T ) +J5?
~—MXTXT+X X )+X]
=§(a;aR +aZaL )z—a;azaRa,_—-% . (4.8)
For the state |00), in particular, we have
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1

J=jj+D=—Lorj=—1
Exploiting this correspondence further we can write

|QY=3C,|nn), (4.9)

with

Co=(—tin4i|e®|—11), (4.10)
in the language of SU(2), where |jm ) denotes a state
with J2=j(j +1) and J; =m. Explicit evaluation of the

C, yields

(tanh6)" —2mw/k\1/2, —mnw/
—_— 1 _ TW/K ThW /K .
" cosh@ (1—e y*e

The density matrix |vac){vac| can thus be written as a
product of terms of the form

p=1aXQ|=3C,Cl |mm){nn| .

mn

(4.11)

(4.12)

An observer on JE§ who can detect only right-moving
quanta would describe his measurements in terms of a
reduced density matrix:

pr=trpp=3|C, |*|m)m| . (4.13)
This reduced density matrix has the structure of a
thermal density matrix with a temperature

K

iy (4.14)

The absence of any correlations in pgr —and the absence
of any off-diagonal terms—is a consequence of extract-
ing the trace on left-moving coordinates in the construc-
tion of pr. The density matrix p describes a pure state.
The reduced matrix pr describes only a portion of this
state—precisely that portion of the state which is acces-
sible to inclusive measurements carried out on Jg.

Up to this point we have concentrated on how the ini-
tial state |vac) evolves in consequence of a moving
boundary. What if the initial state were more complicat-
ed and contained additional quanta of the field ¢? If
Hawking radiation is viewed as spontaneously emitted
quanta, then additional quanta in the initial state should
be able to induce the stimulated emission of further
quanta. This is indeed what happens, as was first noted
by Wald.” Consider the state

| 1g Y=WNa} | Q)

=./V2C,,\/n-+—1|n+ln>. (4.15)
The normalization factor N is given by
N72= (n +1)C, 2 =(1—e ~2™/%)~1 (4.16)

n
The average number of right-moving quanta in this state
is

1 _+_e2‘n'w/x

N(1g)=N?3 (n +1)C,*= Caran ]

n

(4.17)
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This result may be compared with the average number
of right-movers in the state | Q):

N(Q)= 3 nC,*= 1 (4.18)
n e

2Tw /K __ 1 :

This corresponds to the usual thermal population of
quanta. The difference

1

N(lR)—N(Q)=1+TM‘1—
e —

) (4.19)
involves two terms. The first represents the quantum
added explicitly in Eq. (4.15) to form the state |1g).
The second term is proportional to N () itself and
represents the effect of stimulated emission.

Owing to the correlations in the state |Q), it is also
possible to stimulate the emission of R quanta by adding
L quanta to the state. Consider

[1.)=WNa] |Q)=NSC,Vn+1|nn+1). (4.20)
The average number of R quanta in this state is
2
N(IL)=.N22n(n +1)C"2:W (4.21)
n
The difference
1
N1 ) —-N(Q)=—F7—- (4.22)
L eZﬂ‘m/K__l

is again proportional to N ({}) and can be interpreted,
like the second term in Eq. (4.19), as the consequence of
a stimulated emission process.

It would appear that these stimulated emission pro-
cesses might provide an efficient means of extracting en-
ergy from a black hole. The analog of left-moving quan-
ta in the mirror system are quanta which cross the hor-
izon and disappear into the black hole. Hence we have
shown that by adding quanta to the hole one can actual-
ly increase the rate at which quanta are emitted from the
hole. In Wald’s analysis of stimulated emission, he
showed that the quanta which must be used to stimulate
late-time emission from the hole (late u in our model)
must be infinitesimally close to v,. Equation (2.6) shows
that to stimulate the emission of a packet of width Au,
one must send in a packet of much narrower width Av.
The frequencies contained in the incident packet are
thus much higher than those in the emitted packet. In
this manner the red-shift which is induced by the black
hole mitigates against stimulated emission as a viable
means of energy extraction.

Wald considered only incident quanta which could
themselves escape from the hole. In the preceding dis-
cussion we have pointed out a second type of stimulated
emission process, which involves incident quanta which
fall into the hole. Owing to the symmetry between L
and R quanta in our model, we expect that in order to
stimulate late-time (or large-u) emission, we will still re-
quire incident quanta which are close to v, (only with v
less than v, in this case). Wald’s argument about dom-
inant frequencies should still apply, and our process of
stimulated emission should be of no more practical value
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than the conventional one considered by Wald. We will
demonstrate this in the following section, where we com-
pute the spacetime correlation functions for certain
physical observables. The structure of these correlation
functions will help to reinforce some of the intuitive
ideas that we have been trying to develop in this paper.

V. CORRELATION FUNCTIONS

Knowledge of the mode functions [Eq. (3.5)] for the
moving mirror problem allows one to construct the
two-point correlation functions, or propagators, for the
quantum field ¢. Since ¢ is a free field, albeit on a
dynamical background, these propagators are sufficient
to determine the correlation functions for any operators
constructed from ¢. In this section we use this observa-
tion to evaluate correlations of the stress-energy tensor
at different spacetime points. These correlations under-
score the correlations between left-moving and right-
moving quanta which were discussed in the previous sec-
tion.

The stress-energy tensor for the field ¢ is defined by

T,,=0,03,6—1g,,0,60"¢ . (5.1)
We would like to evaluate the correlation function
Cuvpry =Ty (u,0) T (u'0"))
— Ty (u,0)) (T (u’,07)) (5.2)

The expectation values (Tﬂv(u,u)> have been calculated
previously,® with the result (3.9). Given a trajectory
specified by the function (3.11), Eq. (3.9) becomes

K_Z

<T,m(u,v))=z8—7; ,

(5.3)

which corresponds to a constant flux of particles leaving
the surface of the accelerated mirror. These are the
right-moving quanta of the previous section. Note that

(T, =0,

so there is no physical energy-flux associated with our
left-moving quanta. They correspond only to vacuum
fluctuations, which are subtracted in defining the expec-
tation value (T,,). This is not to say that the left-
moving quanta do not exist, and it is the purpose of our
calculation of C,,, . to help illustrate the physical role
that they play in the model.

The computation of C,,, . is actually simpler than
that of (TW> since there is no vacuum subtraction re-
quired to define the correlation function. For an arbi-
trary mirror trajectory the two-point function

D *(u,v;u’,v")=C(vac | ¢(u,v)p(u’,v") | vac) (5.4)
has the form®
Dt (u,v;u’,v’)

_ 1 [p)—pu)—ie]lv —v' —ie]
o 47T1n[U —p(u’)—ie][p(u)_v/_ie] - (5.5)

The correlation function C,, ., is given by the Feyn-
man diagram illustrated in Fig. 2. Disconnected dia-
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FIG. 2. Feynman diagram for the correlation function

Cuvpv(u,vsu’,v").

grams, which would require regularization, are eliminat-
ed by the subtraction of (T, (T, ) in the definition
of Cp,, v [Eq. (5.2)].

Consider first the quantity C,, ,,. Given the trajecto-
ry (3.12) one readily finds that

K4 , ,
eK(ufu )/Z_ex(u 714)/2)74 .

1672

. ’ 'y —
Cuu,uu(u7v 7u ,U )_

(5.6)

This is precisely the correlation that is found in a two-
dimensional thermal field theory. At short distances
(u—u') Cyy .y, displays the typical singularity of a free
field theory. This strong correlation is damped out over
a distance

Au~1/k (5.7)

characteristic of the dominant wavelengths in a heat
bath of temperature « /2.

We have emphasized that our moving mirror model
mimics a system of temperature k /27 only insofar as we
restrict attention to measurements of right-moving quan-
ta. The result (5.6) is consistent with this viewpoint. To
delve into left-right correlations we will now examine
C,u, 0> Which has the structure

2
K KV —u)/2_ grlu—V")/2)~4
162" ’

in the region v’ <0. This expression has a singularity of
the free field type at ¥ =¥’ which corresponds to parti-
cles emitted at (x’,v’) which can reflect from the moving
boundary to reach the point (u,v). There are also
significant correlations for v’'>0. Indeed, if we analyti-
cally continue Eq. (5.8) to the region v’ > 0, we obtain

2

(5.8)

Cuu,uu =

C ___ kK (eXW'+w/2 o —kW' +uw)/2)—=4 (5 )
MOR T 16702
which shows that C,, ,, is maximal at u = — W’. These

correlations are a direct consequence of the correlations
between left- and right-moving quanta which were em-
phasized in the previous section. Indeed one could have
derived them directly from the structure of Eq. (3.37).
Note that the correlations in Egs. (5.8) and (5.9) ex-
tend over a range in ¥’ or W’ of order k ~!. This implies
that quanta emitted at late times (or large u) are corre-
lated with incident quanta very close to v =vy=0. This
substantiates the argument of the previous section to the
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effect that the stimulated emission of a quantum at large
u requires incident quanta of very large frequency in a
packet very close to v=0. As u increases, the incident
packet (as a function of v) narrows by a factor e ~** and
the requisite frequencies increase by a factor e * [see Eq.
(2.6)].

VI. CONCLUSION

In the preceding sections we have reviewed the struc-
ture of a two-dimensional field theory formulated on a
flat spacetime with a moving boundary. This theory
models many aspects of the Hawking radiation which
accompanies gravitational collapse. We have em-
phasized the nature of the correlations induced by the
moving boundary (or dynamical gravitational field).
This feature of the quantum field will form the basis of a
sequel* in which we discuss the possible evolution of
pure states into mixed states under the influence of a
black hole. It should be clear that in the present paper
the state of the quantum field remains a pure state—
even though right-moving quanta of the field do exhibit
many features of a thermal state. The right movers are
correlated not among themselves, but each right mover
is correlated with some left-moving quantum.

These correlations are in some ways paradoxical. We
found that C,,,, is nonzero, even though (T, ) itself
vanishes. The nonvanishing of C,, ,, for v'>0 can be
presented as an example of the Einstein-Podolsky-Rosen
effect. The correlation persists between spacetime points
(u,v) and (u’',v’) which need not themselves be causally
connected. Both points, however, do contain the mirror
trajectory in their past light cones; and it is through this
common influence that the mutual correlation results.

In this paper we have restricted our attention to the
trajectory (3.12) which results from the ray-tracing func-
tion (3.11). This restriction was made in the interest of
simplicity, but, given the results of the previous section,
it can easily be relaxed. The width in u of the correla-
tion exhibited in Egs. (5.6) and (5.9) is of order kL
where « is the acceleration of the moving mirror. This
means that if d,Inp’(u) varies on a time scale which is
long compared to «~!, then it is still reasonable to ap-
proximate the local mirror trajectory in the form of Eq.
(3.12), and to apply the intuition developed in this paper.
This approach is valid for a more realistic model of the
Hawking process, where the Hawking temperature in-
creases as the mass of the black hole decreases. It can
even be applied to models for the final stages of decay of
a black hole. We reserve these extensions, and our
speculations on this interesting topic, for a separate pa-
per.
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APPENDIX: NOTATION AND CONVENTIONS

Throughout the text of this manuscript we deal with a
scalar field ¢(u,v) defined on a flat two-dimensional
spacetime. The equation of motion for this field is the
Klein-Gordon equation

3,9,¢(u,v)=0, (A1)

whose solutions are arbitrary functions of the null coor-
dinates u or v. The boundary of the two-dimensional
space asserts itself by requiring ¢ to vanish along the
moving wall. This forces us to use particular linear
combinations of functions of u and functions of v, as in
Eq. (3.5).

These mode functions are normalized so that on the
Cauchy surface J~ we have

i [T dvék(u,0)0,8,(u,0)=4708(w' —0) . (A2)

i [ 7 do gLt (w018, ¢l u0)+i [

The first integral in this expression refers to the surface
Ji and the second to the surface J§. An expansion of
the field ¢ in terms of the mode functions ¢/ (u,v) gives

é(u, v)———z f°° O 1al ¢l (u,v)+all¢l* (u,0)] .

(A7)

The creation and annihilation operators which appear in
this expansion obey the commutation relations

[al,al 1=47m0d(w—w')8V , (A8)
lal,al1=[al ,all1=0. (A9)
The Bogoliubov coefficients al,, and B, relate the
operators a, and aT' to the operators a! and a’)
d(U ]
. Al0

The expansions (A3) and (A7) and the orthogonality con-
dition (A2) provide us with explicit expressions for the
Bogoliubov coefficients:

al.,=i f *

dv ¢%(u,0)3,¢L(u,0) , (A11)

* du¢£,’f(u,v)3u¢{u(u,v)
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If we expand the field ¢ in terms of these mode func-
tions,

o(u, v)——L * —f[aw¢w(u,v)+az,¢:,(u,v)] , (A3)
41 10}
then the creation and annihilation operators a:[, and a,
will obey the standard commutation relations
la,,al ]=470d(0' —©) , (A4)
[a,.a]1=[al,al1=0. (AS)

The mode functions (3.5) were chosen to provide a sim-
ple plane-wave representation of the field on the Cauchy
surface J~. On the surface J*=J}7 UJZ, a simpler
representation would involve the functions ¢5(u,v) and
#X(u,v) given in Egs. (3.19) and (3.20). These functions
are normalized so that, on the surface J ™,

=478’ —w)8" . (A6)
Blo=i [7 dvék(u,v)3,8*(uv), (A12)
with integrals taken along the surface J~. The ortho-

gonality condition (A6) provides us with a means of in-
verting the Bogoliubov transformation. Equivalently,
one deduces that

1 do al. —BL

=470’ (0" —w') ,

(A13)

Ef (@Bl —BLry@hiry) =0 (A14)
and that

e [ it Bl =4mob0— 08

(A15)

ﬁ gf,—lw’* ) o —Bhalt)=0 . (A16)

These relations can be verified if one uses the explicit
forms of al,, and BL,,, given in Egs. (3.23)-(3.26).
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