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Scalar-tensor theory in higher-dimensional space-time with torsion
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The modified Brans-Dicke theory with a torsion field is discussed in five-dimensional space of
Kaluza-Klein type. It is shown that the electromagnetic field and the scalar field appear during
the reduction of five-dimensional action. A conformally mapped metric is also used to see the re-
lation between the scalar field and the tlaplon field which is induced for the electromagnetic field
to be invariant under the gauge transformation and their equivalence,
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where the semicolon denotes the covariant derivative us-
ing the Christoffel symbols as in the case of conventional
general relativity. In this way we retain gauge invari-
ance at the cost of restricting the minimal-coupling pro-
cedure. To maintain the gauge invariance the second
definition is better than the first in Eq. (1) (Refs. 5 and
6):

F„=A, ,
~ p
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where the bar symbols denote the covariant derivative
with respect to the linear affine connection I" „which is

written with the torsion field S " = I „„—I „as

( Si +S i +S )

By requiring the invariance of the matter Lagrangian
which contains a complex scalar field %(x) that trans-
forms according to a U(1) gauge group,

Recently the modified Brans-Dicke theory, which
shows that the torsion field can be generated by the sca-
lar field tt, was investigated. ' This scalar field P is given
by the inverse value of the gravitational "constant"
which is assumed not to be a constant but a spacetime-
dependent field as usual in the Brans-Dicke theory. If
the electromagnetic field is introduced into this modified
Brans-Dicke theory, then the usual procedure of
minimal coupling of replacing ordinary derivatives with
generally covariant ones will give rise to a theory which
is not gauge invariant under the usual gauge transforma-
tions, since the base space of our modified Brans-Dicke
theory is the Einstein-Cartan manifold. One of two pos-
sibilities for avoiding this problem is to take the
definition of the electromagnetic field-strength tensor as

%(x)~e'~ ~p(x)

under the local transformations, we are led to introduce
the gauge potential A„ through the minimal-coupling
procedure:

A„~A„+e A

The second definition in Eq. (2) of the electromagnetic
field gives the useful result that the torsion field is deter-
mined by the gradient of the scalar field N, the so-called
"tlaplon, " ' in order to have minimal coupling and
gauge invariance coexisting in a consistent way:

(6)

The structure of the torsion field by the tlaplon is pre-
cisely the same form as one by N of our modified Brans-
Dicke theory.

In order to find those relations between the scalar field

P, the electromagnetic field, and the tlaplon field 4, it is
necessary to extend the modified Brans-Dicke theory
into the Kaluza-Klein five-dimensional space. The aim
of five-dimensional Kaluza-Klein theory is to unify the
gravitational and electromagnetic fields into a single
classical, geometric theory. The fifth component of the
metric gives the additional electromagnetic Lagrangian,
while for the common four-dimensional case the elec-
tromagnetic field is contained simply in the matter La-
grangian term. Its generalization to the higher-
dimensional space was achieved by giving general non-
Abelian gauge fields instead of the electromagnetic field.
Since then many applications to the Kaluza-Klein theory
have streamed out constantly. Among the applications
the torsion field of higher dimension ' ' and higher-
dimensional Brans-Dicke theory" are very relevant to
our motivations, as the unification of Kaluza-Klein
theory and Einstein-Cartan theory, and the unification of
Brans-Dicke theory and Kaluza-Klein theory, respec-
tively. The scalar fields in extra dimensions are used to
be a function of some variables' or constants. ' Five-
dimensional Kaluza-Klein theory ' treating the scalar
field with various physical quantities are also interesting.
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The four-dimensional modified Brans-Dicke theory is
necessarily introduced in order to be extended into five-
dimensional space. The modified Brans-Dicke theory in
four-dimensional spacetime with torsion starts off with
the action'

If we extend the spacetime into the five-dimensional
space, then the action (7) and the field equations (8)—(10)
must be'

I = f &—g (PR cuP—„P'"/P)d x (7) f &—A, (P' 'R coP—P' /P)d "x d9 (12)

in the absence of matter fields. Here co denotes an arbi-
trary dimensionless parameter. Then the field equations
are

and

GMN ~(4,M4, N 2 YMNP, L 0 (13)

(8)

R ~4,,0'"/0'+ 2~~0/4 2~S"„—i.0'"/0 =o .

(9)

(10)

The d Alembertian 6 in the Einstein-Cartan manifold is
defined by

(14)MN (4,MfiN W, NUM )/34
' 'R coP—MP /P'+2cog™M/P 2mS —MI. P' //=0,

where y is the determinant of the five-dimensional
metric y&B and ' 'R is the corresponding scalar curva-
ture. Discarding the surface terms the action (12) be-
comes

f &—y[p["'R([ ]) 2SLMNS—
"— 4S,MNS—— +SML S N ~pMp' /p']

+(y I. ' +2/' L, 2$,1.S —N)[d' xd&, (16)

where ' 'R ( [ I ) is calculated from the five-dimensional metric y „s without the five-dimensional torsion fields S MN.
With the help of the torsion field (14) the action (16) is given by

f ~ —k[p[' 'R([ ] ) (co+ ',—)p Mp™/p—)+(p I ' +2/' L )Id x d9 .

Assuming the five-dimensional metric is given by

(17)

7 AB

g„+A„A
1

AB
gpv

1+ AgA
(18)

the electromagnetic potential A„allows the gauge transformations

(19)

under the general coordinate transformation

x'"=x", x'=x'+A(x") . (20)

Working out the curvature scalar ' 'R([ I) for the five-dimensional space and an analogous quantity R([ }) for the
four-dimensional space, we find

' 'R([ ) )=R([ ] ) —,'F„F"". — (21)

Here the electromagnetic field is defined by the first covariant derivative, i.e., Eq. (1). When the electromagnetic field
is defined as Eq. (2) during the reduction of the dimension, then the coupled terms of A„and the derivative of scalar
field generating torsion field according to Eq. (9) should appear. Since the transformation (19) is not the form of Eq.
(5) for the case of metric (18), we can insist on Eq. (21) for simplicity. Then the action (17) with the assumption of
P 5

——0 becomes

V f &—g [P[R ( [ ) ) —,'F„F" (co+ ', )P „P—"/P']+(—P „—"+2/" „)I
d4x

= V f & —g P(R —coP zP'"/P —,'F„F""+,'P „P ~/P—)dx, —(22)

where V is the volume of the fifth dimension. The four
scalar curvature R in the second line is determined by
reuniting in reverse order of the method of derivation
Eq. (16). The fourth term —,'P „P'"/P of the integrand

Eq. (22) is produced in reducing the dimension of the
torsion field, while ——,'F„F" is due to the scalar curva-
ture ' 'R ( [ I ). The fact that the scalar field P appeared
before the electromagnetic field shows that scalar field P
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interacts with the electromagnetic field in the same order
of the interaction with R. It will also be easily found
from ' 'R ( [ I ) of the field equation for P in five-
dimensional space [see Eq. (15)]. However, in the case of
the usual four-dimensional Brans-Dicke theory the elec-
tromagnetic field exists independently, not being coupled
with the scalar field, since the matter Lagrangian of the
electromagnetic field is merely added to the gravitational
Lagrangian. The action (22) induces the conservation
law for the electromagnetic field including the scalar
field as

A„=g (26)

or
—jLV

AB y —1

1+ dgA

(27)

Then, in terms of new quantities, the five-dimensional
space metric is

g„+A
V AB

(PF"') .=0 . (23) Therefore defining

The action also gives the same field equations as Eqs. (8)
and (10) of the four-dimensional case, except that the
value of co is changed into ~ ——,

' which is the
dimensional-reduction effect for the torsion field. This
type of action (22) is conformally equivalent to a steady-
state continuous creation model with the electromagnet-
ic Lagrangian since the exponents of the coupled scalar
with R and the matter Lagrangian are l identically. '

We can also treat the five-dimensional metric Eq. (18)
as the conformal type:

738 + PAB (28)

A„~3„+A„or A„~2„+g (29)

These transformations define the electromagnetic field as

we see that y zz expressed in terms of g„and A„has
precisely the same form as the five-dimensional metric of
Kaluza-Klein theory, Eq. (18).

Under the transformation Eq. (20), A„admits the
gauge transformation

g
F„,, = 3 „—A„+X '(X A„—Y „A,, ), (30)

or (24)

which is the second definition of the electromagnetic
field, Eq. (2), assuming that the torsion field is given by

S „,=X '(5„X „—6 X„) . (31)

writing 7=@55 which, unlike Eq. (18), will not be as-
sumed to be a constant. This is a Jordan-type metric. '

Define

(25)

i e., carry out a conformal mapping in the four-
dimensional space. Lowering the index on
with g& gives

This definition of torsion shows that X should be P
up to a constant factor compared with Eq. (9). Equa-
tions (5) and (6) also relate the value of X with the tla-
plon field N:

(32)

Using the conformal transformation laws' of curva-
ture scalars I 'R ( [ I ) and I 'R ( [ I ) constructed from

y „ii, Eq. (27), and y zii, Eq. (28), respectively, the action
(17) can be written as

V — R ——,'X 'I'„~I'" +X

(33)

With the help of Eq. (32) the Lagrangian density of the action (33) becomes

+—g 0Ã([ I) —(~+ —,", )4 '4, I,4'"+0 '(4,,'"+20'",„)]—& g 40'"F„.F"——

Along the same method of Eq. (22), the above Lagrangian density Eq. (34) can be also rewritten as

' —g 4P —(~——,'.')& '0,„0'" ,'O'"F„.F""] . ——

(34)

(35)

It is easily shown that Maxwell's equation for the electromagnetic field of Eq. (30) is conformally invariant taking the
same form as Eq. (23) under the conformal transformation Eq. (28):

F"' ,=F S"i, P'(P .iF ") or (P——F"'). =0 . (36)

Although the scaling factor +~X" in Eq. (24), the form of coupling P and electromagnetic field does not vary satisfy-
ing conformal invariance of Maxwell's equation. Other field equations of Eq. (35) are transformed only varying the
value of co into co ——'„' by the effects of dimensional reduction of the torsion field and conformal transformation.
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V AB

When co —
—,", with the gauge transformation Eq. (29), the definition of the electromagnetic field Eq. (30), and the re-

lation Eq. (32), then the Lagrangian density Eq. (35) becomes that of Hojman, Rosenbaum, Ryan, and Shepley, ' ex-
cept for the coupling of the scalar field and the electromagnetic field. That is to say, if our modified Brans-Dicke
theory with a torsion field having appropriate value of parameter co is extended into five-dimensional space of metric

g„+re' A„A, A„g„„+A„A, A„
(37)

then the scalar field P generating the torsion field makes the role of minimal coupling of the vector potential A„equal
to the tlaplon field P with the relation Eq. (32) and it gives the interaction with electromagnetic field via Eq. (36).

The value of ass ——P
'~ allows the smallness of the extra manifold not to be seen, since the average value (P) is

given as the inverse value of the gravitational constant G. Instead of P
' it is applicable to other physical quanti-

ties' ' for y5&. It can be also extended into six- or higher-dimensional space using the generalized Kaluza-Klein
theory with non-Abelian gauge fields.
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