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Comparison between the coherent-pair approximation and projection
from a hedgehog Fock state in chiral soliton models
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Comparisons are shown for approximations to the lowest-energy solution of a schematic Harnil-
tonian using either the coherent-pair approximation of Bolsterli or the hedgehog approximation with
variation after projection as given by Fiolhais and Rosina.

I. INTRODUCTION The simple schematic model Hamiltonian has the form

Effective mean-field models have been used to try to
correlate hadronic properties without recourse to a full
calculation within QCD. The model Lagrangians are
constructed to have only those properties that are
deemed important for low-energy phenomena. A typical
chiral-invariant Lagrangian density' is given by

5 =q [i tl g( cr +—i y 5~.~) ]q + ,' d„cr d"o—.
Here q, o, and ~ represent, respectively, quark (fermion),
cr (scalar, isoscalar), and pion (pseudoscalar, isovector)
fields. The o. and pion fields are chosen as chiral partners
to ensure the chiral symmetry. The Lagrangian density is
chirally invariant if the nonlinear potential U(o, n) is only
a function of o +sr . The form of U(o, tr) is used to sta-
bilize the system and includes (infinite) counterterms to
ensure renormalizability.

Crucial to the application of the models, in the Hamil-
tonian approach, is the choice of a Fock state to define a
physical system. Variation of the energy, with respect to
field amplitudes defined by the Fock state, yields equa-
tions of motion for the amplitudes which will give a
minimum in the energy.

Fock states have been chosen using the mean-field
(or coherent-state) approximation. In this paper we ex-
amine, for a schematic Hamiltonian, two alternative ap-
proaches to a coherent-state formalism in the case of the
pion field where the relevant quanta of the fields are not
S wave. We demonstrate, with the aid of a simple
schematic model, that the hedgehog ansatz (as used by
Fiolhais and Rosina ) is comparable to or better than
practical applications of the coherent-pair approxima-
tion for all values of the coupling constant. This
dominance of the hedgehog ansatz (with some small ex-
tension) is valid after projection of relevant quantum
numbers.

gd, d, —G(a" &&a)":(dt+H.c. )
tm

(1.2)

where r (o. ) are the Pauli spin matrices acting on the
isospin (spin) of the bare (quark) nucleon; the operators

(o ),r (o ) have similar meanings for transforma-
tions between 6 states or between a 6 state and an N
state.

II. COHERENT STATES

In most applications to date the o. field is approximated
by a mean scalar classical field: i.e.,

(2.1)

This mean-field approximation is equivalent to having a
coherent state of S-wave o. quanta. Thus, if we consider
the expansion of the o. field in terms of momentum ampli-
tude states,

tr = g ft(kr) Y~'[Cktm +( —) Ckt ~ ],
klm

where d, creates an isovector, P-wave pion with pro-
jected quantum numbers t and m, and a, creates an S-
wave fermion. G is a renormalized coupling constant
which, in principle, includes an absolute coupling con-
stant and space integrals over pion and fermion ampli-
tudes arising, for example, from use of the Lagrangian in
(1.1). The parameter g also involves, in principle, space
integrals over amplitudes and is used here simply to set a
scale (g= 1). We use the notation (a &&a)":d to indi-
cate vector coupling of fermion operators in both isospin
and spin spaces, and a scalar product in both spaces
with the pion operator.

When operating within the space of S-wave quark states
with N and 6 quantum numbers we may write

G (a i ~ a)l 1 Gl[+N NN+ (
72 )1/2( Nt4 Nt4+ tsN t4N)

+ 4
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the coherent state is defined by

l
C ) =N «p f"&kckoodk

l
0)

0
(2.2)

(2.3)

It follows therefore that

( C
l

o.
l

C ) = f A. i,j o (kr)k dk
0

o(r) by —definition . (2.4)

Moreover,

( C l:~":
l

C ) =o "(r) (2.5)

with the colons denoting normal ordering.
We note the obvious fact that the coherent state is a

spherical scalar (S wave). This will be a valid approxima-
tion as long as the quarks are themselves in S states.
Should the quarks be in nonspherically symmetric states

I

with k, l, and m referring to the momentum, angular
momentum, and projection of angular momentum, respec-
tively, and N is a normalization coefticient. The coherent
state is an eigenfunction of all destruction operators of o.

quanta:
l

C ) =N exp f g Ai, ,dpi, dk 0)
mt

(2.6)

(where we now add an isospin index to the pion field
quanta description). Although the state C'. „ is an eigen-
function of all pion destruction operators, it does not have
definite spherical tensor characteristics. When such a
state is included in a Fock state, therefore, a projection
over the whole Fock state is necessary to recapture the ob-
served quantum numbers of a hadron. The "hedgehog"
form of the coherent state, for which XI, , ——k&5, „,has
particular relevance since this form has been shown' to
minimize the energy before projection if restriction is
made to the chiral circle (o +n = const).

In the application of the hedgehog ansatz with the
schematic Hamiltonian in Eq. (1.2), Fiolhais and Rosina
chose the full fermion + pion state in the form

(e.g. , when the system is deformed) then other quanta
than S wave should be considered for the o. field.

In the case of the pion, the pseudoscalar coupling with
S-wave fermions implies that the relevant multipole is P
wave. And of course the pion is isovector. A coherent
state of pions of the relevant quanta, constructed in analo-

gy to Eq. (2.2), would take the form

X=[cos5(—,
')' (Ni i N»)+sin5—( —,

')' (b3 3 6} i+6 ii 6 33)]C (hedgehog) . (2.7)

Here N2, z~ and Az, 2~ are the "bare" fermion states
which can be considered as having three S-wave quarks
coupled to the quantum numbers of the N and 5, respec-
tively, with projection t and m in the standard way. It is
from the full state 7 however that "physical" states with
the quantum numbers of the N and 6 are projected. The
physical state of the N is thus seen to have some bare
components with the 5 quantum numbers which, when
coupled to the pion field, yields the observed quantum
numbers of the N.

In conventional applications of the hedgehog ansatz'
a fermion hedgehog is defined at the quark level, i.e.,

d:d
l
ny) =y

l ny), (2.9)

where we use the colon notation to indicate a scalar prod-
uct in both J and T spaces. Here the states

l
ny ) have

the form

An alternative to using a single exponential coherent
state [as in Eq. (2.6)) has been proposed in the "coherent-
pair" approximation by Bolsterli. ' Here coherent states
are defined which are eigenfunctions of scalar pairs of bo-
son destruction operators. In the case of isovector, P-
wave pion operators this takes the form

h =(uL+dt)', (2.8) lny)= g C (yd:d ) ln),
m=0

(2.10)

where ul denotes an up-quark with spin-down, etc. , and
we suppress an implied antisymmetric color state. The
state h, when expanded, yields the state in Eq. (2.7) with
5=m/4. The state in. Eq. (2.7) is thus seen to have a
greater degree of freedom than Eq. (2.8)—a fact that is
essential to getting a variational minimum for weak cou-
pling.

Fiolhais and Rosina have computed the energy with
projected states from 7 in various situations.

(i) VBP. Variation of parameters A, , in hedgehog
form of Eq. (2.6) (5=sr/4), to yield an energy minimum
before projection.

(ii) VAP. Variation of A, , parameters (5=~/4) to
yield an energy minimum after projection.

(iii) VAP + 6. As in VAP but with additional variation
of 5 in Eq. (2.7). Results of their VAP and VAP + 5 cal-
culations are given in our Fig. 1.

(2n +v —2)!!C
2 m!(2n +v+2m —2)!!

(2. 1 1)

where in our case v=3&3=9 is the dimension of the
isovector (2T+ 1=3) P wave (2J+ 1=-3) bosons. Bol-
sterli has given a complete J and T classification of all
the (32 in number)

l
nyJT ) states up to four unpaired

pions and, in a later paper, up to six unpaired pions.
With such states one can now write down multicom-
ponent expression for N and 6 Fock states which au-

where
l

n ) is a state of n unpaired creation operators on
the absolute vacuum. Clearly the J and T characteristics
of the state

l
ny) are carried by the state

l
n ). The

coefficients in Eq. (2.10) have been given by Bolsterli in
the form
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tomatically have the correct quantum numbers. Thus

J 7 IN ~nyJ T„&j+Pj T [& ~~yJ T )I
nJ T

(2. 12)

Here N and b, refer to the standard bare (three-quark)
states with N and 6 quantum number, curly brackets
denote vector coupling to the correct JT quantum num-
bers of the baryon state B, and a and f3 are expansion
coeKcients. Thus with J =T = —,

' or —,', 8 refers to a
"physical" N or 6, respectively. On truncating the sum
in Eq. (2.12), the lowest energy of the state B is found by
diagonalizing the matrix of the Hamiltonian in the basis
I B

~

nyJ T ) ] (where B is either N and 5 ) and simul-
taneously varying y to reach a minimum. (In principle
one also has the freedom to vary y for each component
separately but we do not examine this additional freedom
here. )

—8-
~ 3~ 4

III. RESULTS AND CONCLUSIONS
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FICr. 1. Approximations to E/G as a function of G. The
four solid curves refer to the coherent-pair approximation with
indicated maximum number of unpaired pions for the N (a)
and for the 6 (6). The dashed and dot-dash curves in each
part refer to N's and b's, respectively; in each case the upper
member of a pair gives VAP and the lower gives VAP + 6.

The structure of the coherent-pair approximation en-
sures that the perturbation limit is reached for very small
values of the eA'ective coupling constant G. Figure 1

shows how E/G varies with G as the number of un-
paired pions is increased (from 1 to 4). In Table I we
show actual values for various small values of G. (In the
solution of the Hedgehog approximation it was convenient
to find the coupling constant corresponding to a given
coherence parameter. In order to make a direct compar-
ison therefore these same coupling constants were used in
the coherent-pair approximation. ) For the nucleon we see
that the coherent-pair approximation is better than the
hedgehog ansatz up to about G= 0.5, though it agrees
with the VAP+ 5 to within about 1%. For G) 0.5 the
VBP, VAP, and VAP + 5 approximations rapidly become

TABLE I. Explicit values for E/G' for small values of G in the VAP + 6 approximation (column
2) and the coherent-pair approximation with the 1, 2, 3, or 4 maximum number of unpaired pion corn-
ponents in columns 3, 4, 5, and 6. Shown for the N's (a) and 6's (b).

Hedgehog
VAP+ 6

Coherent pair

0.01927
0.098 38
0.191 13
0.297 12
0.404 19
0.518 89

—20.479 37
—19.568 11
—17.807 13
—15.928 47
—14.341 32
—13.076 62

—20.382 87
—17.802 63
—14.13509
—11.13847
—9.13095
—7.044 45

(a)
—20.481 35
—19.554 84
—17.429 04
—14.882 63
—12.785 10
—10.31307

—20.481 52
—19.635 32
—17.923 84
—15.875 86
—14.051 96
—11.705 87

—20.481 52
—19.637 20
—17.965 44
—16.050 53
—14.382 66
—12.207 88

0.01940
0.11156
0.220 78
0.329 22
0.442 64

—11.855 76
—11.507 26
—11.526 39
—11.800 94
—11.880 88

—11.833 13
—10.632 32
—8.665 64
—7.123 13
—5.963 49

(b)
—11.870 78
—11.557 12
—10.624 54
—9.458 14
—8.334 04

—11.870 83
—11.602 73
—10.975 87
—10.211 72
—9.377 62

—11.870 83
—11.604 41
—11.031 46
—10.487 90
—10.015 59
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FIG. 2. The average number of pions in N (solid curves) or 6
(dashed curves). The lower of each pair of curves shows the
number of pions not paired while the upper shows the total of
unpaired and paired pions.

degenerate leading to the classical field solution as G~ ap.
All yield an energy lower than the coherent-pair approxi-
mation up to four unpaired pions. The range of applica-
bility of the coherent-pair approximation with up to four
unpaired pions for the 5 is limited to G ~ 0.2. For
G& 0.2 the coherent-pair approximation completely fails
to reproduce the characteristic form of the VAP + 6 ap-
proximation, at least up to four unpaired pions.

Figure 2 shows some of the properties of the coherent-
pair solution. Here it is seen that the mean number of
unpaired pions in the expansion up to four unpaired pions
is always greater than the mean number of pions in pairs.
Nevertheless, as Fig. 3 shows, the paired pions play an
important role in lowering the energy of the coherent-pair
state: at G =0.5 the value of E /G is decreased by about
20%%uo by the introduction of coherent pairs. It is also in-

teresting to note that for small G there are, on average,
more pions in the N Fock state than in the A.

Despite the advantage of the coherent-pair approxima-
tion in generating basis states with the correct quantum

FIG. 3. Showing the eA'ect of including (lower solid curve in

each set) or not including (upper solid curve in each set) pairs of
pions in the coherent-pair approximation including a maximum
of four unpaired pions. The upper (lower) set of curves refers to
the 6 (N). Shown also for comparison is the hedgehog in the
VAP + 6 approximation for both the 6 (dot-dash) and N
(dashed).

numbers of a given hadron, the generalized hedgehog an-
satz, with variation after projection, is seen to be as good
an approximation for small coupling constants and far su-

perior for large coupling constants. Although this
analysis was carried out for the schematic Hamiltonian,
the general conclusions are expected to be valid for more
general Hamiltonians.
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