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We review the pattern of symmetry breaking recently suggested for strongly coupled QED and
point out that it is quite similar to that generally accepted as operative in the case of QCD. We
suggest, therefore, that we can describe “hadronlike” objects in QED using methods developed for
QCD. This discussion may be used to support our interpretation of the electron-positron peaks
observed in heavy-ion collisions as representing the decay products of nontopological solitons
(containing quasielectrons and quasipositrons) formed in a new vacuum phase of QED. We pre-
dict, however, that the existence of such objects will not lead to any anomalies in electron-positron
scattering with center-of-mass energies of about 1.7 MeV.

I. INTRODUCTION

There has been much interest in the past few years in
the observation of narrow electron and positron lines in
the spectrum of particles emitted in heavy-ion col-
lisions.!=® The interpretation of these peaks has defied
analysis. In particular, the fact that several peaks are
seen for the same system suggests that we are not seeing
the decay of a single elementary object. (The radiation
appears to come from a source moving with the velocity
of the center of mass of the heavy ions;’ this is one of
the facts which is difficult to explain in a scenario in-
volving new elementary particles.”®

In a recent Letter’ we suggested that we are seeing the
decay of a kind of “pseudopositronium”'® formed as a
nontopological soliton in a new vacuum phase of QED
(Ref. 11) created over a region which might have a
characteristic radius of about 300 fm. Indeed, if we
scaled our results for the spectrum of charmonium, or of
b quarkonium,!? so that we obtained a particle of mass
of about 1.7 MeV, we obtained objects of the charac-
teristic size mentioned above, with excited states with a
level spacing of about 100 keV (Ref. 9).

For example, let us consider the field equations

(iyH3, —my )h(x) =g h(x)X(x) , (1.1)
(O4+m )X (x) = —g b(x)(x) , (1.2)
which have (nontopological) soliton solutions. (These
solutions have been extensively studied in earlier
works.!?) Now introduce the dimensionless fields
X(x)=X(x)/m, , (1.3)
P(x):tll(x)/mq”2 , (1.4)

and the dimensionless coordinate p*=m/,x". With the

definition nzzmxz/qu, we have the (dimensionless)
equations
. 0
iyF———1 |P(p)=gyP(p)X(p), (1.5)
opt
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and

(O,+7°)X (p)=—gP(p)P(p) . (1.6)

Thus we see that the mass of the soliton is given by

m=f(gy,m)my, , (1.7)

where f(gy,n) is a dimensionless function. Similarly,

the radius of the soliton is given by

R =h(gy,m)/m, , (1.8)
where h(gy,n) is also dimensionless. Using this formal-
ism, it is a simple matter to change the mass scale (set by
m,) and make use of previous calculations of meson
structure!? to describe solitons in strong-coupling QED.
In this paper we wish to provide some justification for
the use of Egs. (1.1) and (1.2) in QED. Note that ¥(x),
in the case of QCD, is the quark field, and X(x) is an or-
der parameter of QCD vacuum condensates. In QED,
¥(x) will represent the electron field and X(x) will again
be an order parameter, in this case associated with the
broken chiral symmetry of QED in the strong-coupling
phase. To support this interpretation we will review
some recent work concerning the pattern of symmetry
breaking in strong-coupling QED (Ref. 13). As we will
see, in the strong-coupling limit, QED may contain cer-
tain scalar and pseudoscalar modes. The 0~ states are
the Goldstone bosons associated with the breaking of
chiral symmetry and remain massless. The 07 states ob-
tain a mass.!> A scale associated with these modes is
governed by a cutoff parameter A. We can think of
these modes as bound states of massless electrons and
positrons. If A is large, the bound state could have a
very small radius as compared to the characteristic size
of our solitons, R. (That is, we consider the case
R >>A"1') In that limit, the internal wave function of
the lepton condensate pairs is not important for our
study of soliton structure. [Thus X(x) will be a measure
of the condensate strength, that is, the number of con-
densed pairs, in some region about the point x.] Alter-
natively, one notes that A sets the scale for the momen-

2144 ©1987 The American Physical Society



36 NONTOPOLOGICAL SOLITONS IN STRONGLY COUPLED QED

tum dependence of the electron self-energy Z(p?). The
study of soliton dynamics usually involves the introduc-
tion of a coordinate-dependent self-energy 2(x), with a
simultaneous neglect of the momentum dependence.
This is a restatement of the approximation R >>A~ L
All in all, it is probably less confusing to concentrate on
the electron self-energy and discard the reference to con-
densed pairs since chiral-symmetry breaking will take
place in the quenched approximation and can be generat-
ed by considering the dynamics of a single electron in-
teracting with a gauge field. (The condensed fermions
have zero mass and are therefore not the relevant quasi-
particles of the theory after chiral-symmetry breaking
takes place.)

In the next section we discuss one approach to dynam-
ical mass generation in a gauge theory. In Sec. III we
indicate how we can describe nontopological solitons us-
ing the order parameters of the phase with broken chiral
symmetry. Sections IV and V contains some comments
on heavy-ion collisions and some further discussion.

II. BILOCAL FIELDS AND THE EFFECTIVE ACTION

In this section we review the recent work of Morozu-
mi and So.!> These authors write the effective action for

]

S0, 0)= [ d*x Bx)y o, x)+ e [ dx [ diy{[dix
+¥(x)

Here we have not written axial-vector, vector, and tensor terms which also appear.

-d;tLeip‘(x—y)

Qm*  p?

1 1
47? (x —y)*

D()(x —y): —
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QED and proceed to integrate out the photon field.
They obtain the action in the Landau gauge and in a Eu-
clidean metric:

S[¢,d)= [ d*x Plx)yd,8(x)

+—"2—2 [ dix [ d% J,(x)D*(x,p)0,(p)
(2.1
with
J#(x)zitf(x)y#lll(x) (2.2)
and
Dt )= [ LRy
X (8*p2—pHp*)/p* (2.3)

The next step in the analysis is a Fierz transformation to
yield the action

W(y)1Do(x — ) [P()(x)]

x)iysp(y)Do(x —p)h(pliysp(x)+ - | . (2.4)
Note that

(2.5)

(2.6)

Further, auxiliary bilocal ﬁelds o(x,y) and 7(x,y), are introduced without changing the value of the action.!* One

adds to the action, with A=3e?,
1 4 4
SAz—Hfdx fdy{[a(x,y

+[m(x,p) = Ap(x)iy sy

At this point the fermion fields are integrated out leav-

ing an effective action S.; expressed as a functional of
the bilocal fields. One may write'

f f e"P'“"q"aq(P) . 2.8

with
r/l:xy _yp > (29)
X, =X, +y.) (2.10)

—APO)PY(P)Do(x —3) 1Dy~

)Do(x —y)]1Do~ N(x

(x =)oy, x)—ADy(x —y)(p)p(x)]

=y, x) = Ad(p)iy sp(x)Do(x —p)1+ - -+ } .

2.7

I

and a similar equation for m(x,y). Again, following Ref.

13, we set
o, (P)=(2m)*'Y(P)a(g?), @2.11)
7,(P)=(2m)*8Y(P)m(q?) . (2.12)

Further, the effective action is evaluated in a two-loop
approximation and one sets o(gq?)=B(q?) (Ref. 13).
The equation for B (¢?) is

— 47 ) 4B (q?)
O,B(g%)— ——21-—=0,
ao T By

(2.13)
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a d

=— (2.14)
7 9q, 9q,

The boundary conditions are given in Ref. 13, where it is
pointed out that Eq. (2.13) is a differential form of an
(approximate) Schwinger-Dyson equation whose solu-
tions are known.'>~!'7 There is a critical point at
A=A.=72% In the weak-coupling phase (A <A.), there
is a trivial solution, B(g2?)=0. In the strong-coupling
phase (A >A.), there are an infinite number of nontrivial
solutions. The lowest vacuum energy follows from
adopting the nodeless solution for B(q?), By(g?) (Ref.
13).

By expanding the action in terms of the deviation
field,

o, (P)=0,(P)—(2m)*8'Y(P)By(q?) , (2.15)

q

and 7,(P), it is shown in Ref. 13 that the o field is mas-
sive and the field 7 is massless for A > A.. (At the criti-
cal point both fields are massless.'?)

We remark that the field By(g?) decreases monotoni-
cally from its value at g2=0, By(0). We can take
By(g?)=0 for values of g>> C?A?, where C ~4 and A is
a cutoff introduced in this model.!> Thus we see that the
choice of A will set the scale for the internal wave func-
tion of the condensed field or, alternatively, A sets the
scale for the momentum variation of the self-energy
S(p?). [It is important to note that if one assumes that
A, is an ultraviolet fixed point, the value of B4(0) is in-
dependent of A. For example, B,(0) is proportional to
K, if A/A.=14+7In"*(A/k) for A— o (Refs. 13 and
17).]

III. NONTOPOLOGICAL SOLITONS

Let us now consider the situation where CA is large
compared to 1 MeV, since 1 MeV is the characteristic
energy scale associated with the nontopological soliton
we will consider (R ~300 fm). In that case we can take
Bo(g?) to be a constant when discussing soliton struc-
ture. Therefore we may set

g (P) =0, (P)=2m)*8'Y(P)B, 3.1)

in the vacuum. For the purpose of studying soliton
structure we now introduce

X(P)=0(P)—(2m)*8'Y(P)B,

o

(3.2)

as the field measuring the deviation from the vacuum
value. In coordinate space this equation would read

X(x)=o0(x)—B, ,

which is meaningful if one does not probe distances of
the order of A™1.

At this point we need to bring back reference to the
fermion field. We consider the equations

(iy#"d,—m . (x) =g, (x)X(x) ,
(O4+m X (x)=—gt, (x),(x) ,

(3.3)
(3.4)

which are the field equations obtained from the Lagrang-
ian
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L(x)=1,(x)[iy*d,—m, —gX(x) 1, (x)

+ 43X (x)3, X (x)—m X3 (x) /2 . (3.5)

Here we have taken the effective potential to be
V(X)=1mo(x)—B,] (3.6)
=1mXix), 3.7)

with the zero of the potential at o(x)=B,. We can set
m ,=gB,, or m,=m,+gB,. In the latter case we as-
sume that the electron has a mass m, when B,=0. We
also see that m, is the mass of the o field. Note that
my is shown to be nonzero for A>A. in the model of
Ref. 13.

Although strongly coupled QED is expected to be in a
confined phase,'"'*!13 we see that Eqgs. (3.3) and (3.4)
make no reference to confinement. This situation can be
remedied and one can discuss confined solutions for non-
topological solitons; however, as can be seen from our
previous work,'? %29 modeling confinement is not partic-
ularly important if one only wishes to describe low-lying
states of hadrons. For example, we can describe the 1S,
2S, and 3§ states of b quarkonium without having to in-
troduce a model for confinement.!® This matter will be
discussed in a future work, and is not particularly
relevant to our considerations here.

IV. HEAVY-ION COLLISIONS

The physical picture which we put forward is as fol-
lows. In some manner, which we do not understand, the
intense fields of the heavy ions take one into a new phase
of strongly coupled QED (Ref. 21). There is a vacuum
condensate of bound e te = pairs formed over some re-
gion of space, several hundred fm in size. The presence
of a quasielectron and a quasipositron destroys the con-
densate over a finite region of radius r; < R, and ‘‘pseu-
dopositronium” is formed. This object is metastable
with a lifetime 7 greater than 1072° sec. The width
I'~1/7 may be of the order of 20 keV and is due to the
collapse of the soliton field [X(x)—0, or o(x)—B;].
Note that this width is very much larger than the width
which would be obtained by scaling the leptonic widths
for charmonium or b-quarkonium decays. In the latter
case (QCD) the vacuum condensates are stable and exist
through all space exterior to the hadron.

One may ask how one can have a relatively small-mass
object (~1.8 MeV) in QED and not destroy the excel-
lent agreement achieved in QED for a broad range of
observables. In our model, however, the results of stan-
dard QED calculations are unmodified. We may con-
trast our soliton model of bound states in QED with
bound states in QCD. Consider the leptonic decay of
charmonium (J /¢Y—et +e ), for example. One may
then perform an electron-positron scattering experiment.
At the appropriate energy, one readily forms charmoni-
um. We suggest, however, that an electron-positron col-
lision with a center-of-mass energy of about 1.8 MeV
will not form a new vacuum phase and no anomalous
peaks will be seen in such an experiment. In order to
form a nontopological soliton in a new phase one would
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have to perform an experiment in which the momenta of
all the final-state decay products, including the heavy
ions, were reversed. In other words, one cannot create
the metastable object, which we suggest is responsible
for the e *-e ~ peaks, from the ordinary vacuum phase
without the generation of the intense electric fields creat-
ed by the heavy ions. Therefore, ordinary QED-based
dynamics does not lead to any constraints on our model.
This is in marked contrast to the various models which
require the introduction of new (scalar or pseudoscalar)
particles coupled to the electromagnetic field in the nor-
mal QED phase.”®

V. DISCUSSION

It should be noted that chiral-symmetry breaking has
been demonstrated in lattice electrodynamics (see
Bartholomew et al.'®). However, the critical coupling
constant A!2 is about a factor of 3 smaller than the value
found by analytical methods (A2"'=72). [This could
reflect the fact that the “ladder approximation” of Eq.
(2.13) is inadequate. That is to say, the lattice calcula-
tion sums many diagrams which are neglected in the
ladder approximation.] Another interesting point is that
the lattice result indicates that there is no new scale
developed dynamically in strongly coupled QED which
would set a size for the condensed fermion-antifermion
pair wave function. The scale appears to be set by the
lattice spacing. This is in accord with the observation
that, in the analytical analysis, the scale for B(q?) is set
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by the cutoff A if one does not assume the presence of an
ultraviolet fixed point in strongly coupled QED (Ref.
17).

Of course, the real challenge for our model is to un-
derstand why a gauge theory such as QED should be-
come strongly coupled in the unusual environment creat-
ed in a heavy-ion collision. Researchers who have stud-
ied the problem of explaining the narrow peaks seen in
heavy-ion experiments appear to now believe that one is
seeing the decay of a composite object.” To the extent
that the description of chiral-symmetry breaking in
QED presented in Ref. 13 is correct, we can construct
hadronlike states in QED making use of the order pa-
rameters of the condensate. (The situation in QED is, of
course, different than that of QCD, where the conden-
sates fill all of space outside a hadron. This difference
would have to be taken into account in any detailed
model.)

Further work is needed to see if the decay of such ob-
jects is indeed the source of the narrow electron-positron
peaks observed. We do predict, however, that while ex-
otic states will continue to be seen in heavy-ion col-
lisions, these states will not be excited in electron-
positron collisions.
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